
General Virtual Sketching Framework for Vector Line Art

HAORAN MO, Sun Yat-sen University, China
EDGAR SIMO-SERRA,Waseda University, Japan
CHENGYING GAO∗, Sun Yat-sen University, China
CHANGQING ZOU, Huawei Technologies Canada, Canada
RUOMEI WANG, Sun Yat-sen University, China

Clean line drawing image (1024px) Output vector line drawing Stroke order

Rough sketch (384px) Output vector line drawing Stroke order Photograph (256px) Output vector line drawing Stroke order

(dynamic window & longer strokes) Region (i)

D
raw

in
g o

rd
er

(i)

(ii)

(window scaling & sliding to undrawn area) Region (ii)

… … …

… … …

(b) Drawing canvas for vectorization(a) Vectorization

(c) Rough sketch simplification (d) Photograph to line drawing

Fig. 1. Given clean line drawings, rough sketches or photographs of arbitrary resolution as input, our framework generates the corresponding vector line
drawings directly. As shown in (b), the framework models a virtual pen surrounded by a dynamic window (red boxes), which moves while drawing the strokes.
It learns to move around by scaling the window and sliding to an undrawn area for restarting the drawing (bottom example; sliding trajectory in blue arrow).
With our proposed stroke regularization mechanism, the framework is able to enlarge the window and draw long strokes for simplicity (top example).

Vector line art plays an important role in graphic design, however, it is
tedious to manually create. We introduce a general framework to produce
line drawings from a wide variety of images, by learning a mapping from
raster image space to vector image space. Our approach is based on a re-
current neural network that draws the lines one by one. A differentiable
rasterization module allows for training with only supervised raster data.
We use a dynamic window around a virtual pen while drawing lines, imple-
mented with a proposed aligned cropping and differentiable pasting modules.
Furthermore, we develop a stroke regularization loss that encourages the

∗Corresponding author.

Authors’ addresses: Haoran Mo, Sun Yat-sen University, Guangzhou, China, mohaor@
mail2.sysu.edu.cn; Edgar Simo-Serra, Waseda University, Tokyo, Japan, ess@waseda.jp;
Chengying Gao, Sun Yat-sen University, Guangzhou, China, mcsgcy@mail.sysu.edu.cn;
Changqing Zou, Huawei Technologies Canada, Markham, Canada, aaronzou1125@
gmail.com; Ruomei Wang, Sun Yat-sen University, Guangzhou, China, isswrm@mail.
sysu.edu.cn.

© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3450626.3459833.

model to use fewer and longer strokes to simplify the resulting vector image.
Ablation studies and comparisons with existing methods corroborate the
efficiency of our approach which is able to generate visually better results
in less computation time, while generalizing better to a diversity of images
and applications.

CCS Concepts: • Computing methodologies → Parametric curve and
surface models; Neural networks.

Additional Key Words and Phrases: vector line art generation, virtual sketch-
ing, dynamic window mechanism, stroke regularization

ACM Reference Format:
Haoran Mo, Edgar Simo-Serra, Chengying Gao, Changqing Zou, and Ruomei
Wang. 2021. General Virtual Sketching Framework for Vector Line Art. ACM
Trans. Graph. 40, 4, Article 51 (August 2021), 15 pages. https://doi.org/10.
1145/3450626.3459833

1 INTRODUCTION
Vector images play a fundamental role in graphic design given
that they can be rendered at arbitrary resolutions without loss of
information, and are widely used in engineering design [Egiazarian

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459833
https://doi.org/10.1145/3450626.3459833
https://doi.org/10.1145/3450626.3459833

51:2 • Mo et al.

et al. 2020], 2D animation [Su et al. 2018], and 3D printing [Liu et al.
2017]. Instead of modifying the pixels directly, vector graphics are
built using basic shapes that are described with few parameters, e.g.,
control points of a bézier curve or vertices of a polygon. This allows
much more natural and flexible editing in comparison with raster
images, which are described by pixel values.

Line art is often represented using vector images, and in particular
parametrized curves, which can be directly generated with illustra-
tion software. However, many line drawings are generated as raster
images, such as scanned paper drawings, and it is necessary to con-
vert them to vector drawings. For clean line drawings, vectorization
approaches [Bessmeltsev and Solomon 2019; Favreau et al. 2016;
Noris et al. 2013; Stanko et al. 2020] can directly produce vector line
drawings. In most cases, it is not clean line drawings, but rough
sketches that need to be cleaned up and vectorized. Image-to-image
translation algorithms [Isola et al. 2017; Li et al. 2019; Simo-Serra
et al. 2018a] are able to generate clean line raster drawings, although
they require post-processing to convert the resulting line drawing
to a vector image. We propose a framework to directly convert arbi-
trary input images to clean line drawings, which is applicable to a
diversity of image types as shown in Fig. 1.

Our approach is based on a recurrent neural network that learns
a raster image to vector image mapping directly, while not requiring
vector images for training. We achieve this with a differentiable
rendering module, which is able to render line drawing raster im-
ages from a vector parametrization, and is amenable to integration
in an end-to-end training framework. To overcome the issue of
processing images of arbitrary resolution, which is a challenge for
most learning-based vector graphics generation algorithms [Huang
et al. 2019; Kim et al. 2018; Zheng et al. 2019], we propose modeling
a virtual pen using a dynamic window that updates its position
and size at every frame as shown in Fig. 1-(b). The model learns
to enlarge the window when moving the pen around and drawing
long strokes, while it shrinks the window when drawing fine details
without any direct supervision. Naive implementations of cropping
and pasting operations necessary for the window suffer either from
non-differentiability or quantization artifacts. We overcome both
issues by using an aligned cropping and differentiable pasting module
that both avoid discretization and allow for gradient propagation.
Another important aspect of vector images is that while many

different vector images can be rendered to the same raster image, in
general, we are interested in the simplest vector representation, that
is, the one with the fewest parameters. For line drawings, this con-
sists of representing a long stroke with a single parametrized curve
instead of multiple shorter curves. To integrate this concept into our
model, we propose a stroke regularization mechanism which encour-
ages the model to use the minimum vector parameters necessary to
represent a line drawing.
We evaluate for our approach through comprehensive ablation

studies, and comparisons with the existing methods on line drawing
vectorization, rough sketch simplification and photograph to line
drawing. These experiments demonstrate that our approach is able
to generate visually pleasing results while taking less computation
time, and generalizes better to different types of images 1 .

1The source code can be found at https://github.com/MarkMoHR/virtual_sketching.

The main contributions of this work are summarized as follows:
(1) A general framework for vector line drawing generation that

works with a wide variety of images, dependent exclusively
on raster training data.

(2) A dynamic windowmechanism that allows processing images
of arbitrary resolution and high complexity.

(3) Stroke regularization mechanism that controls the simplicity
of the output vector images.

(4) In depth comparison with existing approaches in a diversity
of tasks.

2 RELATED WORK

2.1 Vector Graphics Generation
There are two main lines of work on learning-based vector graphics
generation: data-driven or independent on vector training data.
A number of works on learning with vector training data have
been proposed in recent years, e.g., sketch reconstruction [Das et al.
2020; Graves 2013; Ha and Eck 2018], and image-based drawing
generation [Egiazarian et al. 2020; Song et al. 2018].While, in general,
it is more straightforward and easier to learn with direct vector
supervision, it is not always feasible to collect vector training data.
To avoid this issue, another line aims to get around the vector data.
They firstly transform the predicted vector parameters into raster
drawing images, and then optimize the model at raster level. The
transformation is achieved by using an external black-box rendering
simulator [Ganin et al. 2018; Mellor et al. 2019], or a differentiable
rendering module [Huang et al. 2019; Li et al. 2020; Nakano 2019;
Zheng et al. 2019].

Among works that do not require training vector data, Learning-
To-Paint [Huang et al. 2019] is the approach closest to our frame-
work, albeit with some noticeable differences. First, we adopt a
continuous stroke representation instead of a discrete one for more
natural stroke continuousness, and we use a virtual pen which can
avoid the redundant drawing problem in Learning-To-Paint. Second,
Learning-To-Paint is limited to a small fixed image size, while ours
handles images of arbitrary resolution.

2.2 Vectorization
Vectorization approaches can be divided into two lines: optimization-
based and learning-based approaches. Optimization-based algo-
rithms have been widely studied and are still under active devel-
opment [Bessmeltsev and Solomon 2019; Favreau et al. 2016; Noris
et al. 2013; Stanko et al. 2020]. Due to the high computational com-
plexity of the optimization process, these approaches take a long
time to generate the vector images. In contrast, our approach is
faster. Recently learning-based approaches have also been proposed
as an alternative. VectorNet [Kim et al. 2018] combines neural net-
works and optimization algorithms to segment the raster image into
a set of paths, and then uses the existing vectorization techniques,
e.g., Potrace, to vectorize each path. Guo et al. [2019] use neural
networks to subdivide the lines and reconstruct the topology for
each junction. Strokes are then traced by curve least-square fitting
method. The learning of both these works lies in the pixel level
rather than the vectorization stage. Thus, they require third-party
vectorization techniques in contrast to our work. Furthermore, both

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

https://github.com/MarkMoHR/virtual_sketching

General Virtual Sketching Framework for Vector Line Art • 51:3

lines of works are designed for clean line drawings and have dif-
ficulties in sketches with rough textures. On the other hand, our
method can generalize to a wide variety of images.

2.3 Line Generation from Other Domains
Line drawings can also be generated from images in other domains,
such as rough sketches and photographs. For rough sketches (a.k.a.
sketch simplification or sketch clean-up), ClosureAware [Liu et al.
2015] and StrokeAggregator [Liu et al. 2018b] use vector images as
input and output the clean vector sketches. Models in [Simo-Serra
et al. 2018a,b, 2016; Xu et al. 2019] work with raster rough sketches
and output the clean ones in raster format. Line extraction from
photographs includes widely-known edge detection techniques [Xie
and Tu 2015], and GAN-based image translation methods such as
Photo-Sketching [Li et al. 2019]. All these approaches consist of
either vector to vector or pixel to pixel mappings. In contrast, our
approach is able to learn a pixel to vector mapping directly.

2.4 Image and Feature Sampling
In object detection and instance segmentation [Girshick 2015; He
et al. 2017], image or feature sampling based on the Region-of-
Interests (RoIs) with floating point number position and size is
fundamental. RoIPool proposed in [Girshick 2015] performs quanti-
zation for the RoIs twice to extract fixed-size feature maps. However,
this introduces misalignment and breaks the gradients. RoIWarp
proposed in [Dai et al. 2016] and RoIAlign in Mask R-CNN [He
et al. 2017] try to resolve these problems with RoIAlign performing
better in practice. RoIAlign subdivides each RoI into spatial bins and
performs bilinear feature interpolation within each bin to compute
the feature maps. This operation avoids quantization, and thus per-
mits gradient propagation. We employ this approach in our aligned
cropping operation that requires accurate alignment and our differ-
entiable pasting module that needs to preserve the gradients for the
position and window size.

3 LINE DRAWING GENERATION FRAMEWORK

3.1 Overview
Our approach is a general framework for vector line drawing gen-
eration given an arbitrary image as input. As illustrated in Fig. 2,
the framework is based on a recurrent neural network-based model
which predicts the drawing strokes step by step based from the
input image. It is designed with a dynamic window of a square that
moves around while drawing the lines. This window, with size,
a cursor & (i.e., the position), is able to move and scale after each
time step. There are two advantages of using a dynamic window.
First, it allows us to model images directly at full resolution, i.e., the
resolution of the input image, while avoiding the sharp increase in
training difficulty. Second, it enables our model to scale up to an arbi-
trary resolution even though the model is trained on low-resolution
images.

As shown in Fig. 2-(a), the recurrent model consists of four main
phases at each time step C :
(1) Aligned Cropping: given an image � with size,� and a same-

size canvas �C−1 as inputs, this module crops the patches according

to the current window (&C−1,,C−1) , and resamples them to images
of fixed size,A .
(2) Stroke Generation: taking the cropped patches as input, the

stroke generator (Fig. 2-(b)) predicts the parameters 0C of the next
stroke. The generator consists of a Convolutional Neural Network
(CNN) encoder which models the image-level information, and a
Recurrent Neural Network (RNN) decoder which takes in the image
features and outputs the stroke parameters. The RNN decoder also
receives a latent vector from previous time step and passes along a
new latent vector to the next time step.
(3) Differentiable Rendering: a neural renderer is then employed

to approximate the stroke image (C based on the Bézier curve stroke
parameters @C derived from the predicted parameters 0C while being
fully differentiable. This enables raster-level supervision during an
end-to-end trainingwithout the requirement of paired vector images
that are not trivial to collect.

(4) Differentiable Pasting: the rendered stroke image in a fixed ren-
dering size,A is then pasted to the full-resolution canvas based on
cursor&C−1 and window size,C−1. This pasting process is done in a
differentiable manner, which enables the gradients to be propagated
to the &C−1 and,C−1.
Afterwards, a predicted indicator ?C is used to decide whether

a stroke is drawn or not. Each pasted stroke image to be drawn is
inserted into the canvas to form a full-resolution line drawing image
for the comparison with the target image.

3.2 Stroke Generation
3.2.1 Stroke Representation. In our framework, strokes are rep-
resented in a relative manner, i.e., continuous strokes, which is
similar to the stroke-3 format (ΔG,Δ~, ?) in Sketch-RNN [Ha and
Eck 2018], where (ΔG,Δ~) ∈ [−1, +1]2 is the offset of the next posi-
tion and ? ∈ [0, 1] is the pen state to control whether to lift the pen.
Given that such representation is limited to straight lines and fixed
line thickness, we augment it with an intermediate control point
(G2 , ~2) ∈ [−1, +1]2 to form a quadratic Bézier curve, and a width
factorF ∈ [0, 1] to provide varying thickness. We also add a scaling
factor ΔB ∈ [0, :] (: > 1) into the stroke representation which con-
trols the window size at each time step, allowing the model to learn
the best window size for different situations. In summary, the stroke
0C at time step C within a coordinate system [−1, +1] is formulated
as follows:

0C = (G2 , ~2 ,ΔG,Δ~,F,ΔB, ?)C , C = 1, 2, ...,) . (1)

A quadratic Bézier curve specified by three control points %0 =
(G0, ~0), %1 = (G1, ~1) and %2 = (G2, ~2) is formulated as:

�(g) = (1 − g)2%0 + 2(1 − g)g%1 + g2%2, g ∈ [0, 1] . (2)

Following the parameter design in [Huang et al. 2019], we define the
stroke parameters @C = (G0, ~0, G1, ~1, G2, ~2, A0, A2)C for a quadratic
Bézier curve based on 0C :

(G0, ~0)C = (0, 0), (G1, ~1)C = (G2 , ~2)C , (G2, ~2)C = (ΔG,Δ~)C ,
(A0)C = FC−1 0=3 (A2)C = FC .

(3)
Here, the starting control point (G0, ~0) should always be exactly at
the middle of the dynamic window, (G1, ~1) and (G2, ~2) are derived
from the stroke 0C , and A0 and A2 denote the widths of %0 and %2.

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

51:4 • Mo et al.

Stroke
Generation

𝑎𝑡 Rendering

ℎ𝑡−1

ℎ𝑡Input 𝐼 Canvas 𝐶𝑡−1 𝑆𝑡

𝑊𝑡−1
𝑊𝑟 𝑊𝑟

Window 𝑄𝑡−1,𝑊𝑡−1𝑊𝐼

Canvas 𝐶𝑡Stroke
image

Stroke
parameters 𝑝𝑡

𝐶𝑡−1

Pen state

Cropping Pasting𝑄𝑡−1

(a) Pipeline at each time step

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6

(c) Sequential strokes and canvas

…

…

CNN Encoder

FC
RNN

Decoder
FC

ℎ𝑡−1

ℎ𝑡
Conv + Instance Norm + ReLU

32
64

128
256

512 128 256 7

𝑎𝑡

(b) Architecture of stroke generator

CoordConv

𝑧𝑡

Hidden
state

𝑞𝑡

Bézier curve
parameters

Fig. 2. Our framework generates the parametrized strokes step by step in a recurrent manner. It uses a dynamic window (dashed red boxes) around a virtual
pen to draw the strokes, and can both move and change the size of the window. (a) Four main modules at each time step: aligned cropping, stroke generation,
differentiable rendering and differentiable pasting. (b) Architecture of the stroke generation module. (c) Structural strokes predicted at each step; movement
only is illustrated by blue arrows during which no stroke is drawn on the canvas.

After pasting, the pen state ? is used to decide whether this stroke
is drawn or not.

Relative Moving and Scaling. At each time step, the virtual pen
along with the dynamic window moves to the ending position of
the predicted stroke. If it is not necessary for a stroke to be done,
e.g., sliding to a different part of the image, the model can choose
not to draw the stroke by setting the pen state to ?C = 0. We call this
“movement only”. Furthermore, the model can choose to change the
size of the dynamic window at each time step by setting ΔBC , which
allows enlarging or shrinking the window size. Given the cursor
movement Δ&C = (ΔG,Δ~)C ∈ [−1, +1]2 and scaling factor ΔBC , we
can define the dynamic window update rule as:

&̂C = Δ&C ×,C−1/2 +&C−1, &C = max(0,min(,� , &̂C)),

,̂C = ΔBC ×,C−1, ,C = max(,<8=,min(,� ,,̂C)),
(4)

where,� is the size of the input image and,<8= is the pre-defined
minimum value for the dynamic window size. Value clipping is used
to avoid potential out-of-bounds issues. In the experiments, we set
,<8= = 32 × 32, the initial values,0 = 128 × 128, &0 a random
position and : = 2 for ΔB . In fact, an endpoint is the junction of two
adjacent strokes belonging to two windows of different sizes, so its
width factor value used in the previous window should also update
to adapt to the next window at every time step. Please refer to the
supplemental materials for in-depth details.

Differentiable Pen State Binarizing. The pen state ? ∈ [0, 1] is
a continuous value during training, but is expected to be a dis-
crete binary value with 0 corresponding to movement only and
1 corresponding to drawing a stroke. Direct discretization with a
non-differentiable operation like argmax does not allow gradient
propagation. To address this problem, we adopt softargmax [Luvizon
et al. 2018] to approximate the argmax function while preserving

the gradients. This differentiable operation can be formulated as:

softargmax(G) =
∑
8

4VG8∑
9 4

VG 9
8 . (5)

Essentially, the softargmax operation outputs a continuous value
close to the discrete index value produced by argmax. In our case,
softargmax pushes pen state ? ∈ [0, 1] closer to 0 or 1 when applied
to a vector [1 − ?, ?] that has index values 0 and 1 only. We set
V = 10 in our experiments.

3.2.2 Stroke Generator. Figure 2-(b) shows the architecture of the
stroke generator, which consists of a CNN encoder and a RNN
decoder built with LSTM cells [Hochreiter and Schmidhuber 1997].
The CNN encoder takes the patches cropped from the input image
and canvas as input. Due to the dynamic window-based design,
the model tends to get into a situation where the cropped patch
has been fully drawn, as shown in the case in Fig. 7. To facilitate
the learning of moving to an undrawn region outside the window,
we resize the entire image and canvas to,A = 128 × 128, i.e., the
same size as the cropped patches, and feed them to the generator
as additional global guidance that tells the model where undrawn
strokes may be.
The CNN encoder employs CoordConv [Liu et al. 2018a] at the

first layer, followed by convolution layers with instance normal-
ization [Ulyanov et al. 2016] and ReLU activation function. A fully
connected (FC) layer is then employed to project the image features
to image embedding IC . The RNN decoder takes IC and the previous
hidden state ℎC−1 as inputs and predicts the stroke parameters 0C ,
and a new hidden state ℎC .

3.3 Aligned Cropping and Differentiable Pasting
The cropping and pasting modules play important roles in the dy-
namic window-based framework. As illustrated in Fig. 2-(a), at time
step C , the cropping and pasting are done based on cursor &C−1 and

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

General Virtual Sketching Framework for Vector Line Art • 51:5

0 1 2 3 4 5

1

2

3

4

5

0 1 2

1

2

(a) Misaligned Cropping (c) Differentiable Pasting(b) Aligned Cropping

0 1 2 3 4 5

1

2

3

4

5

Fig. 3. Different types of cropping and pasting operations. (a) The image
represented in a dashed grid is cropped by a window in black solid lines with
a cursor and window size that are not aligned with pixels. Naive cropping
operation with a quantized discrete window produces a misaligned patch
in the light blue area. In pasting phase, this area is padded with pixels
in white to form the pasted frame. (b) The aligned cropping works on a
window that is not necessarily aligned with pixels. It relies on RoIAlign
operation [He et al. 2017], which resamples the cropped patch into a fixed
size,A (2 × 2 in this example). (c) The differentiable pasting essentially has
a similar working mechanism to the aligned cropping operation except for
requiring a coordinate system change. Here the black solid lines indicate
the cropping window, and the dashed grid indicates the rendered patch to
be cropped. The pasted frame within the black solid lines is amenable to
differentiation. Dots in the bins indicate the sampling points for RoIAlign.
We omit dots in the other bins for brevity.

window size,C−1 both of which are floating values. Quantizing the
floating numbers (Fig. 3-(a)) is a straightforward way to perform
spatial cropping and pasting, but this could lead to two problems:
the window and the cropped or pasted patches may not be aligned,
and the gradients from the pasted canvas cannot be propagated to
&C−1 and,C−1.

To address the misalignment problem in the cropping phase, we
introduce an aligned cropping operator, which is able to cope with
the cursor and window size that are not necessarily aligned with
pixels. This operation is based on the RoIAlign module proposed
in [He et al. 2017]. As shown in Fig. 3-(b), this operation first subdi-
vides the window into spatial bins based on the window size,C−1
and resampling size,A = 128 × 128. Then, inside each bin, several
sampling points are set and their values are computed by bilinear
image interpolation. The average of these values is set to the final
value of each bin finally. Afterwards, cropped patches in a fixed size
,A are obtained without the need for quantization, and they are
spatially aligned with the window.
In the pasting phase, to guarantee alignment and enable gradi-

ents propagation to the cursor and window size, we introduce a
differentiable pasting module. As shown in Fig. 3, like the aligned
cropping, the differentiable pasting operation is based on bilinear
image interpolation. The main different between both modules is
that the 2D interpolations are under different coordinate systems,
which requires a coordinate system change. After performing the
coordinate change, the bilinear image interpolation operation under
continuous value space enables differentiation. We introduce details
of the coordinate system change in the supplemental materials.

3.4 Differentiable Rendering
The differentiable renderer is to render the 2D stroke raster image
from the 1D stroke vector parameters, which facilitates an end-to-
end training with a raster-level loss and avoids the requirement of
vector training images. To enable gradients to be propagated from
the rendered output to the stroke parameters, we follow a similar
approach to Learning-To-Paint [Huang et al. 2019] and use a neural
network to approximate the stroke image (C given the quadratic
Bézier curve parameters @C mentioned in §3.2.1. The neural renderer
has a similar architecture as the one in Learning-To-Paint. In our
experiments, the rendering window size is set to 128 × 128, which
is equal to the fixed image size,A in the stroke generator. Please
refer to the supplemental materials for more details about the neural
renderer.

4 TRAINING

4.1 Overall Loss Function
Our training loss function is made up of three components: (1) a
raster loss LA0B for visual supervision, (2) an out-of-bounds penalty
loss L>DC to avoid out-of-bounds issues of the stroke parameters
with relative moving and scaling, and (3) a stroke regularization
loss LA46 that can encourage the model to simplify the resulting
stroke vector images. The total loss is formulated as below:

LC>C0; = LA0B + _>DCL>DC + _A46LA46, (6)

where _>DC and _A46 are scalars.

4.2 Raster-level Supervision
The differentiable rendering module allows us to adopt a raster-level
loss for end-to-end training without the need for vector images. It
is straightforward to use an !1 or !2 loss to calculate the pixel-wise
difference between the target line drawing image and the rendered
output. However, our experiments in §5.5 show that they are not
suitable for our task because they focus largely on the local details
and this results in poor global completeness.
To this end, we seek for a raster loss which is able to guarantee

both details and completeness of line drawings. Inspired by the
study of perceptual similarity [Zhang et al. 2018], we employ the
perceptual difference [Johnson et al. 2016], a kind of structural loss,
as a raster-level loss. In particular, we use VGG-16 [Simonyan and
Zisserman 2015] as the perceptual model, and we fine-tune it on
a sketch dataset QuickDraw [Ha and Eck 2018] to make it more
sensitive to line drawings.

Given a rendered line drawing image ~̂ (the last canvas), a target
line drawing image ~, and a perceptual network q , we define q 9 (·)
as the activation map ∈ R� 9×� 9×,9 of layer 9 . The perceptual loss
of layer 9 can be defined as:

L 9
?4A2 =

1
� 9 × � 9 ×,9

q 9 (~̂) − q 9 (~)

1 . (7)

Loss Value Normalization. As a raster loss, we use a combination
of perceptual losses from a set of layers � . However, as loss values
from different layers can have different orders of magnitude, directly
summing the original loss values as in [Johnson et al. 2016] might
lead to an undesired imbalance of layers. Furthermore, a simple

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

51:6 • Mo et al.

Input image Output vector drawing Stroke order

(a)

(b)

Drawing order

Fig. 4. Example of redundancy and incompactness. (a) The redundant
strokes (shown in the black box) are overlapped with the drawn ones. (b) Or-
ange dots indicate the endpoints of each stroke. The result is that a straight
line is divided into many short segments.

weighted summation is not practical because it is hard to decide the
best weights. To address this problem, we normalize the loss value
for each layer. Practically, we divide the loss value of layer 9 by the
mean loss calculated from all the previous training iterations, and
then obtain the normalized perceptual loss L 9

?4A2−=>A< . Finally, our
raster loss is computed as:

LA0B =
∑
9 ∈�

L 9
?4A2−=>A< . (8)

4.3 Out-of-Bounds Penalty
The stroke offset (ΔG,Δ~) and scaling factor ΔB can be theoretically
learnt from only the raster loss. However, we notice the out-of-
bounds issue caused by the relative moving and scaling, as men-
tioned in §3.2.1 and Eq. (4), should also be penalized in order to better
teach the model to predict the relative values inside the boundary.

Given the original values of cursor &̂C and window size ,̂C after
relative moving and scaling, and the clipping values &C and,C in
Eq. (4), we then define the out-of-bounds penalty loss for moving
factors by directly penalizing the out-of-bounds distance as:

L<>E8=6
>DC =

1
)

)∑
C=1

���&C − &̂C

��� . (9)

The penalty for the scaling factor is then formulated as the normal-
ized outer distance to the upper (,�) and bottom (,<8=) bounds:

LD? = max(,̂C −,� , 0)/,� ,

L1>CC>< = max(,<8= − ,̂C , 0)/,<8=,

LB20;8=6
>DC =

1
)

)∑
C=1

(LD? + L1>CC><) .

(10)

The total out-of-bounds penalty L>DC is the combination of losses
for moving and scaling factors. That is, L>DC = L<>E8=6

>DC + LB20;8=6
>DC .

We show the effectiveness of this loss in the supplemental materials.

4.4 Stroke Regularization Mechanism
Any raster image can be rendered by different, yet visually equiv-
alent, vector images. While they may be visually equivalent, the
vector images can have varying degrees of complexity. Given that

128px 176px 278px224px

Fig. 5. Training examples for vectorization and rough sketch simplification.

our approach is trained with a raster loss, we need some mechanism
to encourage the vector representation to be as simple as possible,
otherwise redundant strokes may appear as shown in Fig. 4-(a), or
long strokes may be represented by many shorter strokes as in Fig. 4-
(b). In graphic design, both redundancy and incompactness increase
the difficulty of editing and we desire the simplest representation
of the vector images.

The higher the simplicity, the fewer vector parameters are neces-
sary to represent a line drawing. To this end, we introduce a stroke
regularization mechanism by restricting the number of strokes that
are related to the pen state ?C ∈ [0, 1] (1 for drawing and 0 for lift-
ing). The stroke regularization term is formulated as the proportion
of drawn strokes:

LA46 =
1
)

)∑
C=1

?C . (11)

This term is differentiable and added to the total loss functionLC>C0;

in Eq. (6) during end-to-end training.Whenminimizing the total loss,
ideally the model will learn to use fewer strokes while producing
a better line drawing simultaneously. As a result, the redundant
and incompact strokes can be avoided. As with most regularization
terms, weighting the stroke regularization term too strong can lead
the model to use an insufficient number of strokes and thus worse
results. We analyze the effect of this term in §5.6.

5 EXPERIMENTS
We evaluate our approach in a diversity of image-to-line drawing
tasks such as line drawing vectorization, rough sketch simplification,
and photograph to line drawing to show the generalness of our
approach.

5.1 Dataset and Implementation Details
Dataset. Ourmodel is able to process images of any resolution due

to our dynamic window-based framework. For training efficiency,
we train the model with low-resolution images, and then evaluate
its performance on higher resolution images. For the evaluation of
vectorization and rough sketch simplification, we use the Quick-
Draw [Ha and Eck 2018] dataset that contains vector stroke data, and
render them as raster images of varying resolutions from 128 px to
278 px as shown in the top row of Fig. 5. In the case of rough sketch
simplification, we utilize the pencil art generation and rough aug-
mentation techniques from [Simo-Serra et al. 2018a,b] to synthesize

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

General Virtual Sketching Framework for Vector Line Art • 51:7

the corresponding rough sketches (bottom row in Fig. 5) from the
clean line drawings. We additionally evaluate for photograph to line
drawing task using the face image dataset CelebAMask-HQ [Lee
et al. 2020], where we can generate the facial sketches from the
annotated segmentation masks. The face images and sketches are
rendered at a resolution of 256 px.

We also collect separate test sets for quantitative evaluation. In the
case of vectorization and rough sketch simplification, we generate
examples from the test set ofQuickDraw. Raster images are rendered
at four sizes: 128, 256, 384 and 512. Such test sets can be used to eval-
uate the generalization ability on higher resolutions. For photograph
to line drawing task, we use the test split in CelebAMask-HQ.

Training Details. For vectorization task, we compute perceptual
loss at layers relu1_2, relu2_2, relu3_3 and relu5_1 (short for
∪(12, 22, 33, 51)) of the VGG-16 model. For rough sketch simplifi-
cation and photograph to line drawing, we adopt ∪(22, 33, 51) and
∪(22, 33, 42, 51), respectively. The loss weight _>DC in Eq. (6) is set
to 10. For the stroke regularization mechanism, we adopt a linearly
increasing loss weight _A46 instead of a constant value. We resize
the images using area interpolation when inputting the full image
to the CNN to provide global guidance. We train for 75:/90:/90:
iterations for the three tasks, respectively, with a batch size 20.
Optimization is done with Adam [Kingma and Ba 2014] using an
initial learning rate 1e-4. The maximum number of time steps of the
recurrent neural network during training is set to 48.

Testing Details. The testing is done step by step in a fully auto-
matic manner, with the cropping phase, the stroke generation, the
explicit rasterization and the pasting phase performed sequentially
at each step as in training. When evaluating on images of high reso-
lutions and complexity, we are able to theoretically use an infinite
number of strokes because our model learns to lift the pen with the
pen state. To avoid the prediction of unnecessary pen lifting after
the model finishes drawing early, we design an early-stop strategy.
Specifically, we set #A>D=3 rounds of drawing, each with a maxi-
mum number of strokes #BCA>:4 . In each round, the moving is done
automatically. When #1A40: continuous pen states corresponding
to lifting the pen (? = 0) are predicted, we end the round. After each
round, we randomly move the pen to slide the window to a distant
undrawn area, which is especially useful with high-resolution im-
ages. We do this by randomly moving the cursor to a position far
away from the drawn region. This strategy maximizes the complete-
ness of the resulting vectorization, and manual intervention, i.e.,
random movement, is performed only when the model cannot draw
anymore inside a round.
We set #1A40: = 12 for the three tasks. The values of #A>D=3 =

10/10/1 and #BCA>:4 = 500/96/100 are found to work well for vec-
torization, rough sketch simplification and photograph to line draw-
ing, respectively. For the vectorization task, we also design a method
to stop the drawing early, i.e., before reaching the maximum round.
Please refer to the supplemental materials for more details of this
method, as well as the datasets and the implementation.

Target image Output A Output B Output C

Chamfer distance: 3.966
Perceptual score: 1.822

Chamfer distance: 43.734
Perceptual score: 0.966

Chamfer distance: 3.590
Perceptual score: 0.252

Fig. 6. Examples to show how the quantitative evaluation metrics work.
Chamfer distances (↓) in 10−5 and perceptual scores (↓) in 10−2. For both
metrics, a lower value is better.

Drawing order

Input image Output vector drawing Stroke order Moving trajectory

A

B

Fig. 7. Results of moving. The last column shows the drawing order of the
strokes together with the trajectory of movement only that is not drawn in
the final output. The dashed red box represents a window without undrawn
pixel inside it. Black arrows indicate the moving direction.

5.2 Quantitative Evaluation Metrics
Our goal of quantitative evaluation is to measure the pixel-level
similarity between target line drawing image and rendered output.
This still remains an open problem as it is hard to define similarity
metrics which are fully consistent with human perception. Chamfer
distance [Fan et al. 2017] adopted in [Yan et al. 2020] is able to
measure sketch-to-sketch similarity effectively, however, we notice
some issues of this metrics. As highlighted in Fig. 6, output A has a
lower chamfer distance value than B, but the details in A are visually
worse.

From a rough inspection, we notice chamfer distance is more
sensitive to the completeness of the drawing, but not to fine-grained
details. However, fine-grained details play a fundamental role in
line drawings. We notice the perceptual score derived from the per-
ceptual loss in §4.2 is more sensitive to the details, and employ it as
another metric. As shown in Fig. 6, output A has a lower chamfer
distance corresponding to higher completeness, but a higher percep-
tual score corresponding to worse details compared with B. Output
C is visually more complete than B, so both chamfer distance and
perceptual score are lower.
Different from the perceptual loss during training (§4.2), there

is no history value to perform loss normalization during testing.
Therefore, we use only the middle layer relu3_3 in the VGG-16 to
calculate the perceptual score. For test sets with images of different
resolutions, we average the values.

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

51:8 • Mo et al.

Input A1 A2 A3 A4 A5 A6 A7

68 111 127 75 39 46 38

Fig. 8. Results of window scaling. Red boxes represent the windows. A1 to A7 are the sequential frames. Numbers on top right corner indicate the window size.
We can see in A1 to A3 how the model enlarges the dynamic window in order to find an undrawn area to move to it. A blue arrow highlights in A4 shows a
movement that does not draw a line.

5.3 Effectiveness of Moving and Scaling
Moving. Our model learns to move the virtual pen along with

the dynamic window around by breaking the continuous strokes
or sliding to an undrawn area with pen state ? = 0. Figure 7 shows
two representative examples. The top row demonstrates an easily
encountered case: the window moves to where no undrawn pixel
is inside. Next, it slides while not drawing from position A in the
upper right direction to position B containing undrawn pixels and
then the model restarts drawing. Bottom row shows a number of
necessary breakings among the isolated strokes.

Scaling. Despite the lack of ground-truth scaling values for direct
supervision, the model does learn some common and meaningful
rules as shown in Fig. 8. Most of the time, the model uses small win-
dows to draw fine details. However, when getting into the situation
where the window does not contain undrawn pixels (A1), the model
attempts to enlarge the window to find the undrawn pixels (A1-A3),
and slides there with a long stride simultaneously (A3-A4). After-
wards, the model shrinks the window quickly to restart drawing
(A5). These results imply that the model is capable of learning to
choose a reasonable window size to adapt to different situations.
We also compare our model with one that uses a fixed-size win-

dow. For a fair comparison, we use the same neural render with
rendering size set to 128 px, and set the fixed size to 128 px.Quantita-
tive results in Table 1 show that such a model (“Fixed” in “Window”
column) has worse performance for both metrics. We believe that
this is probably because the 128 px window size is too large for
this model to draw details well, after looking at the statistics of
window size for our model. Most windows used for drawing strokes
have sizes ranging from 30 px to 70 px at both low and high resolu-
tions. It seems like smaller windows can draw shorter strokes and
help to recover details. However, overusing small windows tends to
cause worse completeness, given that we allow only a finite num-
ber of strokes during training. This also explains why our model
learns to use a larger window for movement only. Visual results and
distributions of window sizes are in the supplemental materials.

5.4 Effectiveness of Differentiable Pasting
As discussed in §3.3, misaligned cropping and non-differentiable
pasting suffer from misalignment and non-differentiability. The
latter issue in pasting phase results in the loss of gradient with
respect to stroke position and scaling factor in the stroke parameters,
and is detrimental to end-to-end training. We thus mainly study the
effectiveness of differentiable pasting.

Input image Output (diff.) Output (non-diff.) Stroke order (non-diff.)

Drawing order

Fig. 9. Comparisons between differentiable (“diff.”) and non-differentiable
(“non-diff.”) pasting.

We compute statistics for the distributions of scaling factor val-
ues, and find that for both low and high resolutions, the model with
differentiable pasting predicts scaling factors concentrated in the
interval [0.8, 1.2]. However, without differentiable pasting, there
appears to be an abnormal distribution with peaks around 0.5 and
2.0. Visual results show the scaling values change alternately be-
tween ∼ 0.5 and ∼ 2.0, leading to severe jitter in the window size
rather than meaningful changes as in the differentiable-pasting-
based model. The abnormal scaling factors are due to the failure in
its learning without normal gradient propagation. Please refer to
the supplemental materials for the scaling value distributions and
visual results.

Figure 9 shows visual comparisons between differentiable and
non-differentiable pasting. We can see that the model with non-
differentiable pasting suffers from bad completion of line drawings,
and the stroke order shows the window fails to slide to undrawn pix-
els. Quantitative results in Table 1 are in line with the visual results,
showing a rapid deterioration in both metrics (“Non-diff.” in “Past-
ing” column), especially in chamfer distance which is more sensitive
to completeness.These results also indicate the misalignment, and in
particular, the gradient blocking caused by non-differentiable past-
ing prevent the model from learning to update the stroke position
well.

5.5 Ablation Study of Raster-level Loss
Other Raster Losses. We first compare the adopted perceptual loss

with a pixel-wise difference loss, and in particular, the !1 distance
(the !2 distance has similar performance). Figure 10 shows that
model with !1 loss draws only a small part of the sketches with
dense short strokes. This is probably due to the limited ability the
pixel-wise difference loss has when considering the overall structure
of the drawings. Significantly worse chamfer distance in Table 1 also
indicates the failure in completeness. We also study adversarial loss

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

General Virtual Sketching Framework for Vector Line Art • 51:9

Table 1. Ablation studies. For fair comparisons, we change only one factor (in bold type) while remaining others the same as those of our model at last row.
Numbers in “Perceptual Layers” indicate the relu layers. Values of perceptual score are in e-2 and those of chamfer distance in e-3.

Raster Loss Pasting Window Loss Norm. Perceptual Layers Perceptual score(↓) Chamfer distance(↓)

!1!1!1 Diff. Scalable - - 13.616 249.050
Perceptual Non-diff. Scalable X ∪(12, 22, 33, 51) 6.064 60.723
Perceptual Diff. Fixed X ∪(12, 22, 33, 51) 1.938 4.598
Perceptual Diff. Scalable ××× ∪(12, 22, 33, 51) 1.789 2.597
Perceptual Diff. Scalable X ∪(33, 51)∪(33, 51)∪(33, 51) 1.513 2.995
Perceptual Diff. Scalable X ∪(12, 22)∪(12, 22)∪(12, 22) 1.399 3.242

Perceptual Diff. Scalable X ∪(12, 22, 33, 51) 1.053 1.577

Input image L1 Perc.12_22 Perc.33_51 Ours

Fig. 10. Comparisons of different raster losses. The numbers after “Perc.”
indicate the relu layer combination.

which is broadly used in image generation tasks with GAN [Good-
fellow et al. 2014]. However, we did not observe any significant
improvement.

Different Perceptual Layer Combinations. We use both shallow
(relu1_2 and relu2_2) and deep layers (relu3_3 and relu5_1) of
the VGG-16 model for the perceptual loss and evaluate their respec-
tive performance. Figure 10 shows that models with shallow layers
Perc.12_22 suffer from worse completeness, although they are
able to draw details well. Models based on deep layers Perc.33_51
draw complete sketches but lack in fine details. These results reflect
the different strengths of the different layers. In particular, shallow
layers focus mainly on low-level information, and are thus able to
recover the local details but have an issue of incomplete drawings.
On the contrary, deep layers primarily store high-level information,
so they benefit the global completeness but suffer from poor fine
details. Quantitative comparisons further confirm these, showing
a better perceptual score that is sensitive to details but a worse
chamfer distance that is sensitive to completeness with∪(12, 22)∪(12, 22)∪(12, 22), in
comparison to∪(33, 51)∪(33, 51)∪(33, 51). Our proposed approach is superior in both
metrics. This demonstrates that combining both shallow and deep
layers to form the perceptual loss can balance their performance
and have the advantages of both.

Loss Value Normalization. We notice from a rough observation
that loss values from deeper layers have higher orders of magnitude
(i.e., larger loss values). Hence, deeper layers play a more important
role in the perceptual loss without value normalization.Quantitative
evaluation in Table 1 shows that models without loss normalization
(“×××” in “Loss Norm.” column) perform worse than ours on both
metrics. These confirm that loss value normalization is necessary to
balance the abilities of different layers. Please refer to the supple-
mental materials for more results of the ablation studies.

𝜆𝑟𝑒𝑔 = 0.0 𝜆𝑟𝑒𝑔 = 0.1 𝜆𝑟𝑒𝑔 = 0.2Input image (640px)

Drawing order

Fig. 11. Removal of redundant strokes by modifying the stroke regulariza-
tion term weight _A46 . Red strokes in the grayscale vector outputs represent
the redundant or overlap strokes.

Input image 𝜆𝑟𝑒𝑔 = 0.0 𝜆𝑟𝑒𝑔 = 0.05 𝜆𝑟𝑒𝑔 = 0.2

Stroke number: 82
Average length: 15.67

Stroke number: 66
Average length: 18.70

Stroke number: 54
Average length: 22.41

Fig. 12. Improving stroke compactness with different stroke regulation
weights _A46 . Orange dots represent the endpoints of each stroke.

1.053 1.051 1.081
1.416

2.043

3.112

0.631 0.447 0.473 0.418

0.883

2.691

70.9

60.3
54.0

40.6

29.0

19.2

15.9
18.4 19.3

25.3

34.9

45.6

0.0 0.02 0.1 0.2 0.5 1.0

Perceptual score (↓) Chamfer distance (↓) Average stroke number Average stroke length

𝜆𝑟𝑒𝑔

Fig. 13. Quantitative evaluation of the stroke regularization with different
weights _A46 . We rescale the values for better visualization of the trends.

5.6 Stroke Regularization
Redundancy Removal. One function of the stroke regularization

mechanism is to avoid the redundant strokes because it forces the
model to use fewer strokes to draw while maintaining a similar
appearance. Figure 11 shows how a model without regularization
(_A46 = 0.0) produces a number of redundant strokes superimposed
onto the strokes already drawn. In contrast, redundant strokes can

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

51:10 • Mo et al.

be largely avoided in a model with regularization. For instance, only
4 overlapped strokes (blue boxes) are produced in the model with
weight _A46 = 0.1 and no overlap with a larger weight _A46 = 0.2.

Compactness Improvement. Another function of the stroke reg-
ularization mechanism is to improve the compactness. Figure 12
shows as the stroke regularization weight _A46 increases, the model
draws the sketches with fewer but longer strokes while maintaining
reasonably high fidelity. For instance, the leftmost part (blue boxes)
of the bus consists of 4, 3 and 2 strokes for weights 0.0, 0.05 and 0.2,
respectively, resulting in a more compact representation.
Statistics in Fig. 13 also show a downward tendency in average

stroke number and an upward one in average stroke length as the
weight _A46 increases. When _A46 = 0.1, the average stroke number
is about 76% of that in a model without stroke regularization, while
the former model still maintains a comparable performance in quan-
titative evaluation without significant degradation. This confirms
that with stroke regularization mechanism, our model does learn to
use fewer vector strokes necessary to represent a line drawing.

Parameter Sensibility. From Fig. 13, when adding stroke regular-
ization with weight _A46 = 0.02, both perceptual score and chamfer
distance have a slight drop, and the model uses fewer (85%) strokes
to draw. This indicates that a small amount of stroke regularization
can improve both fidelity and simplicity. However, as described in
§4.4, it reduces the overall performance when imposing an excessive
constraint. Figure 13 shows that when _A46 > 0.2, the model uses
much fewer strokes to draw, but suffers a significant performance
degradation in quantitative measurements simultaneously. Please
refer to the supplemental materials for visual results.

5.7 Vectorization: Comparison with Existing Approaches
Evaluation Settings. We first compare with the learning-based

method Learning-To-Paint [Huang et al. 2019], which is closest to
our work. Since it works at a fixed resolution, we train different
models for different image sizes. We use the same hyperparameters
as the official implementation2 except for the number of strokes in
an action bundle, which is set 1 for stroke-by-stroke prediction as
ours. Comparison is made only onQuickDraw sketches because the
Learning-To-Paint training procedure does not seem to converge
on images of higher resolutions.
We then compare with two representative vectorization meth-

ods, Fidelity-vs-Simplicity [Favreau et al. 2016] and PolyVectoriza-
tion [Bessmeltsev and Solomon 2019], on real clean line drawings of
different high resolutions. For Fidelity-vs-Simplicity, we try two sets
of parameters 3 as in [Bessmeltsev and Solomon 2019] and select
the visually best results. For PolyVectorization, we use the default
parameters.

Qualitative Results. Comparison with Learning-To-Paint is shown
in Fig. 14. At a low resolution (128 px), Learning-To-Paint is able to
draw the sketch with a small stroke number (16). However, because

2https://github.com/megvii-research/ICCV2019-LearningToPaint
3A default parameter set: maxNumOpenCurves=0, minLengthOpenCurves=30, minRe-
gionSize=7. Another manually selected set: maxNumOpenCurves=30, minLengthOpen-
Curves=5, minRegionSize=3. Both use a ‘fidelity-simplicity’ weight of 0.5.

Input image Learning-To-Paint
(Stroke number= 16)

Learning-To-Paint
(Stroke number=48)

Ours

128px

256px

Fig. 14. Comparison with Learning-To-Paint [Huang et al. 2019].

of the discrete strokes it employs, the stroke continuousness is vi-
sually worse than ours with continuous strokes. Moreover, there
appear redundant drawings due to the lack of a sign for lifting pen.
When applied with a larger number of strokes (48) or a higher reso-
lution (256 px), it fails to reconstruct the sketches. This reflects its
limitation on higher resolutions and instability in modeling longer
sequences, likely due to using reinforcement learning.

Figure 15 shows the comparisons on clean line drawings. Fidelity-
vs-Simplicity easily produces connected strokes (green boxes), but
fails to draw isolated strokes (e.g., the eyebrows). The connected
strokes are caused by its region segmentation-based skeleton extrac-
tion algorithm, which tends to add a connected stroke between close
strokes for better subdividing of a large complex region. Further-
more, this algorithm is not sensitive to isolated strokes. PolyVector-
ization produces results with artifacts in regions with fine-grained
details and complex junctions (red boxes). The reason is that this
method mainly disambiguates X- and T-junctions by tracing the
pixel orientations with frame field, but is not robust to more complex
junctions with sharp turns or fine details. In contrast, our model
works better on both completeness and details. With the proposed
dynamic window, our model learns to find and slide to the un-
drawn area, and is thus able to draw the isolated strokes. Unlike the
optimization-based methods above, which fail in situations where
the pre-defined curve parameterization principles do not work, our
model learns to recover the undrawn pixels as best as it can, so that
the details can be guaranteed.

Computation Time. For all methods, we test the examples un-
der the same environment on a Windows PC with an Intel i7-8700
@ 3.2GHz CPU, 48GB RAM, and an NVIDIA GeForce RTX 2070
GPU. For comparison, we show the running time of our model with
and without GPU. Table 2 shows that under the same environment
without GPU, our model is much faster than Fidelity-vs-Simplicity.
Compared with PolyVectorization, our approach takes comparable
computation time on low-resolution images while is faster on com-
plicated high-resolution images. When running with a GPU, our
method is even faster.

5.8 Other Applications
5.8.1 Rough Sketch Simplification.

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

https://github.com/megvii-research/ICCV2019-LearningToPaint

General Virtual Sketching Framework for Vector Line Art • 51:11

Input
Fidelity-vs-Simplicity
[Favreau et al. 2016]

PolyVectorization
[Bessmeltsev et al. 2019] Our results (vector) Stroke order

Drawing order

Dracolion (1024px)

Mouse (1024px)

Puppy (640px)

Kitten (780px)

Fig. 15. Comparisons with existing vectorization approaches on real clean line drawings. Our results are from model with stroke regularization of weight
_A46 = 0.02. More examples can be seen in supplemental materials.

Evaluation Settings. We compare with Learning-To-Paint [Huang
et al. 2019] on the fixed-resolution datasetQuickDrawwith synthetic
rough sketches. To the best of our knowledge, there is no existing
work on rough sketch (with textured background) simplification
which outputs vector lines directly. Therefore, we combine the pixel-
level sketch simplification [Simo-Serra et al. 2018a] and a vectoriza-
tion method as a baseline. A vectorization approach is also applied
to rough sketches directly as another baseline. Here PolyVectoriza-
tion [Bessmeltsev and Solomon 2019] is employed because of its
better visual quality compared with Fidelity-vs-Simplicity [Favreau
et al. 2016]. We evaluate their performance on complex rough

sketches using both rough sketches synthesized from real clean
line drawings through pencil art generation technique [Simo-Serra
et al. 2018a], and rough sketches in the wild from a recent bench-
mark dataset [Yan et al. 2020].

For the quantitative evaluation on [Yan et al. 2020], we follow the
proposed protocol and use the best chamfer distance score among
all input variants compared to all ground truth cleanings for each
rough sketch. In contrast with vector approaches such as Fidelity-vs-
Simplicity and PolyVectorization that produce fixed stroke thickness,
our approach is able to output lines of varying width. Following
the evaluation protocol for the raster results from [Simo-Serra et al.

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

51:12 • Mo et al.

Table 2. Computation time for different vectorization methods on real line
drawings. ‘F-vs-S’ denotes Fidelity-vs-Simplicity [Favreau et al. 2016] and
‘PolyVec’ PolyVectorization [Bessmeltsev and Solomon 2019].

Res. (px) F-vs-S PolyVec Ours (CPU) Ours (GPU)

Elephant 640 55s 17s 20s 11s
Puppy 640 70s 16s 20s 10s
Hippo 700 55s 12s 17s 9s
Penguin 720 96s 8s 11s 6s
Kitten 780 83s 22s 19s 10s

Banana Tree 872 97s 22s 21s 12s
Muten 1024 89s 39s 33s 21s
Mouse 1024 89s 61s 37s 23s

Dracolion 1024 75s 69s 46s 29s
Sheriff 1024 69s 47s 47s 29s

2018a], we use a morphological dilation operation for the ground
truth lines with a kernel size of 3 to match the thickness of our
rendered outputs in order to not have the varying widths penalize
the results.

Qualitative Results. On theQuickDraw dataset, Learning-To-Paint
does not seem to perform well at any resolution nor number of
strokes, which is similar to the results in the second row in Fig. 14
(see supplemental materials for the full results). This might be be-
cause Learning-To-Paint, which is originally designed for recon-
struction tasks, is not suitable to domain translation.

On complex rough sketches, PolyVectorization is sensitive to the
stroke intensity, as shown in Fig. 16. As strokes in synthetic rough
sketches are lightly drawn, PolyVectorization tends to have low
completion, and on sketch from the wild, it has an inclination to
miss thin and light strokes. This is due to its built-in thresholding
operation, which attempts to keep useful pixels but often discards
important pixels incorrectly. The pixel-level sketch simplification
method [Simo-Serra et al. 2018a] outputs simplified sketches with
smooth lines, but there also appear some artifacts, e.g., the redun-
dant parallel strokes (red boxes) resulting from the noise in rough
sketches, and some missing vital parts (eye of Bird, forehead of
Penguin and sleeve of Hand). Subsequent vectorization is required
to convert the pixel-wise images to vector images, but such artifacts
are repeated inevitably in the vector outputs. In contrast, our model
is able to produce comparable simplified results of vector format in
a single step given rough sketch images as input. Furthermore, it
gets rid of the noise to a large extent and distinguishes vital lines
even though they are in light color.

Quantitative Results. We compute the best chamfer distance for
each rough image and obtain an average value of 0.001696. Fig-
ure 17 shows the comparison with other approaches, which indi-
cates that our method obtains comparable performance to other
algorithms. Our approach is worse than MasteringSketching [Simo-
Serra et al. 2018a], because MasteringSketching is trained on real
rough sketches and thus tends to work better on most wild sketches
in the benchmark. Our model, which is trained on synthetic rough

sketches with textured background, works better than most vector-
ization approaches. We believe that training on a supervised dataset
of real sketches could likely improve performance.

5.8.2 Photograph to Line Drawing.

Evaluation Settings. We use the test set of CelebAMask-HQ [Lee
et al. 2020] dataset with images of 256 px resolution for evalua-
tion. We use Learning-To-Paint [Huang et al. 2019] as one of the
baselines. Similar to rough sketch simplification, we combine pixel-
level image translation method Photo-Sketching [Li et al. 2019]
and PolyVectorization [Bessmeltsev and Solomon 2019] as another
baseline.

Qualitative Results. Figure 18 shows the comparisons between the
baseline methods and our approach. Learning-To-Paint fails to draw
plausible sketches as in rough sketch simplification, which further
confirms that it has difficulty in the domain translation task. Photo-
Sketching has a good performance in the facial sketch generation
task, but it relies on additional vectorization techniques to obtain
vector results. In contrast, our approach generates comparable facial
sketches and more importantly, works with such domain translation
and vectorization simultaneously.

6 LIMITATIONS AND DISCUSSION
Our dynamic window-based framework learns to slide to an un-
drawn area, and thus is applicable to images of an arbitrary reso-
lution. However, it may still fail to reproduce all the lines in some
highly complicated cases. Figure 19 shows some strokes on the left
and bottom of the resulting vector line drawing are missing even
though the maximum stroke number is set to a considerably large
number of 5,000 (for reference, around 1,200 strokes are drawn for
Dracolion in Fig. 15). This is because when the CNN encoder down-
scales the complicated image for a global guidance, it might result in
the vanishing of thin lines. Athough we use the random movement
method during testing as mentioned in §5.1, the missing strokes
can be too small to be noticed. Therefore, resizing full-size images
directly and random movement can be seen as feasible but not op-
timal solutions to detecting undrawn thin lines globally. To better
capture global information and not necessitate random movements,
training with higher-resolution images, alternative encoding meth-
ods (e.g., pyramid views) with the global guidance, or a different
global guidance could be considered to address this problem.

Another limitation is that it is still difficult for our framework to
generalize well on complex rough sketches or photographs and it
may produce artifacts in the results. As an example, in Fig. 16, the
lines in the Penguin in our result are not as smooth as those from
Sketch Simplification, and in Fig. 18, the noses in our results are
connected with the eyebrows while they are clearly separated in
those from Photo-Sketching. The non-smoothness problem could be
addressed by using a curve refinement technique [Das et al. 2020] as
post-processing. In addition, the performances on both tasks could
be improved by combining the pixel-level sketch simplification or
image-to-sketch model and our approach in a single end-to-end
model, which may be a promising future direction.

Although the virtual pen-based approach is efficient when draw-
ing short and long strokes, it can perform less than satisfactory in

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

General Virtual Sketching Framework for Vector Line Art • 51:13

Input
PolyVectorization

[Bessmeltsev et al. 2019]
Sketch Simplification (pixel)

+ PolyVectorization Our results (vector) Stroke order

Drawing order

Penguin (640px)

Bird (384px)

Hand (433px)

Fig. 16. Comparisons with existing approaches on rough sketch simplification. The Bird and Penguin are synthetic rough sketches, while the Hand is
from a rough sketch benchmark dataset [Yan et al. 2020]. Small figures in the third column are the pixel-level outputs from the sketch simplification
method [Simo-Serra et al. 2018a].

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

DelaunayTriangulation

FidelitySimplicity

MasteringSketching

PolyVector

PolyVector
→StrokeAggregator

RealTimeInking

StrokeAggregator

TopologyDriven

TopologyDriven
→StrokeAggregator

Ours

Fig. 17. Quantitative evaluation with chamfer distance (↓) on the rough
sketch benchmark [Yan et al. 2020].

Input
Learning-To-Paint

[Huang et al. 2019] Our results (vector) Stroke order

Drawing order
Photo-Sketching (pixel)

+ PolyVectorization

Fig. 18. Comparisons with existing approaches on photograph to line draw-
ing. Small figures at third column are from Photo-Sketching [Li et al. 2019].

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

51:14 • Mo et al.

Input image (1000px) Our result (vector)

Drawing order

Moving
trajectory

Fig. 19. Limitation of our approach on a highly complicated example. Some
short strokes in the output are missing (red boxes) even when the maximum
number of strokes is set to 5,000.

some types of junctions. For instance, looking at the stroke order
for the Puppy in Fig. 15, there are some T-junctions (black boxes) in
which horizontal curves are not drawn together (from left to right
or the opposite). The reason is that our model is not intended for
recovery of topology or meaningful drawing order while vector-
izing line drawings. We think this could be an issue rather than a
limitation of our approach, because there is no general consensus
in drawing order (e.g., how squares are drawn in east-Asia vs. the
west). Furthermore, in reality different people have various ways of
drawing. Some artists prefer to draw the silhouette first and then fill
in the inner details with shorter segments, while others draw part
by part. While correct topology and specific drawing orders might
be beneficial for certain applications, post-processing, pre-defined
principles as prior or constraint information can be incorporated to
form a future extension of our approach.

ACKNOWLEDGMENTS
This work was supported by the Natural Science Foundation of
Guangdong Province, China (Grant No. 2019A1515011075) and the
National Key R&D Program of China (2018AAA0100300).

REFERENCES
Mikhail Bessmeltsev and Justin Solomon. 2019. Vectorization of line drawings via

polyvector fields. ACM Transactions on Graphics (TOG) 38, 1 (2019), 1–12.
Jifeng Dai, Kaiming He, and Jian Sun. 2016. Instance-aware Semantic Segmentation via

Multi-task Network Cascades. In CVPR.
Ayan Das, Yongxin Yang, Timothy Hospedales, Tao Xiang, and Yi-Zhe Song. 2020.

BézierSketch: A generative model for scalable vector sketches. In The European
Conference on Computer Vision (ECCV).

Vage Egiazarian, Oleg Voynov, Alexey Artemov, Denis Volkhonskiy, Aleksandr Safin,
Maria Taktasheva, Denis Zorin, and Evgeny Burnaev. 2020. Deep Vectorization of
Technical Drawings. arXiv preprint arXiv:2003.05471 (2020).

Haoqiang Fan, Hao Su, and Leonidas J Guibas. 2017. A point set generation network for
3d object reconstruction from a single image. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 605–613.

Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. 2016. Fidelity vs.
Simplicity: a Global Approach to Line Drawing Vectorization. ACM Transactions on
Graphics (SIGGRAPH Conference Proceedings) (2016).

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Ali Eslami, and Oriol Vinyals.
2018. Synthesizing Programs for Images using Reinforced Adversarial Learning. In
ICML.

Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision. 1440–1448.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In
Advances in neural information processing systems. 2672–2680.

Alex Graves. 2013. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850 (2013).

Yi Guo, Zhuming Zhang, Chu Han, Wenbo Hu, Chengze Li, and Tien-Tsin Wong. 2019.
Deep Line Drawing Vectorization via Line Subdivision and Topology Reconstruction.
In Computer Graphics Forum, Vol. 38. Wiley Online Library, 81–90.

David Ha and Douglas Eck. 2018. A Neural Representation of Sketch Drawings. In
International Conference on Learning Representations.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask r-cnn. In
Proceedings of the IEEE international conference on computer vision. 2961–2969.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735–1780.

Zhewei Huang, Wen Heng, and Shuchang Zhou. 2019. Learning to paint with model-
based deep reinforcement learning. In Proceedings of the IEEE International Confer-
ence on Computer Vision. 8709–8718.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-image
translation with conditional adversarial networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 1125–1134.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-
time style transfer and super-resolution. In European conference on computer vision.
Springer, 694–711.

Byungsoo Kim, Oliver Wang, A. Cengiz Öztireli, and Markus Gross. 2018. Semantic
Segmentation for Line Drawing Vectorization Using Neural Networks. Computer
Graphics Forum (Proc. Eurographics) 37, 2 (2018), 329–338.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. 2020. MaskGAN: Towards
Diverse and Interactive Facial Image Manipulation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Mengtian Li, Zhe Lin, Radomir Mech, Ersin Yumer, and Deva Ramanan. 2019. Photo-
sketching: Inferring contour drawings from images. In 2019 IEEE Winter Conference
on Applications of Computer Vision (WACV). IEEE, 1403–1412.

Tzu-Mao Li, Michal Lukáč, Michaël Gharbi, and Jonathan Ragan-Kelley. 2020. Differen-
tiable vector graphics rasterization for editing and learning. ACM Transactions on
Graphics (TOG) 39, 6 (2020), 1–15.

Chenxi Liu, Enrique Rosales, and Alla Sheffer. 2018b. Strokeaggregator: Consolidating
raw sketches into artist-intended curve drawings. ACM Transactions on Graphics
(TOG) 37, 4 (2018), 1–15.

Lingjie Liu, Duygu Ceylan, Cheng Lin, Wenping Wang, and Niloy J Mitra. 2017. Image-
based reconstruction of wire art. ACM Transactions on Graphics (TOG) 36, 4 (2017),
1–11.

Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex Sergeev,
and Jason Yosinski. 2018a. An Intriguing Failing of Convolutional Neural Networks
and the CoordConv Solution. In Advances in Neural Information Processing Systems.

Xueting Liu, Tien-Tsin Wong, and Pheng-Ann Heng. 2015. Closure-aware sketch
simplification. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1–10.

Diogo C Luvizon, David Picard, andHedi Tabia. 2018. 2D/3D Pose Estimation andAction
Recognition Using Multitask Deep Learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 5137–5146.

John FJ Mellor, Eunbyung Park, Yaroslav Ganin, Igor Babuschkin, Tejas Kulkarni,
Dan Rosenbaum, Andy Ballard, Theophane Weber, Oriol Vinyals, and SM Eslami.
2019. Unsupervised Doodling and Painting with Improved SPIRAL. arXiv preprint
arXiv:1910.01007 (2019).

Reiichiro Nakano. 2019. Neural painters: A learned differentiable constraint for gener-
ating brushstroke paintings. arXiv preprint arXiv:1904.08410 (2019).

Gioacchino Noris, Alexander Hornung, Robert W Sumner, Maryann Simmons, and
Markus Gross. 2013. Topology-driven vectorization of clean line drawings. ACM
Transactions on Graphics (TOG) 32, 1 (2013), 1–11.

Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa. 2018a. Mastering sketching:
adversarial augmentation for structured prediction. ACM Transactions on Graphics
(TOG) 37, 1 (2018), 1–13.

Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa. 2018b. Real-time data-driven
interactive rough sketch inking. ACM Transactions on Graphics (TOG) 37, 4 (2018),
1–14.

Edgar Simo-Serra, Satoshi Iizuka, Kazuma Sasaki, and Hiroshi Ishikawa. 2016. Learning
to simplify: fully convolutional networks for rough sketch cleanup. ACM Transac-
tions on Graphics (TOG) 35, 4 (2016), 1–11.

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for
Large-Scale Image Recognition. In International Conference on Learning Representa-
tions.

Jifei Song, Kaiyue Pang, Yi-Zhe Song, Tao Xiang, and Timothy M Hospedales. 2018.
Learning to sketch with shortcut cycle consistency. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. 801–810.

Tibor Stanko, Mikhail Bessmeltsev, David Bommes, and Adrien Bousseau. 2020. Integer-
Grid Sketch Simplification and Vectorization. In Computer Graphics Forum, Vol. 39.
Wiley Online Library, 149–161.

Qingkun Su, Xue Bai, Hongbo Fu, Chiew-Lan Tai, and Jue Wang. 2018. Live sketch:
Video-driven dynamic deformation of static drawings. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems. 1–12.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. 2016. Instance normalization:
The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016).

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

General Virtual Sketching Framework for Vector Line Art • 51:15

Saining Xie and Zhuowen Tu. 2015. Holistically-nested edge detection. In Proceedings
of the IEEE international conference on computer vision. 1395–1403.

Xuemiao Xu, Minshan Xie, Peiqi Miao, Wei Qu, Wenpeng Xiao, Huaidong Zhang,
Xueting Liu, and Tien-Tsin Wong. 2019. Perceptual-aware Sketch Simplification
Based on Integrated VGG Layers. IEEE Transactions on Visualization and Computer
Graphics (2019).

Chuan Yan, David Vanderhaeghe, and Yotam Gingold. 2020. A benchmark for rough
sketch cleanup. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–14.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018. The
unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 586–595.

Ningyuan Zheng, Yifan Jiang, and Dingjiang Huang. 2019. StrokeNet: A Neural Painting
Environment. In International Conference on Learning Representations.

ACM Trans. Graph., Vol. 40, No. 4, Article 51. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Vector Graphics Generation
	2.2 Vectorization
	2.3 Line Generation from Other Domains
	2.4 Image and Feature Sampling

	3 Line Drawing Generation Framework
	3.1 Overview
	3.2 Stroke Generation
	3.3 Aligned Cropping and Differentiable Pasting
	3.4 Differentiable Rendering

	4 Training
	4.1 Overall Loss Function
	4.2 Raster-level Supervision
	4.3 BlackColor Out-of-Bounds Penalty
	4.4 Stroke Regularization Mechanism

	5 Experiments
	5.1 Dataset and Implementation Details
	5.2 Quantitative Evaluation Metrics
	5.3 Effectiveness of Moving and Scaling
	5.4 Effectiveness of Differentiable Pasting
	5.5 Ablation Study of Raster-level Loss
	5.6 Stroke Regularization
	5.7 Vectorization: Comparison with Existing Approaches
	5.8 Other Applications

	6 Limitations and Discussion
	Acknowledgments
	References

