
Computational Visual Media

https://doi.org/10.1007/s41095-0xx-xxxx-x

Research Article

Controllable Multi-domain Semantic Artwork Synthesis

Yuantian Huang1(B), Satoshi Iizuka1, Edgar Simo-Serra2, and Kazuhiro Fukui1

© The Author(s) 2023

CloudRock

Tree MountainWater

Input Ink Wash Painting Watercolor PaintingOil Painting

Fig. 1 Controllable artwork synthesis. Our approach can synthesize artwork from different domains using user-provided semantic label

maps. The user can freely change the semantic layout and target domain to intuitively and interactively create new artworks.

Abstract

We present a novel framework for the multi-domain syn-

thesis of artworks from semantic layouts. One of the main

limitations of this challenging task is the lack of publicly

available segmentation datasets for art synthesis. To address

this problem, we propose a dataset called ArtSem that con-

tains 40,000 images of artwork from four different domains,

with their corresponding semantic label maps. We first ex-

tracted semantic maps from landscape photography and used

a conditional generative adversarial network (GAN)-based

approach for generating high-quality artwork from semantic

maps without requiring paired training data. Furthermore, we

propose an artwork-synthesis model using domain-dependent

variational encoders for high-quality multi-domain synthesis.

Subsequently, the model was improved and complemented

with a simple but effective normalization method based on

jointly normalizing semantics and style, which we call spa-

tially style-adaptive normalization (SSTAN). Compared to

the previous methods, which only take semantic layout as
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the input, our model jointly learns style and semantic infor-

mation representation, improving the generation quality of

artistic images. These results indicate that our model learned

to separate the domains in the latent space. Thus, we can

perform fine-grained control of the synthesized artwork by

identifying hyperplanes that separate the different domains.

Moreover, by combining the proposed dataset and approach,

we generated user-controllable artworks of higher quality than

that of existing approaches, as corroborated by quantitative

metrics and a user study.

Keywords Semantic Artwork synthesis, Generative Adver-

sarial Networks, Datasets, Non-photorealistic Rendering.

1 Introduction

Image synthesis consists of generating new images using

existing data, whereas artwork synthesis focuses on generat-

ing images in the art domain. While there is no consensus

on whether computer-synthesized images are art [1], it has

applications such as being used as an art teaching tool, in-

spiring other artists, and providing different perspectives

when understanding the artwork. Furthermore, conditional

artwork synthesis has emerged as an important tool for artists

to generate new art with a notable examples such as image



2 Y. Huang, S. Iizuka, E. Simo-Serra and K. Fukui

Table 1 Comparison of interactive artwork synthesis approaches.

Multiple domains Generation in Cross-domain Real-time Uses

Methods in a single model a specific domain style morphing interactive editing reference

Two-step NST ✓

Co-ModGAN ✓ ✓

OASIS ✓ ✓

SMIS ✓ ✓ ✓

SEAN ✓ ✓ (fixed) ✓ ✓

CMSAS (Ours) ✓ ✓ (diverse) ✓ ✓ ✓

stylization [2] which can transfer artistic styles to photography

while preserving content.

Existing approaches to artwork generation have focused

on unconditional generation [3, 4], image-to-image transla-

tion [5], or generation from sketches [6, 7]. However, these

approaches yielded limited or no output control, making it

difficult to determine whether, for example, a sketch is of

a mountain or mountain-shaped rock. We proposed using

semantic maps that provide high control over the generated

image content. Some existing approaches can only partially

achieve the goals [8, 9] and require additional user inputs

to generate the images. For more general image generation,

Park et al. [10] proposed spatially-adaptive denormalization

(SPADE) for semantic image synthesis allowing users to

control the semantics and styles when synthesizing a photo-

realistic image. However, it cannot exploit multi-domain data

and require a paired training dataset.

This study proposes solving the controllability and data

problems by introducing a new semantic map and artwork

paired dataset, named ArtSem, and a multi-domain high-

quality artwork synthesis model. The dataset is created from

landscape photographs by first computing semantic maps

using an off-the-shelf semantic segmentation model with

graph cut-based post-processing to create human-like maps.

Subsequently, we train landscape photography with an art-

work generation model using unpaired training data to create

high-quality multi-domain paired training data. Finally, the

refinement process ensured high-quality data suitable for

training artwork synthesis models.

We propose a controllable multi-domain semantic artwork

synthesis (CMSAS) model consisting of multiple domain-

specific variational encoders that convert the artwork images

into latent vectors and a generator that converts semantic

label maps with an encoded latent vector in artwork images.

Motivated by the observation that the images generated by

SPADE are inclined to be less artistic, we based our generator

on a novel spatially style-adaptive normalization (SSTAN)

modules. While the SPADE modules are only aware of se-

mantic information, SSTAN modules inject latent codes that

represent styles into the normalization layers, and perform

feature map modulation using semantics and style informa-

tion. Accordingly, the learned modulation parameters depend

on the input semantic layout and latent code, effectively prop-

agating information throughout the network and significantly

improving the results. Furthermore, because multiple en-

coders can learn domain-specific latent vectors, we propose

to separate the domain latent vectors with a hyperplane for

fine-grained control of the output artwork domain. Finally, the

developed CMSAS model generates artwork from a semantic

map for interactive applications.

We evaluated our approach quantitatively using automatic

metrics and a perceptual user study in addition to the qualita-

tive results. Results show that our approach outperformed the

existing approaches in all metrics.

This study presents the following contributions:

• A single-model semantic artwork synthesis approach that

generates high-quality artworks from easy-to-manipulate

semantic layout inputs in multiple domains.

• A high-quality pixel-aligned semantic artwork dataset that

contains artistic images with paired segmentation masks.

• An effective normalization method that significantly im-

proves the artwork generation quality.

• Highly controllable generation with domain and style con-

trol via latent space manipulation

• In-depth evaluation of our method based on qualitative and

quantitative comparisons with existing approaches.

2 Related Work

This section discusses related works and compares approaches

similar to our proposed method. A high-level comparison

of similar approaches is presented in Table 1. Specifically,

two-step neural style transfer (NST) approaches combining

semantic natural image synthesis [10] and style transfer [2] are

computationally expensive for real-time editing. Moreover,

their practical use is limited by the restricted set of pre-

defined styles. Image-conditioning approaches such as Co-

ModGAN [11] cannot generate artworks in a specific domain

or use a reference style image. The same limitations are
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shared by OASIS [12] since it relies on random noise as

the style input. SMIS [13] uses a single variational auto-

encoder (VAE) to transform input images into latent vectors

for reference-style images. However, these latent vectors

are inseparable and cannot be constrained within a specific

domain, as discussed in Section 4.3. SEAN [14] can generate

artwork in a specific domain using a fixed pre-computed

mean style code, but the approach lacks diversity and cannot

interpolate between different domains. Our results verify that

the proposed approach is the most flexible of the existing

approaches.

2.1 Artwork Synthesis

The concept of artwork synthesis goes back to image analo-

gies [15], where filters related to a painting style are automati-

cally learned from training data based on a simple multi-scale

autoregression. It is a generative art [16, 17] that attempts

to generate artworks algorithmically based on heuristics.

Recently, neural-style transfer [2] methods that solve the

problem of applying artistic styles derived from reference

images to photographs while preserving their content through

optimization have become popular. The neural-style transfer

is further discussed in next section. With the advent of genera-

tive adversarial networks (GAN) [18], data-driven generation

approaches have become dominant. For GAN-based artwork

generation, artGAN [3, 19] and CAN [4] extend and apply

GANs to generate artworks. However, the low-resolution and

limited quality of generated artworks restrict their applica-

bility. Although some StyleGAN-based methods [20, 21]

and text-conditioned diffusion models [22, 23] generated

higher-quality artworks, the results are less controllable, and

diffusion models incur significantly higher computational

costs than GAN-based approaches, significantly limiting their

application. Pix2pixGAN [6] has demonstrated its ability

to generate high-quality artwork from hand-drawn sketches.

However, these approaches are difficult to control because

only the edge information is used. Specifically, a sketch can-

not clearly indicate the differences between different objects

having the same contour (e.g., mountains and rocks). Unlike

previous studies, our novel semantics-based model allows

users to control the shape, contour, and the semantic informa-

tion of the input label map to create new artwork with higher

quality and fidelity.

2.2 Neural Style Transfer

Gatys et al. [2] first used a convolutional neural network

(CNN) [24] to extract style and content representations from

the images and optimize the image content to match different

art styles. Their approach creates new images by optimizing

style and content loss, calculated by matching the Gram

matrix statistics of pre-trained CNN features. Neural style

transfer has many interesting applications in fields such as art,

graphics, images, and video processing. There are various

extensions and improvements to the original neural-style

transfer, focusing on different aspects, such as multiple style

transfer [25], content-aware style transfer [26, 27], and other

aspects [28–31]. This study adopted the concept of style loss

to improve the generation quality of non-photorealistic style

images in our dataset. The effectiveness of the method is

verified by comparing it with state-of-the-art methods.

2.3 Image-to-Image Translation

Image-to-image translation aims to convert an image input

into the desired image output and is dominated by CNN

approaches. Supervised approaches [6, 32] employ paired

training data and obtain impressive results. However, for the

art domain, obtaining paired training data is challenging.

Many approaches have started to focus on the unsupervised

image-to-image translation [5, 33–42]. A notable example is

CycleGAN [5], which uses cycle consistency with adversar-

ial losses to overcome the lack of paired images. Although

limited in resolution, they demonstrated the possibility of

producing realistic images for various datasets, including

several Western painting styles. Based on CycleGAN, Chip-

GAN [43] introduced edge loss that enforces brushstroke

constraints and successfully generates impressive results for

ink-wash painting. However, these methods work only with

photorealistic images as inputs and cannot handle abstract

inputs such as semantic label maps. Therefore, we designed

a two-stage image-transformation framework to produce a

high-quality paired dataset of semantic labels and artwork

images. Replacing photographs with semantic label maps as

inputs gives users more control over the final result while

preserving high performance using the existing techniques.

2.4 Semantic Image Synthesis

As a subfield of image-to-image translation, semantic im-

age synthesis focuses on generating new images conditioned

on semantic image maps, and are mainly dominated by

GAN [18]. For example, pix2pixGAN [6] firstly established

a common framework for mapping paired data, successfully

generating realistic images and has been extended in further

research [32, 45–50]. Recently, Park et al. [10] proposed

SPADE, which outperformed the former approaches in terms

of generating photorealistic images conditioned by seman-

tic layout. Based on the SPADE architecture, SMIS [13]
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Fig. 2 Our proposed dataset construction approach. We use a segmentation network [44] and graph cut-based smoothing to obtain

semantic label maps for training the landscape scene generator. The synthesized scene images and real artworks are then used as a supervised

training set for synthesizing art images. Finally, we use a refinement approach that mimics human judgment to obtain the final training

dataset. After training with the dataset, our framework can generate high-quality artworks conditioned on input semantic label maps.

successfully produced semantically multimodal images by

replacing all regular convolution layers in the generator with

group convolutions. OASIS [12] surpassed SPADE in terms

of diversity while maintaining similar quality by redesigning

the discriminator. SEAN [14] used style input images to cre-

ate spatially varying normalization parameters per semantic

region. Other improvements [51] have also been made in

different aspects. Another notable approach is the Co-Mod

GAN [11] which achieves semantic image synthesis via the

co-modulation of conditional and stochastic style representa-

tions based on unconditional generative architectures, such

as StyleGAN2 [52].

Although these methods generate good results in photo-

realistic image generation, the results were less convincing

when generating artwork. Furthermore, our approach focused

on providing in-depth controllability, while most existing

approaches have limited or zero controllability.

3 ArtSem Dataset

Ideally, we would prefer using high-quality manual semantic

segmentation annotations of diverse artworks for supervised

semantic training of semantic artwork synthesis. However,

given the nature of the art, it is challenging to create high-

quality annotations because of the need for domain-specific

knowledge and the inherent ambiguity of the artwork. Recent

research [53] has attempted to address this problem; however,

they have limitations in terms of class and precision. Instead of

manual annotation, we proposed a method for the large-scale

automatic generation of paired semantic maps and diverse

artwork. Our approach is as follows: First, we use a seman-

tic segmentation model to obtain segmentation maps from

real-scene photographs. Next, we train an image-to-image

translation model to convert semantic maps into different art

styles. We base our approach on conditional unsupervised ad-

versarial training, which can learn the mapping from semantic

maps to artworks. Finally, we perform refinement based on

the mimicked human judgment to generate a final dataset. An

overview of the dataset construction approach is presented

in Fig. 2. This study focuses on various landscape paintings,

such as canyons and lake shores.

3.1 Data Collection

First, we collected 50,000 landscape photographs of various

outdoor scenes from Flickr. We then removed 15,000 samples

based on generated label maps if they had irrelevant labels,

such as people or animals. Of the remaining 35,000 images,

1,000 were used as the validation set. We obtained images

from four different domains: ink-wash, Monet oil, Van Gogh

oil, and watercolor paintings. The images were obtained as

follows:
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Input w/o smoothing with smoothing

Fig. 3 Effect of label smoothing. We compare the results from our

model trained on the datasets with and without graph-cut-based label

smoothing, which eliminates small irregularities allowing for more

natural synthesized images. The effects are especially noticeable

around the edges and outline, where the smoothing is the strongest.

• Ink-wash paintings: We collect them from search engines

and manually remove images that are unrecognizable or

contain too much irrelevant content. We also homogenize

the style and tone by manually removing images that are

different. This is repeated until 1,000 paintings are obtained.

• Monet oil paintings: These are taken from Zhu et al. [5]

and were originally downloaded from wikiart.org. There

are a total of 1,072 Monet oil paintings.

• Van Gogh oil paintings: These were taken from the same

dataset as the Monet oil paintings. There is a total of 400

Van Gogh oil paintings.

• Watercolor paintings: Similar to the ink-wash paintings,

we collect 1,000 manually curated images using search

engines.

3.2 Semantic Scene Generation

In this section, we aim to learn to map from an input seg-

mentation mask to a photorealistic image. We employ a

state-of-the-art network architecture [10] for semantic image

synthesis based on spatially-adaptive normalization. This

model requires a dataset containing several landscape photos

and uses paired semantic layouts for training. Although some

datasets such as MSCOCO [54] and ADE20K [55] are widely

used in semantic segmentation, most images in the dataset are

not related to the landscape, which is the focus of this study.

We generate training data from 35,000 landscape images using

a pre-trained semantic segmentation network [44] to obtain

paired training data. The model was trained on the MSCOCO

dataset [54], which outputs 182 different label classes. We

removed irrelevant labels and combined similar labels, such

as moss and grass, to simplify the semantic map generation.

Input w/o style and edge with style and edge

Fig. 4 Effect of style and edge losses. The model can generate

clear outlines and realistic artwork that matches the target style by

employing style and edge losses.

Finally, we use 16 classes that commonly appear in the wild

landscape. Please refer to the supplementary materials for

more details.

The generated semantic maps exhibited irregularities and

small inconsistencies that rendered them unsuitable for train-

ing high-quality generation models. We adopt a graph-cut-

based label smoothing approach [56] to improve the quality

of the results, given that we only require a low-frequency se-

mantic map. An example of the smoothing effect is presented

in Fig. 3.

Subsequently, we trained a SPADE model [10] to learn

the mapping from semantic maps to photorealistic landscape

images using the generated data. The model was trained with

256× 256 pixel images, and bicubic up-sampling was used

to increase the resolution to 512× 512 pixels.

3.3 Weakly Supervised Artwork Generation

Our objective at this stage is to learn a mapping function

between the synthesized landscape images and real artwork

without any explicit paired training data. We randomly se-

lected 5,000 synthesized images from the previous stage as

landscape images and used the collected artwork images to

train a generation model. The as-synthesized images, when

used for inference, provided improved results than when us-

ing the synthesized images for training. Please refer to the

supplementary materials for a detailed discussion on this

topic.

Our generation model is inspired by CycleGAN [5] and

trains jointly a model that generates artworks from syn-

thetic landscapes and a model that generates synthetic land-

scapes from the artwork. Using only adversarial and cycle-

consistency losses led to poor results, given that the synthe-

wikiart.org
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Fig. 5 Examples of automatically removed poorly generated

images. It is difficult to identify what is in the scene if confusing or

partially drawn objects are present. Our dataset refinement approach

removes such features when generating the training data.

sized images have damaged parts and the generated images

have high abstraction levels. To improve the results, we mod-

ified the training approach to include the style and edge

loss terms. Separate models are trained for each modality.

Fig. 4 demonstrate that the proposed model successfully

outperformed the base model with two auxiliary losses.

3.3.1 Objective Function

We employ adversarial and cycle-consistency losses in

our model, which simultaneously learns two mappings

Gx→y : X → Y and Gy→x : Y → X , where X and Y

are the source and target domains, respectively. For a map-

ping function G and its discriminator DY , the adversarial

loss is given as

Ladv = Ey∼X [logDY (y)] + Ex∼Y [log (1−DY (G(x)))]
(1)

Cycle-consistency loss is defined as follows:

Lcycle = Ex∼X [∥Gy→x (Gx→y(x))− x∥1]

+ Ey∼Y [∥Gx→y (Gy→x(y))− y∥1] (2)

We introduced style loss [2] to improve the style similarity.

In particular, we extracted style representations from subsets

of VGG-19 [57] layers: ’conv1 1’, ’conv2 1’, ’conv3 1, ’

conv4 1’ and ’conv5 1’. Given the computed features F (I)l

from layer l for a synthesized or real image I , we compute

the Gram matrix using M(I)lij =
∑

k F (I)likF (I)ljk. This

allows style loss to be computed as the weighted sum of the

difference of the computed Gram matrices as:

Lstyle =

Ex∼X,y∼Y

L
∑

l=0

ωl

4N2
l M

2
l

∑

i,j

(

M(Gx→y(x))
l
ij −M(y)lij

)2

(3)

where ωl is a weighting term for layer l, Nl is the number

of feature maps of layer l, and Ml is the number of pixels in
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Fig. 6 Samples from our ArtSem dataset and real artworks.

There is diversity in the supervised label map and artwork images in

the four different artistic styles.

each feature map of layer l.

We further introduced edge loss [43] to emphasize the

contours and lines in the generated images. Although the

initial purpose of this loss was to imitate brush strokes of

ink-wash paintings, it was also effective in synthesizing other

artwork types. In particular, we used a holistic nested edge

detector [58] E to obtain edge maps of the synthesized

landscape images E(x) and edge maps of the synthesized

artwork E(G(x)). The edge loss is computed as follows:

Ledge = Ex∼X

(

−
1

N

N
∑

i=1

µE(x)i logE(G(x))i

+ (1− µ)(1− E(x)i) log (1− E(G(x))i)
)

(4)

where N is the total number of pixels in the edge map, and µ

is a balancing weight. The sums of the probabilities for non-

edges and edges of every pixel inE(x) can be computed using

µ = N−/N and 1− µ = N+/N , N− and N+, respectively.

The objective of the second stage is as follows:

Ltotal = Ladv + αLcycle + βLstyle + λLedge (5)

where α = 10, β = 0.1, and γ = 10 control the relative

importance of the individual objectives in all the experiments.

3.4 Training

We trained the networks from scratch in all experiments except

for the pre-trained DeepLabV2 [44] model for label map

generation and VGG-19 [57] model for style loss computation.

The learning rate was 0.0002 in the first 100 epochs and

linearly decayed to zero over the last 50 epochs for label map
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The encoder extracts the style from an input image as a latent code and passes it to the generator to synthesize new artworks with similar

style appearance while conditioned by an input label map. The attention module and SSTAN in the generator improve the quality of the

generated images.

generation. For artwork generation, the learning rate was

maintained at 0.0002 during the first 100 epochs, and then

decayed to zero over the next 100 epochs. All the models were

trained on two NVIDIA 1080Ti GPUs with 11GB memory.

3.5 Dataset Refinement

Following semantic scene generation and weakly supervised

artwork generation, we obtain sets of semantic label maps,

synthetic landscape images, and artwork images in the four

domains. However, some synthesized artworks are less than

ideal and can affect the models trained on such data, as shown

in Fig. 5. To reduce data noise, we annotated 2,000 images

as either good or bad samples for training, and then trained a

VGG classification model [57] to mimic human annotation.

After training, we ran the model on the dataset and selected the

top 10,000 images using the GMM-QIGA [59] quality score

to obtain four different sets of paired synthetic landscapes and

artworks, one for each domain. Some examples are presented

in Fig. 6.

4 Proposed Framework

We propose CMSAS model comprising two subcomponents:

domain-specific variation encoders that encodes artwork

images into latent vectors and a generator that generates

new artwork based on an input semantic map and encoded

latent vector. The generator was modified to use attention

modules in each residual block with spatially style-adaptive

normalization for better generation quality when synthesizing

artistic images. An overview of this model is provided in

Fig. 7. Furthermore, the proposed model could precisely

manipulate the synthesized artwork by exploiting the latent

space structure.

4.1 Model Architecture

We divided the encoder into domain-specific and shared com-

ponents. The domain-specific component consists of all the

convolutional layers, while the last two fully connected layers

output Gaussian distribution, characterized by the mean and

standard deviation. In addition, the encoder uses the domain

type as input to activate the domain-specific components. We

use a shared discriminator because our experiments show no

notable improvements compared to using one per domain.

We also use a shared generator because it is computationally

heavy compared with encoders. Inspired by [60], we introduce

a dual attention module in each residual block to improve the

generator performance. Each dual attention module consists

of channel and spatial attention, computed on the channel

and spatial axes, respectively. The model has seven resid-

ual blocks, and the full layout is given in Fig. 7(right). For

an in-depth overview of the full model, please refer to the

supplementary materials.

4.2 Spatially Style-Adaptive Normalization

Based on the observation that the generated images from mod-

els using the SPADE module are less artistic, we strengthen

the influence of the style information by passing it to the

normalization layers of each residual block instead of just

once at the generator input. Therefore, we propose a novel

conditional normalization module called SSTAN to jointly

learn semantic and style representations for higher-quality

artwork generation. The modulation parameters of SSTAN

are tensors with spatial dimensions, making the feature map

modulations spatially adaptive. The latent code was expanded

to the same size as the input semantic layout. Fig. 8 illustrates

the SSTAN module structure. The semantic layout and la-

tent code that represent the style of the input artwork were

processed by different convolutional neural networks to learn
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Fig. 8 Proposed SSTAN module. The semantic layout is pro-

jected onto an embedding space and then convolved to produce

the modulation values γ and β. On the right side, the extracted

input latent code is first extended to a 2-dimensional space and then

convolved to produce the modulation values γ′ and β′. These are

used to modify the features of the neural network.

modulation parameters.

The input of each SSTAN block is the latent code l and

segmentation mask M . Let h denote the network input ac-

tivation for a batch of N samples; let C, H , and W be

the number of channels, height, and width of the activation

map, respectively. The modulated activation value at location

(n ∈ [1, N ], c ∈ [1, C], y ∈ [1, H], x ∈ [1,W ]) becomes

SSTAN(n, c, y, x) = γc,y,x(l,M)
hn,c,y,x − µc

σc

+βc,y,x(l,M)

(6)

where hn,c,y,x is the activation of the previous layer before

normalization; µc and σc denote the mean and standard

deviation of the activation in channel c, respectively.

µc =
1

NHW

∑

n,y,x

hn,c,y,x (7)

σc =

√

1

NHW

∑

n,y,x

((hn,c,y,x)2 − (µc)2) (8)

The weighted sums of µc and σc are used to modulate the

activations of the generator. Two learnable parameters, αγ and

αβ , which leverages the weight of each element, are trained

directly to minimize the loss with backpropagation. The

final modulation parameters γc,y,x and βc, y, x are defined as

follows:

γc,y,x(l,M) = αγγc,y,x(l) + (1− αγ)γ
′

c,y,x(M) (9)

βc,y,x(l,M) = αββc,y,x(l) + (1− αβ)β
′

c,y,x(M) (10)
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Fig. 9 Visualization of the latent codes. By projecting the latent

codes to a two-dimensional space with UMAP, we understand how

the latent space is divided into different artwork domains using our

domain-specific variational encoders. In contrast, the single encoder

fails to separate the different domains. Comparisons of visualizations

trained with different numbers of domains show that the separability

remains high in all three patterns.

4.3 Domain and Style Control

To provide more control over the output artwork images,

we assumed that the latent vectors of the different domains

are separable with a hyperplanes [61]. We used a uniform

manifold approximation and projection (UMAP [62]), a di-

mensionality reduction tool for projecting latent vectors in

low-dimensional space for intuitive visualization. As shown

in Fig. 9, unlike a single encoder, which learns entangled

representations that are less separable in their latent space, our

domain-specific encoders learn disentangled spaces that can

be better separated into domains. Consequently, this allows

our proposed model to achieve latent space manipulation to

specify the domain of the generated artwork and perform

cross-domain style morphing between different domains.

Table 2 shows that the FID score of the generated artwork

decreased only slightly as the number of domains increased.

For each latent code z ∈ Z , our generator can be seen

as a mapping fg : Z → A, where A is the manifold of

artworks. For each domain, we defined a scoring function

fs : A → [0, 1] that predicts whether an artwork corresponds
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Input latent code Ink Wash PaintingVan Gogh

Fig. 10 Latent space manipulation. For the same semantic map, we interpolate between latent codes of different artwork styles to obtain

diverse results.

Table 2 Quantitative effect of the number of domains. Although

performance slightly decreases with the number of domains, joint

training allows for interpolation and more flexible interactivity.

Domains Per Two Three Four

Ink-wash 45.95 46.14 46.17 49.33

Monet 63.91 64.18 65.20 65.97

Van Gogh 123.90 / 125.87 115.3

Watercolor 68.04 / / 68.96

to a particular domain. We then formulate the problem of

finding a normal n of a hyperplane that separates the latent

codes based on their codes as follows:

argmax
n

max (0, t (n⊺z)) subject to ∥n∥ = 1 (11)

where

t =

{

1 fs (fg(z)) > 0.5

−1 otherwise
(12)

We can then control the output domain of the artwork by

moving towards a particular domain. This can be achieved by

adjusting a value α along the normal direction to obtain a new

latent vector: z′ = z + λn, as shown in Fig. 10. This approach

enables us to generate the artwork without the explicit need

for an input style image by setting z = 0 and a larger value of

λ.

In particular, we implemented fs using a VGG classi-

fier [57] trained to predict a domain from 40,000 synthesized

images in the proposed dataset.

4.4 Objective Function

Our loss functions include adversarial, feature matching [32],

perceptual [63], and KL divergence losses.

Adversarial loss. Let E be the domain-specific variation

encoders, G be the dual attentional SSTAN generator, and

Dk be the k-th discriminator at the different scales. Given

an input artwork A, a latent code l, that represents the style

of A and are extracted by E, can be defined as l = E(A).

Let M be the corresponding segmentation mask for A. The

adversarial loss is then defined as

Ladv = E[max(0, 1−Dk(A,M))]

+ E[max(0, 1−Dk(G(l,M),M))] (13)

where G attempts to minimize the objective against an adver-

sarial Dk that attempts to maximize it during the training.

Feature matching loss. Let T = 2 be the total number of

layers in discriminator Dk, D
(i)
k and Ni be the output feature

maps and the number of elements in the i-th layer of Dk,

respectively. We formulate the feature matching loss LFM as

LFM =

E

T
∑

i=1

−
1

Ni

[∥D
(i)
k (A,M)−D

(i)
k (G(l,M),M)∥1] (14)

where G attempts to minimize this objective against an ad-

versarial Dk that attempts to maximize it during the training.

Perceptual loss. Let N be the total number of layers used to

calculate the perceptual loss, F (i) be the output feature maps

of the i-th layer of the VGG [57] network, and Mi be the

number of elements of F (i). We define the perceptual loss

LP as:

LP = E

N
∑

i=1

−
1

Mi

[∥F (i)(A)− F (i)(G(l,M))∥1] (15)

KL Divergence loss. Let p(z) be a standard Gaussian distri-

bution. The variational distribution q is fully determined by a

mean vector µ and a variance vectorσ, which are the output of

our encoder as shown in Fig. 7. We use the reparameterization

trick [64] for backpropagating the gradient from the generator

to the encoder.

LKLD = DKL(q(z|x))∥p(z)) (16)

Full Objective. Our full objective is as follows:

Lfull = Ladv + λ1LFM + λ2LP + λ3LKLD (17)

where λ1 = 10, λ2 = 10, and λ3 = 0.01 control the relative

importance of individual objectives in all the experiments.
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Table 3 Quantitative evaluation. We compare the proposed

method with existing approaches for conditional image generation

using the FID metric. The baseline models SMIS, OASIS, and

Co-Mod can not specify the domain of generated artworks; therefore

we only evaluate their results in a mix of 4 domains. The best results

are highlighted in bold.

Domains SMIS OASIS Co-Mod SEAN CMSAS

GAN (Ours)

Ink-wash - - - 86.47 49.33

Monet - - - 84.47 65.97

Van

Gogh

- - - 145.74 115.3

Watercolor - - - 106.37 68.96

Mixed 97.38 78.04 67.38 89.52 55.03

Table 4 Quantitative evaluation with style transfer algorithms.

We compare the proposed method with existing approaches for

neural style transfer using the FID metric. The best results are

highlighted in bold.

Domains NST AdaIN STROTSS SEAN CMSAS

(Ours)

Ink-wash 76.15 96.59 75.26 62.33 45.35

Monet 94.02 93.25 76.23 75.74 67.4

Van

Gogh

155.17 161.53 128.29 123.36 116.2

Watercolor 109.13 124.53 75.25 73.66 66.0

5 Results

We evaluated our approach and performed qualitative and

quantitative comparisons with other methods.

5.1 Baselines

We chose three existing models as baselines for multimodal

semantic image synthesis: SMIS [13], OASIS [12], and

Co-Mod GAN models [11]. For generation within specific

domains, we use the SEAN [14] model as our baseline model.

Alls baseline models have shown an impressive ability to

synthesize photorealistic images in different styles. For a fair

comparison, all models are trained using our proposed dataset

for semantic artwork synthesis. Furthermore, all baseline

models were trained using the implementations provided by

the authors. We chose three style transfer methods as our

baseline models for the reference-based generation compar-

ison, which are neural style transfer [2], AdaIN [31] and

STROTSS [29].

5.2 Implementation Details

We trained all the networks from scratch using our dataset.

The image size was set to 512× 512 pixels in our proposed

model and the Co-Mod GAN [11], and 256 × 256 in other

baseline models owing to GPU memory limitations. For

further details, please refer to the supplementary material. A

Table 5 Perceptual user study results. The numbers indicate the

percentage of users that prefer our method with respect to existing

approaches.

vs. SMIS OASIS Co-Mod SEAN Real

CMSAS
79.61% 67.71% 69.15% 65.26% 21.64%

(Ours)

learning rate of 0.0002 was used for the first 40 epochs before

decaying linearly to zero over the following 20 epochs. In

the inference phase, the SEAN model required the style code

as input, which we pre-computed from the mean style codes

in each domain for all the training data. For our model, we

set the input latent code z to a 0 vector. and α = 3, leading

to a positive style appearance for a particular domain in the

quantitative comparison. This setting results in the stable

generation of synthesized artwork in each domain; therefore,

the proposed framework requires only label maps as input.

5.3 Quantitative Comparison

We used the Fréchet inception distance (FID) [65] as our

primary evaluation metric to capture the perceptual similarity

of generated images with real ones. After resizing all the im-

ages to the same size of 512× 512 pixels, we calculated FID

between the real and generated artwork for each domain. As

listed in Table 3, our approach significantly outperforms ex-

isting approaches. When input reference images are available,

we compare our proposed method with SEAN model, and

three style transfer methods, including NST [2], AdaIN [31],

STROTSS [29], as shown in Table 4. Specifically, we used

a simple two-stage method to enable style transfer models

for semantic image synthesis by adding a pre-trained SPADE

model [10] to generate synthesized images from semantic

layouts. We randomly selected 200 style images and 100

synthesized images as content images for each domain and

then calculated FID based on the 20,000 generated images in

each domain.

5.4 Perceptual User Study

We evaluated our method through a perceptual user study with

15 participants. We randomly select 5,000 generated images

per domain for each approach, and all real artworks from our

dataset. In each round, two randomly selected images from

different approaches or real images were shown to the user. We

asked the participants to choose which image seemed better in

terms of realism and style for 500 rounds per user. As shown

in Table 5, our approach is preferred over existing approaches.

Furthermore, compared to real artwork, our approach was
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Input SMIS OASIS Co-Mod CMSAS

GAN (Ours)

Fig. 11 Qualitative comparison of multimodal generations. Our proposed model generates a higher quality of texture details and style

intensity compared to the baseline models. The SIMS, OASIS, and Co-ModGAN models cannot generate artwork in a pre-specified domain

due to using a random input vector. The domain-specific encoders used in our proposed method provide improved controllability via latent

space manipulation, as discussed in Sec. 4.3.
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Fig. 12 Qualitative comparison for domain-specific generations. We compare our approach against existing approaches for artwork

generation in each of the specific domains.

Table 6 Perceptual user study on layout preservation. The

numbers indicate the average scores of how well the participants

think the generated artworks of each method preserve the semantic

layout of the input. The scores are on a scale of 0 to 3, with higher

scores corresponding to better layout preservation. The best results

are highlighted in bold.

SMIS OASIS Co-ModGAN SEAN CMSAS

(Ours)

Score 2.32 2.61 2.51 2.55 2.68

considered better than 21.64% of the time. This matches the

quantitative comparison of results.

To evaluate the layout preservation, we use the same 20,000

selected images from each approach along with all the paired

semantic layouts. We asked the same 15 participants to

choose an absolute scale from 0 to 3 of how well they think

the generated artwork matches the label map. In each round,

a randomly selected image and its paired input layout were

shown. The results in Table 6 indicate that our approach

is preferred over the baseline models in terms of layout

preservation.

5.5 Visual Quality Comparison

Given that some of the baseline models cannot generate

artwork in a specific domain, we divide the visual quality

comparison into two parts: joint multimodal generation in all

domains and generation in a specific domain.

For the multimodal generation scenario, we provide a

qualitative comparison of results in Fig. 11 against the baseline

approaches. SMIS generates poorer results in terms of style,

whereas OASIS and Co-mod GAN models generate higher

quality artwork albeit with few details. The reflections on

the water, texture, and style details on the mountains, as

well as the clouds of our proposed method, exhibit higher

quality compared to baseline models. We hypothesize that

the performance increase comes from SSTAN enforcing the

influence of style information, leading to better style-aware

generation.

We qualitatively compare domain-specific generation

against the SEAN model in Fig. 12. Compared to our ap-

proach, the results using SEAN tend to be fuzzier and have
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Image NST AdaIN STROTSS (Ours)

In
k-

w
as

h
M

o
n
et

V
an

G
o
g
h

W
at

er
co

lo
r

Fig. 13 Qualitative comparison of reference-based artwork generation with neural style transfer models. All reference images are

licensed under the public domain.
Ink Monet Van Gogh Watercolor

Source Image

Fig. 14 Reference-based generation of our proposed model in multiple domains. Our proposed method can apply styles similar to a

reference image while maintaining coherency with the input semantic information.
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Input B B+D B+D+A B+D+A+S1 B+D+A+S3 B+D+A+S6 B+C B+C+A

Fig. 15 Examples from ablation study. We show sets of results for different configurations given two different semantic label maps and

latent codes. We show results for the base model (B) with different components, including attention modules (A), separate domain encoders

(D), and SSTAN for 1 layer (S1), 3 layer (S3), and 6 layer (S6) configurations, alongside a class-conditional approach (C). The top and

bottom rows show the Van Gogh and Watercolor domain, respectively.

fewer details. Furthermore, the proposed CMSAS model al-

lows for more control with the latent codes of the style instead

of a fixed pre-computed style code used in the SEAN model.

We also provided a qualitative comparison when reference

images were available. In CMSAS model, domain-specific

encoders were used to convert the reference images into latent

codes, which are then passed to a generator that synthesizes

artwork with a similar appearance. To compare with existing

style transfer methods without semantic image synthesis, we

added a pre-trained SPADE model to generate synthesized

images from the semantic layouts. The synthesized images

are then passed on to style transfer models to apply the

reference style. As shown in Fig. 13, the proposed method

significantly outperformed the baseline models. However,

when the reference image is extremely stylistic, as in the

Starry Night example in Fig. 13, unlike baseline methods

that try to extract style representations from the reference

image, the proposed method mimics a style similar to that

of the learned latent space, which may result in less stylism

owing to the limitations of the training dataset. The additional

reference-based generation results of the proposed model are

shown in Fig. 14. Given the same fixed semantic layouts as

input, our proposed method can apply a similar style based

on the reference image.

5.6 Ablation Study

An ablation study was conducted to verify the effectiveness

of each element. The results presented in Table 7 and Fig. 15

show that performance is significantly improved by adding

each element to the complete CMSAS model. In addition, we

provide a comparison with the traditional class-conditional

approach that concatenates latent code with a one-hot class la-

bels indicating different domains. The results indicate that the

Table 7 Ablation study. We evaluate the effect of different com-

ponents on the FID scores. Our base model (B) is equivalent to a

SPADE model trained with a single image encoder. In particular,

we look at the effects of the attention module (A), separate domain

encoders (D), and SSTAN for 1 layer (S1), 3 layer (S3), and 6 layer

(S6) configurations. We also compare with a class-conditional (C)

method in the last two columns, in which we concatenate the latent

code with a one-hot class label that indicates a different domain.

Thus, we generate artwork in different domains via one-hot class

labels in the last two methods, whereas other approaches use latent

space manipulation 4.3 to separate domains for more controllability,

such as cross-domain style morphing or reference-based generation.

The method (B + D + A + S6) corresponds to our full CMSAS

model. The best results are highlighted in bold.

Methods Ink-

wash

Monet Van

Gogh

Watercolor

B 78.83 74.31 140.23 95.43

B + D 77.63 72.14 134.96 89.85

B + D + A 61.25 69.34 123.21 76.15

B + D + A + S1 56.36 68.51 121.13 73.01

B + D + A + S3 51.17 67.32 119.05 72.24

B + D + A + S6 49.33 65.97 115.3 68.96

B + C 71.74 72.97 134.14 84.45

B + C + A 60.97 68.71 124.11 75.52

proposed method outperformed class-conditional approaches.

In addition, our proposed model can perform across-domain

style morphing and reference-based generation, leading to

higher controllability.

5.7 Limitations and Discussion

Although our framework can generate high-quality artwork

using semantic label maps, it has several limitations owing

to its data-driven approach. In particular, its application is

limited to known labels and new data must be acquired to

extend the model to new labels, such as animals. Furthermore,

the model learns a mapping from realistic semantic maps

to artwork images and can fail if the input semantic maps
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Input Output

Fig. 16 Generation conditioned on unnatural inputs. When

the inputs are unnatural, such as clouds under mountains or 90°

rotations, the model may struggle to generate results as the input

differs significantly from the training images.

diverge significantly from the training data, as shown in

Fig. 16. Moreover, the style or tone of the generated artwork

was restricted to those similar to real artwork used for the

training dataset. In certain scenes, the input semantic can also

produce unexpected results owing to dataset bias. Examples

are presented in Figs. 17.

6 Conclusion

We present a novel paired dataset of semantic maps, land-

scape images, and artwork from different domains, along

with a high-performance method for generating artwork from

semantic maps. Our approach uses multi-domain artworks,

exploiting the structure of the latent space to precisely ma-

nipulate the resulting artwork. Furthermore, because our

approach is generated from semantic maps, it can be used in

interactive scenarios. We plan to release our dataset and hope

that it will encourage other researchers to further investigate

artwork generation tasks.
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Input Output

Fig. 17 Dataset bias. When the input semantic maps do not share

characteristics with the training data, the model may fail to accurately

convey the intended scene. In the top row, although the user specified

a fully cloudy sky, there is a reflection of the sun in the water. In the

bottom row, despite the absence of land in the input semantic map,

the model attempts to generate a thin piece of land on the horizon.
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