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Fig. 1. Vintage film remastering results. Our approach is able to remaster 700 frames of video using only 6 reference color images in a single processing

step. The first row shows various frames from the input video, the second row shows the restored black and white frames, the third row shows the variation

between the input and restored black and white frames, and the fourth row shows the final colorized output. We show the reference color images used on the

right. Using source-reference a�ention, our model automatically matches similar regions to the reference color images, and using self-a�ention with temporal

convolutions it is able to enforce temporal consistency. Our approach is able to restore the noisy and blurring input, and, a�erwards, with the few manually

colored reference images, we are able to obtain a temporally-consistent natural looking color video. Images are taken from “A-Bomb Blast Effects” (1952) and

licensed under the public domain. Figure best viewed in color.

The remastering of vintage film comprises of a diversity of sub-tasks in-

cluding super-resolution, noise removal, and contrast enhancement which

aim to restore the deteriorated film medium to its original state. Addition-

ally, due to the technical limitations of the time, most vintage film is either

recorded in black and white, or has low quality colors, for which coloriza-

tion becomes necessary. In this work, we propose a single framework to

tackle the entire remastering task semi-interactively. Our work is based on

temporal convolutional neural networks with attention mechanisms trained
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on videos with data-driven deterioration simulation. Our proposed source-

reference attention allows the model to handle an arbitrary number of refer-

ence color images to colorize long videos without the need for segmentation

while maintaining temporal consistency. Quantitative analysis shows that

our framework outperforms existing approaches, and that, in contrast to ex-

isting approaches, the performance of our framework increases with longer

videos and more reference color images.
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1 INTRODUCTION

Since the invention of motion pictures in the late 19th century, an

incredible amount of hours of film have been recorded and released.

However, in addition to visual artefacts and the low quality of the

film technology at the time, many of the earlier works of signifi-

cant historical value have suffered from degradation or been lost.

Restoration of such important films, given their analogue nature,

is complicated, with the initial efforts beginning on restoring the

film at a physical level. Afterwards, the content is transferred to

the digital medium, where it is remastered by removing noise and

artefacts in addition to adding color to the film frames. However,

such remastering processes require a significant amount of both

time and money, and is currently done manually by experts with a

single film costing in the order of hundreds of thousands to millions

dollars. Under these circumstances, huge industries such as publish-

ers, TV, and the print industry, which own an enormous quantity of

archived deteriorated old videos, show a great demand for efficient

remastering techniques. In this work, we propose a semi-automatic

approach for remastering old black and white films that have been

converted to digital data.

Remastering an old film is not as simple as using a noise removal

algorithm followed by colorization approach in a pipeline fashion:

the noise and colorization processes are intertwined and affect each

other. Furthermore, most old films suffer from blurring and low res-

olution, for which increasing the sharpness also becomes important.

We propose a full pipeline for remastering black and white motion

pictures, made of several trainable components which we train in a

single end-to-end framework. By using a careful data creation and

augmentation scheme, we are able to train the model to remaster

videos by not only removing noise and adding color, but also in-

creasing the resolution and sharpness, and improving the contrast

with temporal consistency.

Our approach is based on fully convolutional networks. In con-

trast to many recent works that use recursive models for process-

ing videos [Liu et al. 2018; Vondrick et al. 2018], we use temporal

convolutions that allow for processing video frames by taking ac-

count information from multiple frames of the input video at once.

In addition, we propose using an attention mechanism, which we

denote as source-reference attention, that allows using multiple ref-

erence frames in an interactive manner. In particular, we use this

source-reference attention to provide the model with an arbitrary

number of color mages to be used as references when adding color.

The model is able to not only dynamically choose what reference

frames to use when coloring each output frame, but also choose

what regions of the reference frames to use for each output region in

a computationally efficient manner. We show how this approach can

be used to remaster long sequences composing of multiple different

scenes (close-up, panorama, etc.), using an assortment of reference

frames as shown in Fig. 1. The number of reference frames used

is not fixed and it is even possible to remaster in a fully automatic

way by not providing reference frames. Additionally, by manually

creating and/or colorizing reference frames, it is possible for the

user to control the colorization results when remastering, which is

necessary for practical applications.

We perform an in-depth evaluation of our approach both quanti-

tatively and qualitatively, and find the results of our framework to

be favorable in comparison with existing approaches. Furthermore,

the performance of our approach increases on longer sequences

with more reference color images, which proves to be a challenge

for existing approaches. Our experiments show that using source-

reference attention it is possible to remaster thousands of frames

with a small set of reference images in a efficiently with stable and

consistent colors.

To summarize, our contributions are as follows: (1) the first single

framework for remastering vintage film, (2) source-reference atten-

tion that can handle an arbitrary number of reference images, (3) an

example-based film degradation simulation approach for generating

training data for film restoration, and (4) an in-depth evaluation with

favorable results with respect to existing approaches and strong

baselines. Models, code, and additional results are made available at

http://iizuka.cs.tsukuba.ac.jp/projects/remastering/.

2 RELATED WORK

2.1 Denoising and Restoration

One of the more classical approaches to denoising and restora-

tion is the family of Block-Matching and 3D filtering (BM3D) algo-

rithms [Dabov et al. 2007; Maggioni et al. 2012, 2014], which are

based on collaborative filtering in the in the transform domain. Al-

though fairly limited in the types of noise patterns they can elimi-

nate, these approaches have wide applicability to both images and

video. Besides noise removal, other restoration related applications

such as image super-resolution and deblurring [Danielyan et al.

2012] have also been explored with the BM3D algorithm.

More recently, Convolutional Neural Networks have been used

for denoising-type applications, and, in particular, for single im-

ages [Lefkimmiatis 2018; Zhang et al. 2018b]. However, these gen-

erally assume simple additive Gaussian noise [Lefkimmiatis 2018],

blurring [Fan et al. 2018; Shi et al. 2016; Yu et al. 2018], or JPEG-

deblocking [Zhang et al. 2017b], or are applied to specialized tasks

such as Monte Carlo rendering denoising [Bako et al. 2017; Chai-

tanya et al. 2017; Vogels et al. 2018] for which it is easy to create

supervised training data. Extensions for video based on optical flow

and transformer networks have also been proposed [Kim et al. 2018].

However, restoration of old film requires more than being able to

remove Gaussian noise or blur: it requires being able to remove film

artefacts that can be both local, affecting a small region of the image,

or global, affecting the contrast and brightness of the entire frame,

as shown in Fig. 2. For this it is necessary to create higher quality

and realistic film noise as we propose in our approach.

2.2 Colorization

Colorization of black and white images is an ill-posed problem

in which there is no single solution. Most approaches have relied

on user inputs, either in the form of scribbles [Huang et al. 2005;

Levin et al. 2004], reference images similar to the image being col-

orized [Irony et al. 2005; Pitié et al. 2007; Reinhard et al. 2001; Tai

et al. 2005;Welsh et al. 2002;Wu et al. 2013], or internet queries [Chia

et al. 2011; Liu et al. 2008]. While most traditional approaches

have focused on solving an optimization problem using both the
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(a) Synthetic noisy images. (b) Vintage black and white movies from the early 20th century.

Fig. 2. Comparison between denoising and restoration tasks. (a) Example of generated synthetic images for denoising tasks [Martin et al. 2001]. The

top row shows the original images and the bo�om row shows them with added Gaussian noise. (b) Example of vintage film which requires restoration. The

old movies suffer from a plethora of deterioration issues such as film grain noise, scratches, dampness, vigne�ing, and contrast bleed, which make them

challenging to restore to their original quality. (a) Images are taken from [Martin et al. 2001], and (b) videos licensed in the Public Domain.

input greyscale image and the user provided hints or references

images [An and Pellacini 2008; Levin et al. 2004; Xu et al. 2013],

recent approaches have opted to leverage large datasets and em-

ploy learning-based models such as Convolutional Neural Networks

(CNN) to colorize images automatically [Iizuka et al. 2016; Larsson

et al. 2016; Zhang et al. 2016]. Analogous to the optimization-based

approaches, CNN-based approaches have been extended to han-

dle user inputs as both scribbles [Sangkloy et al. 2017; Zhang et al.

2017a], and a single reference images [He et al. 2018; Meyer et al.

2018]. Our approach, while related to existing CNN-based meth-

ods, extends the colorization to video and an arbitrary number of

reference images, in addition to performing restoration of the video.

Related to the current work are Recursive Neural Network (RNN)

approaches for colorizing videos [Liu et al. 2018; Vondrick et al.

2018]. They process the video frame-by-frame by propagating the

color from an initial colored key frame to rest of the scene. While

this is a simple way to colorize videos, it can fail to propagate the

color when there are abrupt changes in scene. In particular, RNN-

based methods have the following limitations:

(1) They require the first frame to be colored and cannot use

related frames.

(2) They are unable to propagate between scene changes, and

thus require precise scene segmentation. This doesn’t allow

handling scenes that alternate back and forth, as commonly

done in movies, which end up requiring many additional

colorized references.

(3) Once they make an error they continue amplifying it. This

severely limits the number of frames that can be propagated.

In contrast to RNN-based approaches, our approach is able to

handle multiple scenes or entire videos seamlessly as shown in Fig. 3.

Instead of using a RNN, we use a CNN with temporal convolutions

and attention, which allows incorporating non-local information

from multiple input frames to colorize a single output frame.

・・・ ・・・

1 2 ・・・

1 2 −1
(a) Recursion-based CNN.

・・・ ・・・

1 2 ・・・

1 2 −1
(b) Our Source-Reference A�ention-based CNN.

Fig. 3. Comparison between recursion-based and a�ention-based

Convolutional Neural Networks (CNN) when processing an input

video x with reference images z . Recursion-based networks simply prop-

agate the information frame-by-frame, and because of this can not be

processed in parallel and are unable to form long-term dependencies. Each

time a new reference image is used, the propagation is restarted, and tem-

poral coherency is lost. Source-reference a�ention-based networks, such as

our approach, are able to use all the reference information when processing

any the frames.

2.3 A�ention

Attention mechanisms for neural networks were original developed

for Natural Language Translation (NLT) [Bahdanau et al. 2015].

Similar to human attention, attention for neural network allows the

model to focus on different parts of the input. For NLT, attention

allows to find a mapping between the input language words and

the output language words, which can be in different orders. For

natural language processing, many different variants have been
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Fig. 4. Overview of the proposed approach. The model is input a sequence of black and white images which are restored using a pre-processing network

and used as the luminance channel of the final output video. A�erwards, a source-reference network uses an arbitrary number of reference color images in

conjunction with the output o�he pre-processing network to produce the final chrominance channels of the video. Source-reference a�ention is used to allow

the model to employ the color of similar regions in the reference color images when colorizing the video. The output of the model is a remastered video of the

input.

proposed such as global and local attention [Luong et al. 2015],

self-attention [Cheng et al. 2016; Parikh et al. 2016] with large-scale

studies being performed [Britz et al. 2017; Vaswani et al. 2017].

Computer vision has also seen applications of attention for cap-

tion generation of images [Xu et al. 2015], where the generation of

each word in the caption can focus on different parts of the image

using attention. Parmar et al. [2018] proposed using self-attention

for image generation where pixels locations are explicitly encoded.

This was later simplified in [Zhang et al. 2018a] to not need to ex-

plicitly encode the pixel locations. More related to our approach is

the extension of self-attention to videos classification [Wang et al.

2018], in which the similarity of objects in the different video frames

is computed with a self-attention mechanism. This is shown to

improve the classification results of videos. Our approach is based

on the same concept, however, we extend it to compute the simi-

larity between the input video frames and an arbitrary number of

reference images.

3 APPROACH

Our approach is based on fully convolutional networks, which are

a variant of convolutional neural networks in which only convo-

lutional layers are employed. This allows processing images and

videos of any resolution. We employ a mix of temporal and spatial

convolution layers, in addition to attention-based mechanisms that

allow us to use an arbitrary number of reference color images dur-

ing the remastering. An overview of the proposed approach can be

seen in Fig. 4.

3.1 Source-Reference A�ention

We employ source-reference attention to be able to supply an arbi-

trary number of reference color images that the model can be use as

hints for the remastering of videos. In particular, source-reference

Fig. 5. Overview of the source-reference a�ention layer. This layer

takes both a set of reference feature maps hr and a set of source feature

maps hs as an input, and outputs a new set of feature maps of the same

dimension as the source feature maps. This a�ention allows using non-local

features from the reference features to perform a transformation of the

source reference features. This transformation is done while conserving the

local information similar to a purely convolutional layer. We denote matrix

multiplication as “⊗” and matrix addition as “⊕”. The input and output

dimensions of the different components are shown for reference.

attention layers take as an input two different variable length volu-

metric feature maps, one corresponding to the source data and the

other to the reference data, and allow the model to exploit non-local

similarities between the source data and the reference data. The

model can thus use the color from the reference data to colorize

similar areas of the source data.

More formally, let the source data feature representation be hs ∈

R
C×Ts×Hs×Ws with C channels, Ts frames of height Hs and width

ACM Trans. Graph., Vol. 38, No. 6, Article 176. Publication date: November 2019.
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Ws , and let the reference data features be hr ∈ RCr×Nr×Hr×Wr

with Cr channels, Nr maps of height Hr and widthWr . The source-

reference attention layer Asr (·, ·) can be defined as

Asr (hs ,hr ) = hs + γ d
(

et (hr ) softmax
(

er (hr )
⊺
es (hs )

)

)

, (1)

where γ ∈ R is a learnt parameter and

es : R
C×Ts×Hs×Ws → RC

′×TsHsWs

er : R
Cr×Nr×Hr×Wr → RC

′×NrHrWr

et : R
Cr×Nr×Hr×Wr → RC×NrHrWr (2)

are encoding functions that map the input source and reference

feature tensors to matrices with a reduced number of channels,

and d : RC×TsHsWs → R
C×Ts×Hs×Ws is a decoding function that

simply reshapes the tensor without modifying any values. For the

encoding functions, we use temporal convolution operators with

1×1×1-pixel kernels followed by reshaping to the appropriate output

dimensions. A visual overview of the source-reference attention

layer is shown in Fig. 5.

Note that if reference data features are not provided, the output

of the source-reference attention layer becomes simply the source

data features. Furthermore, in the case the same features are used

for both the source and reference features, the source-reference at-

tention layer becomes a self-attention layer similar to the implemen-

tation of [Zhang et al. 2018a], except using temporal convolutions

instead of spatial convolutions for the encoders, and the dot-product

implementation of [Wang et al. 2018], where a single multiplicative

parameter γ is used in place of a convolution operator in the de-

coder. To reduce the computational burden of the attention, we set

C ′
= C/8 unless mentioned otherwise.

3.2 Model

The model is composed fundamentally of two trainable parts: a pre-

processing network, and a source-reference network. Both are fully

differentiable and trained together in an end-to-end fashion. We

follow the best practices of fully convolutional networks by having

each convolution layer consist of a convolution operator, followed

by a Batch Normalization (BN) layer [Ioffe and Szegedy 2015], and

a Exponential Linear Unit (ELU) activation function [Clevert et al.

2015], unless specified otherwise. Unless specified otherwise, all con-

volutions operate in the temporal domain, with spatial convolution

operators using kernel of size 1 × 3 × 3, and temporal convolution

operators using kernel of size of 3 × 3 × 3. All layers use padding

so that the output is the same size as the input .The resolution is

decreased with layers that used strides of 1 × 2 × 2-pixels, and in-

creased with trilinear up-sampling before the convolution layers

when necessary. A full overview of the model can be seen in Fig. 4.

3.2.1 Pre-Processing Network. The pre-processing network is formed

exclusively by temporal convolution layers, and uses a skip con-

nection between the input and output. The main objective of the

pre-processing network is to remove artefacts and noise from the

input greyscale video. The network uses an encoder-decoder archi-

tecture in which the resolution is halved twice and restored to the

full size at the end with trilinear upsampling. A full overview of

the pre-processing model architecture is shown in Table 1. Most of

Table 1. Overview of the pre-processing model architecture. We ab-

breviate Temporal Convolution with “TConv.”. Layer irregularities are spec-

ified in the notes column. When the same layer is repeated several times

consecutively, we indicate this with the number of times in parenthesis.

Layer Type Output Resolution Notes

Input 1 ×Ts ×Ws × Hs Input greyscale image

TConv. 64 ×Ts ×Ws/2 × Hs/2 Replication padding,

spatial stride of 2

TConv. (×2) 128 ×Ts ×Ws/2 × Hs/2

TConv. 256 ×Ts ×Ws/4 × Hs/4 Spatial stride of 2

TConv. (×4) 256 ×Ts ×Ws/4 × Hs/4

TConv. 128 ×Ts ×Ws/2 × Hs/2 Trilinear upsampling

TConv. (×2) 64 ×Ts ×Ws/2 × Hs/2

TConv. 16 ×Ts ×Ws × Hs Trilinear upsampling

TConv. 1 ×Ts ×Ws × Hs TanH output, input

is added, and finally

clamped to [0, 1] range

the processing is done at the low resolution to decrease the com-

putational burden, and the output of this network is used as the

luminance channel of the final output image.

3.2.2 Source-Reference Network. The source-reference network

forms the core of the model and takes as an input the output of the

pre-processing network along with an arbitrary number of user-

provided reference color images. Two forms of attention are em-

ployed to allow non-local information to be used when computing

the output chrominance maps: source-reference attention allows

information from reference color images to be used, giving the user

indirect control of the colorization; and self-attention allows non-

local temporal information to be used, increasing the temporal con-

sistency of the colorization. For self-attention, we use the source-

reference attention layer implementation and use the same features

for both the source and reference feature maps. An overview of the

source-reference model architecture is shown in Table 2.

As with the pre-process network, the model is based on a encoder-

decoder architecture, where the resolution is reduced to allow for

more efficient computation and lower memory usage, and restored

for the final output. While temporal convolutions allow for better

temporal consistency, they also complicate the learning and increase

the computational burden. Unlike the pre-processing network, the

source-reference network uses a mix of temporal and spatial convo-

lutions. In particular, the decoder and 1/8middle branch use temporal

convolutions while the encoders of both the input video and refer-

ence images use spatial convolutions, and the 1/16 middle branch

uses a mixture of both, which we found decreases memory usage

and simplifies the training, while not sacrificing any remastering

accuracy. Furthermore, in the case of the reference color images,

there is no temporal coherency to be exploited by using temporal

convolutions as the images are not necessarily related.

First, the input video and reference images are separately reduced

to 1/8 of the original width and height in three stages by separate

ACM Trans. Graph., Vol. 38, No. 6, Article 176. Publication date: November 2019.
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Table 2. Overview of the source-reference model architecture. This model takes as an input both the output of the pre-processing model and a set of

reference images. Both these inputs are processed by separate encoders (a), then processed in two different middle branches corresponding to 1/16 width and

height (b), and 1/8 width and height (c), before being decoded to the chrominance channels of the output video with a decoder (d). We abbreviate Spatial

Convolutions with “SConv.”, Temporal Convolutions with “TConv.”, and Source-Reference A�ention with “SR A�n.”. For the source and reference encoders, we

refer to the temporal dimension generically as T , where T = Tr for the reference encoder and T = Ts for the source encoder. We specify layer irregularities in

the notes column. When the same layer is repeated several times consecutively, we indicate this with the number of times in parenthesis.

(a) Source and Reference Encoders.

Layer Type Output Resolution Notes

Input (1 or 3) ×T ×W × H 3 channels (RGB) for

reference, 1 channel

(greyscale) for source

SConv. 64 ×T ×W/2 × H/2 Spatial stride of 2

SConv. (×2) 128 ×T ×W/2 × H/2

SConv. 256 ×T ×W/4 × H/4 Spatial stride of 2

SConv. (×2) 256 ×T ×W/4 × H/4

SConv. 512 ×T ×W/8 × H/8 Spatial stride of 2

SConv. (×2) 512 ×T ×W/8 × H/8

(b) Middle 1/16 branch.

Layer Type Output Resolution Notes

SConv. 512 ×Ts ×Ws/16 × Hs/16 Input is source encoder

output, spatial stride of

2

SConv. 512 ×Ts ×Ws/16 × Hs/16 Outputs 1/16 source

SConv. 512 × Nr ×Wr/16 × Hr/16 Input is reference en-

coder output, spatial

stride of 2

SConv. (×2) 512 × Nr ×Wr/16 × Hr/16 Outputs 1/16 reference

SR Attn. 512 ×Ts ×Ws/16 × Hs/16 Uses 1/16 source and ref-

erence as inputs

TConv. 512 ×Ts ×Ws/16 × Hs/16

Self Attn. 512 ×Ts ×Ws/16 × Hs/16

(c) Middle 1/8 branch.

Layer Type Output Resolution Notes

SR Attn. 512 ×Ts ×Ws/8 × Hs/8 Input is source and ref-

erence encoder output

TConv. (×2) 512 ×Ts ×Ws/4 × Hs/4

TConv. (×2) 512 ×Ts ×Ws/4 × Hs/4 Output of the 1/16

branch is concatenated

to the input

Self Attn. 512 ×Ts ×Ws/4 × Hs/4

(d) Decoder.

Layer Type Output Resolution Notes

TConv. 256 ×Ts ×Ws/8 × Hs/8

TConv. 128 ×Ts ×Ws/4 × Hs/4 Trilinear upsampling

TConv. 64 ×Ts ×Ws/4 × Hs/4

TConv. 32 ×Ts ×Ws/2 × Hs/2 Trilinear upsampling

TConv. 16 ×Ts ×Ws/2 × Hs/2

TConv. 8 ×Ts ×Ws × Hs Trilinear upsampling

TConv. 2 ×Ts ×Ws × Hs Sigmoid output repre-

sents chrominance

encoders. The encoded input video and reference video features

are then split into two branches: one processes the video at 1/8

width and height, and one decreases the resolution another stage

to 1/16 of the original width and height to further process the video.

Both branches employ source-reference attention layers, additional

temporal convolution layers, and self-attention layers. In particular,

the 1/16 branch is processed with a self-attention layer before being

upsampled trilinearly and concatenated to the 1/8 branch output.

The resulting combined features are processed with self-attention

to be more temporally uniform. Afterwards, a decoder converts the

features to chrominance channels in three stages using trilinear

upsampling. Finally the output of the network is used as the image

chrominance with two channels corresponding to the ab channels of

the Lab color-space, while the output of the pre-processing network

is used as the image luminance corresponding to the L channel.

4 TRAINING

We train our model using manually curated supervised training data.

In order to improve both the generalization and quality of the results,

we perform large amounts of both synthetic data augmentation and

example-based film deterioration.

4.1 Objective Function

We train the model in a fully supervised fashion with a linear com-

bination of two L1 losses. In particular, we use a supervised dataset

D consisting of pairs of deteriorated black and white videos x and

restored color videos split into luminance yl and chrominance yab
using the Lab color-space, and reference color images z, and opti-

mize the following expression:

argmin
θ ,ϕ

E(x ,yl ,yab ,z)∈D ‖P(x ;θ ) −yl ‖ + β ‖S
(

P(x ;θ ), z;ϕ
)

−yab ‖ ,

(3)

where P is the pre-processing model with weights θ , S is the source-

reference model with weights ϕ, and β ∈ R is a weighting hyper-

parameter.

Training is done using batches of videos with 5 sequential frames

each, that are chosen randomly from the training data. For each

5-frame video, a random number of color references images z is
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Table 3. Overview of the different types of data augmentation used

during training. The target refers to which data is being augmented. Val-

ues in parenthesis indicate that the same transformation is done jointly to

both variables, instead of independently. Probability indicates how likely

that particular transformation is likely to occur, and range is how the trans-

formation parameters are sampled. We note that in the case of the input

video x and target videoy , the same transformation is done to all the frames

in the video, while in the case of the reference images z , the transformation

is done independently for each image as they are not related to each other.

Name Target Prob. Range Notes

Horiz. Flip (x,y), z 50% -

Scaling (x,y) 100% U(256, 400) Size of the smallest edge

(px), randomly crops

Rotation (x,y) 100% U(−5, 5) In degrees

Brightness (x,y) 20% U(0.8, 1.2)

Contrast (x,y) 20% U(0.9, 1.0)

JPEG x, z 90% U(15, 40) Encoding quality

Noise x, z 10% N(0, 0.04) Gaussian

Blur x 50% U(2, 4) Bicubic down-sampling

Contrast x 33% U(0.6, 1.0)

Scaling z 100% U(256, 320) Size of the smallest edge

(px), randomly crops

Saturation z 10% U(0.3, 1.0)

chosen uniformly from the [0, 6] range. If the number of references

is not 0, one of the reference images is chosen to be from within

five neighboring frames of the input frames, while the remaining

reference images are randomly sampled from the whole training

data set.

4.2 Training Data

We base our dataset on the YouTube-8M dataset [Abu-El-Haija et al.

2016] which consists of roughly 8 million videos corresponding to

about 500 thousand hours of video data. The dataset is annotated

with 4,803 visual entities which we do not use. We convert the

videos to black and white and corrupt them, simulating old film

degradation, to create supervised training data for our model.

As YouTube-8M dataset was created by mostly automatically, a

large amount of videos depict gameplay, black and white video,

static scenes from fixed cameras, and unnaturally colored scenes

such as clubs with live music. We randomly select videos from the

full dataset and manually annotate them as suitable for training and

evaluating a remastering model. In particular, we end up with 1,569

videos totalling 10,243,010 frames, of which we use 1,219 (7,993,132

frames) for training our model, 50 (321,306) for validation, and 300

(1,928,572) for testing.

4.3 Data Augmentation

We perform large amounts of data augmentation to the input video,

ground truth video, and reference images with two objectives: first,

we wish to increase the generalization of the model to different

types of video, and secondly, we want the model to be able to restore

different artefacts which can be commonly found in the input videos,

Fig. 6. Example-based deterioration effects. These effects are generated

offline and stored as a dataset of images which can then be applied to

training data inputs as additive noise.

such as blur or low contrast. This data augmentation is done in

parallel with example-based deterioration that further degrades the

input greyscale videos.

We use batches of 5-frame videos with their associated reference

images with a resolution of 256 × 256 pixels. As data augmentation,

we perform a large amount of transformations that affect the input

video x and ground truth video y = (yl ,yab ) together, only the

input video x , only the reference images z, or any combination of

the previous three. An overview of the different transformations

we apply is shown in Table 3, which include changes to brightness,

contrast, JPEG noise, Gaussian noise, blurring, and saturation.

4.4 Example-based Deterioration

In addition to all the different data augmentation techniques, we also

simulate deterioration of the film medium from a dataset of 6,152 ex-

amples, such as fractal noise, grain noise, dust, and scratches. These

deterioration examples are manually collected by web search using

the keywords “film noise”, and also generated using software such

as Adobe After Effects. For generated noise, fractal noise is used to

generate a base noise pattern, which can then be improved by mod-

ifying the contrast, brightness, and tone curves to obtain scratch

and dust-like noise. In total, 4,340 noise images were downloaded

and 1,812 were generated. Some of the deterioration examples are

shown in Fig. 6. In particular, as these deterioration effects simulate

the degradation of the physical medium which is supporting the

film, they are implemented as additive noise: the noise data is ran-

domly added to the input greyscale video, independently for each

frame. Furthermore, they are added independently of each other

and combined to create the augmented input videos.

For all the noise, we use similar data augmentation techniques as

used for the input video. In particular, the noise images are scaled

randomly such that the shortest edge is between [256, 720] pixels,
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(a) Original (b) Deteriorated Example 1

(c) Deteriorated Example 2 (d) Deteriorated Example 3

Fig. 7. Examples of synthetic deterioration effects applied to a black

and white image. (a) For the original image, (b-d) various types of both

algorithm-based and example-based deterioration effects, such as JPEG

compression artifacts and film scratches, are randomly added. Video licensed

in the Public Domain.

both horizontally and vertically flipped with 50% probability, rotated

randomly between [−5, 5] degrees, cropped to 256 × 256 pixels,

randomly scaled by U(0.5, 1.5), and randomly either subtracted or

added to the original image. Some generated training examples are

shown in Fig. 7.

4.5 Optimization

Training is initially done of the pre-processing network and source-

reference network separately for 500,000 iterations. Afterwards,

they are trained together in an end-to-end fashion by optimizing

Eq. (3). For the optimization method, we rely on the ADADELTA

algorithm [Zeiler 2012], which is a variant of stochastic gradient

descent which heuristically estimates the learning rate parameter,

thus requiring no hyper-parameters to tune.

5 RESULTS

We train our model on our dataset with γ = 10−4 and a batch-size

of 20. We use the model with the lowest validation loss as our final

model. We evaluate both quantitative and qualitative and compare

with existing methods.

5.1 Comparison with Existing Approaches

We compare the results of our approach with both existing ap-

proaches and strong baselines with a quantitative evaluation. In par-

ticular, for restoration, we compare against the approach of [Zhang

et al. 2017b] and [Yu et al. 2018], and for colorization we compare

against the propagation-based approach of [Vondrick et al. 2018]

and single-image interactive approach of [Zhang et al. 2017a]. For

both remastering, i.e., joint restoration and colorization, we com-

pare against all possible combinations of restoration and coloriza-

tion approaches, e.g., the combination of [Zhang et al. 2017b] and

[Vondrick et al. 2018] used together. The approach of [Zhang et al.

2017b] and [Yu et al. 2018] consists of a deep residual convolutional

neural network for single image restoration. We note that the ap-

proach of [Yu et al. 2018] is an extension of [Fan et al. 2018] and

winner of the NTIRE 2018 super resolution image challenge1. We

modified the model of [Yu et al. 2018] by removing the up-sampling

layer at the end as the target task is restoration and not super-

resolution. The approach of [Vondrick et al. 2018] is a recursive

convolutional neural network that can propagate color information.

The approach of [Zhang et al. 2017a] is a single-image convolu-

tional neural network approach that can use user-provided hints,

which we use to provide the reference image color information. We

also compare against two strong colorization baselines consisting of

our proposed model with the temporal convolution layers replaced

with spatial convolution layers, and of our proposed model with-

out self-attention layers. For restoration, we compare to a baseline

consisting of our pre-processing network without the skip connec-

tion. Finally, we also compare against a baseline consisting of the

restoration and colorization networks of our approach trained in-

dependently, i.e., without joint training. All approaches are trained

using exactly the same training data and training approach for fair

comparison.

We compare using our test set consisting of 300 videos from the

Youtube-8M dataset. For each video we randomly sample a subset

of either 90 or 300 frames, and use the subset as the ground truth.

Given that these videos are not noisy nor degraded, we follow the

same approach for generating training data to generate deteriorated

inputs for evaluation. For the example-based deterioration effects,

we use a different set of images from those of the training set to

evaluate generalization. We use Peak Signal-to-Noise Ratio (PSNR)

as an evaluation metric, and compute the PSNR using the luminance

channel only for the restoration task, using the chrominance chan-

nels only for the colorization task, and using all the image channels

for the remastering task.

For the reference color images, in the case of the 90 frame subset,

we only provide the first frame as a reference image, while in the

case of the 300 frame subset, we provide every 60th frame starting

from the first frame as a reference image. For our approach, all the

reference frames are provided at all times. In the case of the approach

of [Vondrick et al. 2018], as it only propagates the color and is unable

to naturally handle multiple reference images, we replace the output

image with the new reference image when necessary as shown in

Fig. 3. We note that the same random subset of all videos is used for

all the approaches.

5.1.1 Remastering Results. As there is not a single approach that

can handle the remastering of videos, we compare against a pipeline

approach of first processing the video with the method of either

[Zhang et al. 2017b] or [Yu et al. 2018], and then propagating the

reference color on the output with the approach of either [Vondrick

et al. 2018] or [Zhang et al. 2017a]. We also provide results of a base-

line consisting of our full approach without the joint training, i.e.,

the restoration and colorization networks are trained independently.

Results are shown in Table 4. Of the pipeline-based approaches, we

find that, while they have similar performance, the combination of

1http://www.vision.ee.ethz.ch/ntire18/
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24.17dB 25.19dB 28.12dB

27.15dB 26.64dB 29.63dB

24.49dB 24.73dB 27.71dB

Input Zhang+&Zhang+ Zhang+&Vondrick+ Ours Ground Truth

Fig. 8. Randomly sampled examples from the Youtube-8M test dataset with degradation noise. We show one frame from several examples and

compare our approach with the combined approach of [Zhang et al. 2017b] andk [Zhang et al. 2017a], and [Zhang et al. 2017b] and [Vondrick et al. 2018]. First

column shows the input frame which has been deteriorated with noise, the next two columns correspond to the remastering results with both approaches, and

the last column shows the ground truth video. The PSNR of each approach is shown below each image. Videos courtesy of Naa Creation (top), Balloon Sage

(middle), and Mayda Tapanes (bo�om) and licensed under CC-by.

[Zhang et al. 2017b] and [Zhang et al. 2017a] gives the highest per-

formance. However, our approach outperforms the existing pipeline

based approaches and the strong baseline that doesn’t use joint train-

ing. This shows that even though the restoration and colorization

models are first trained independently before being further trained

jointly, the joint training plays an important role in improving the

quality of the final results. It is also interesting to point out that

while the performance of existing approaches degrades with longer

videos and more reference color images, our approach improves

in performance. This is likely due to all the reference color images

being used to remaster each frame. Several randomly chosen exam-

ples are shown in Fig. 8, where we can see that existing approaches

fail to both remove the noise and propagate the color, while our

approach performs well in both cases.

5.1.2 Restoration Results. We compare our approach with that

of [Zhang et al. 2017b], [Yu et al. 2018], and a baseline for video

restoration. The baseline consists of our pre-processing model with-

out the skip connection that adds the input to the output. As color

is not added, no reference color images are provided and the evalu-

ation is done using only the 300 frame subset. Results are shown in

Table 5. We can see that the baseline, the approach of [Zhang et al.

2017b], and the approach of [Yu et al. 2018] perform similarly, while

our full pre-processing model, with a skip connection, outperforms

both. Example results are shown in Fig. 9.

5.1.3 Colorization Results. We compare against the approach of

[Zhang et al. 2017a] using global hints, the approach of [Vondrick

et al. 2018] and two baselines: one consisting of our source-reference

networkwithout temporal convolutions and onewithout self-attention

for colorization. Results are shown in Table 6, and we can see that

Table 4. �antitative remastering results.We compare the results of our

model with that of restoring each frame with the approach of [Zhang et al.

2017b], and propagating reference color with the approach of [Vondrick et al.

2018] on synthetically deteriorated videos from the Youtube-8M dataset,

and with a baseline that consists of our model without using joint training.

We perform two types of experiments: one using a random 90-frame subset

from each video with 1 reference frame, and one using a random 300-frame

subset with 5 reference frames.

Approach Frames # Ref. PSNR

Zhang+[2017b]&Zhang+[2017a] 90 1 27.13

300 5 27.31

Yu+[2018]&Zhang+[2017a] 90 1 26.43

300 5 26.59

Zhang+[2017b]&Vondrick+[2018] 90 1 26.43

300 5 26.60

Yu+[2018]&Vondrick+[2018] 90 1 26.85

300 5 26.89

Ours w/o joint training 90 1 29.07

300 5 29.23

Ours 90 1 30.83

300 5 31.14

our approach outperforms existing approaches and the baselines.

Similar to the remastering case, our approach performs significantly

better on longer videos with additional references images, which is

indicative of the capabilities of the source-reference attention: not
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Input [Zhang et al. 2017b] [Yu et al. 2018] Ours Ground Truth

Fig. 9. Restoration results on the Youtube-8M test dataset with degradation noise. We show one frame from several examples and compare our

approach with the approaches of [Zhang et al. 2017b] and [Yu et al. 2018]. The first column shows the input frame which has been deteriorated with noise,

the next three columns correspond to the black and white restoration of each approach, and the last column corresponds to the ground truth video. Videos

courtesy of Naa Creation (top), and Mayda Tapanes (bo�om) and licensed under CC-by.

Input [Zhang et al. 2017a] [Vondrick et al. 2018] Ours Reference

Fig. 10. Colorization results on the Youtube-8M test dataset. We show one frame from several examples and compare our approach with the colorization

approach of [Zhang et al. 2017a] without using the reference image and the RNN-based approach [Vondrick et al. 2018] which uses the reference image. The

first column shows the input frame, the next three columns correspond to the colorization of each approach, and the last corresponds to the reference image.

Note that the input frame is not the same frame as the reference image. Videos courtesy of Naa Creation (top), and Mayda Tapanes (bo�om) and licensed

under CC-by.

Table 5. �antitative restoration results.We compare the results of our

pre-processing network with the approach of [Zhang et al. 2017b], [Yu

et al. 2018], and a baseline of our approach without the skip connection for

restoring synthetically deteriorated videos from the Youtube-8M dataset.

Approach Frames # Ref. PSNR

[Zhang et al. 2017b] 300 - 25.08

[Yu et al. 2018] 300 - 24.49

Ours w/o skip connection 300 - 24.73

Ours 300 - 26.13

only is it possible to colorize long sequences with many reference

images, it is beneficial for performance. An interesting result is that

self-attention plays a critical role in our model. We believe this is

due to the fact it allows each output pixel to be computed using

information from the entire image, which would require many more

convolutional layers if self-attention was not employed. Example

results are shown in Fig. 10.

Table 6. �antitative colorization results. We compare the colorization

results of our source-reference network with the approach of [Zhang et al.

2017a] using global hints, and [Vondrick et al. 2018] for the colorization of

videos from the Youtube-8M dataset. We perform two types of experiments:

one using a random 90-frame subset from each video with 1 reference frame,

and one using a random 300-frame subset with 5 reference frames.

Approach Frames # Ref. PSNR

[Zhang et al. 2017a] 90 1 31.28

300 5 31.16

[Vondrick et al. 2018] 90 1 31.55

300 5 31.70

Ours w/o temporal conv. 90 1 28.46

300 5 28.51

Ours w/o self-attention 90 1 29.00

300 5 28.72

Ours 90 1 34.94

300 5 36.26
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(b) “Freedom Highway” (1956).
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(d) “The Jungle Book” (1967).

Fig. 11. �alitative comparison with the combined approach of Zhang+[2017b] and Vondrick+[2018].We show the reference color images in the

first row with their timestamps. A�erwards four different frames taken from the input video and output videos are shown. Note that the example of (d) is

remastered with 41 reference images of which we only show a subset. “Right to Health, A (Part I)”, “Freedom Highway”, “Color Craziness”, and “The Jungle

Book” are licensed in the public domain.
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Input [Zhang et al. 2017b] Ours

Fig. 12. Restoration result on vintage film. We compare with the ap-

proach of [Zhang et al. 2017b], and show the boxed area zoomed in on the

bo�om row. We can see that the relatively large noise is “inpainted” with

our network. First two rows are frames taken from the movie “Oliver Twist”

(1933) which is licensed in the public domain.

5.2 �alitative Results

We show qualitative results in Fig. 11 on diverse challenging real

world vintage film examples. As the videos are originally color, we

use images from the original video as the reference images, and then

compare both our remastering approach and a pipeline approach

of denoising with the approach of [Zhang et al. 2017b] and then

adding color with the method of [Vondrick et al. 2018]. We can

see how our approach is able to perform a consistent remastering,

while existing approaches lose track of the colorization and fail to

produce pleasing results, which is consistent with our quantitative

evaluation.

We also perform a qualitative comparison of restoration results

on vintage film in Fig. 12 with the approach of [Zhang et al. 2017b].

We can see how the approach of [Zhang et al. 2017b] can restore

small noise, but fails at larger noise. Our approach is able to handle

both small and large noise, while also sharpening the input image.

5.3 Computation Time

For a 528 × 400-px input video, our approach takes 69ms per frame

with a Nvidia GTX 1080Ti GPU, with 4ms corresponding to the

restoration stage, and 65ms corresponding to the colorization stage.

6 LIMITATIONS AND DISCUSSION

We have presented an approach for the remastering of vintage film

based on temporal convolutional networks with source-reference

attention mechanisms that allow for using an arbitrary number

of reference color images. Although the source-reference atten-

tion mechanism is a powerful tool to incorporate reference images

into a processing framework and is amenable to process videos of

any resolution, it suffers from O(NrHrWrTsHsWs ) memory usage.

Available system memory will thus limit the maximum resolution

that can be processed. However,in practice, as most vintage movies

are stored at low resolutions due to limits of the film technology,

they do not have to be processed at resolutions that would not be

possible with attention-based mechanisms.

Currently, the proposed approach relies on fully supervised learn-

ing and can not fill missing frames nor extreme degradation that

leaves a large region of the image missing during many frames as

Fig. 13. Limitation of our approach. Example of severely deteriorated

film which is not possible to remaster with the current approach. The first

row shows frames from the original input video and the second row shows

the output of our approach. Images taken from the movie “Metropolis”

(1925) which is licensed in the public domain.

shown in Fig. 13. In these cases there is too much missing infor-

mation which makes it impossible to remaster, they would require

image completion-based approaches to remake new plausible parts

of the video, which is out of the scope of this work.

Our model has a temporal resolution of 15 frames, corresponding

to roughly half a second in most videos, which can lead to small

temporal consistencies in the output video. For reference, existing

approaches use a smaller amount such as 4 frames [Vondrick et al.

2018] or 10 frames [Lai et al. 2018]. While it should be possible to

increase the temporal resolution, this leads to slower convergence

and slower computation. While blind video temporal consistency

techniques can alleviate this issue [Bonneel et al. 2015; Lai et al.

2018], we found that while they are able to slightly improve the

temporal consistency, it comes at the cost of significantly worse

results.We believe that integrating such an approachwith ourmodel

and training end-to-end is a possible way to improve the temporal

consistency without sacrificing the quality of the results.

We note that despite the progress in this work on remastering

vintage film, due to the complexity of the task, it still is an open

problem in computer graphics. Unlike most of the image and video

research up until now, vintage film poses a much more difficult and

realistic problem as highlighted in Fig. 2, and we hope that this work

can further stimulate research in this topic.
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