
0

PIFE: Permutation Invariant Feature Extractor for
Danmaku Games

Abstract—Touhou Project is one of the best-known games in
the bullet hell genre, which is a game that a player dodges
complex patterns of bullets on the screen. In this game, the
agent needs to react to the environment in real-time, which
made existing methods having difficulties processing the high-
volume data of objects; bullets, enemies, etc. We introduce
an environment for the Touhou Project game ‘東方花映塚 ～
Phantasmagoria of Flower View.’ which manipulates the memory
of the running game and enables to control the character.
However, the game state information consists of unstructured
and unordered data which is not amenable for training existing
reinforcement learning models, as they are not invariant to order
changes in the input. To overcome this issue, we propose a new
pooling-based reinforcement learning approach that is able to
handle permutation invariant inputs by extracting abstract values
and merging them in an order-independent way. Experimental
results corroborate the effectiveness of our approach which
shows significantly increased scores compared to existing baseline
approaches.

Index Terms—reinforcement learning, permutation invariance,
pooling, touhou

I. Introduction
In danmaku game, also known as bullet-hell shooting game,

the player attacks the enemy on a 2D screen while controlling
the player’s ship to avoid being hit by a large number of slow
bullets and moving enemies that fill the screen. These objects,
observed in lists of information are uncertain in numbers and
in order. Suppose there are data of two bullets ‘A’ and ‘B’
stored in the game’s memory. Since the order of data stored
in the game is arbitrary, there exists an equal possibility of
observing the environment as (AB) or (BA). Despite that deep
reinforcement learning has achieved significant performance in
many domains such as playing Go [1] and Atari games [2], this
feature of danmaku games makes these standard approaches
struggle since they may act differently even when only the
order of the data is changed In other words, the commonly
used method for reinforcement learning has a weakness in
understanding the underlying meaning of the observed data.
Another difficulty posed by danmaku games is that the agent

is required to have quick and precise reactions. Compared
with traditional 2D shooting games such as ‘space invaders’
or ‘xevious’, the bullets in danmaku games are much greater
in numbers, cover the major part of the screen, and follow
complex patterns, making it non-trivial to dodge them and re-
quires lots of strategy and memorization. In terms of machine
learning, the agent is required to process the huge data in real-
time while matching patterns with previously known ones to
make the right decision necessary for survival.
In terms of machine learning, danmaku game poses a

difficulty that the agent is required to have quick and precise
reactions. The bullets in danmaku games are much greater

Fig. 1. Our permutation invariant deep reinforcement learning model.
Unordered input data is processed by PIFE that extracts the abstract values
which is passed to NN.

in numbers, cover the major part of the screen, and follow
complex patterns, making it non-trivial to dodge them and
requires lots of strategy and memorization. Furthermore, the
agent is required to process the huge data of bullets and
enemies in real-time while matching patterns with previously
known ones to make the right decision necessary for survival.
Providing a new method for deep reinforcement learning

that enables it to handle a huge data with permutation invari-
ance is not only useful for danmaku games but also widens its
ability to many other fields. For example, autonomous driving
uses sensors to detect the obstacles which varies in time and is
observed in no such order. Our model is able to handle these
inputs very quickly.
To address this issue, we propose a new learning method

using a Permutation Invariant Feature Extractor (PIFE) based
on PointNet [3], [4]. We interpret the data given from the
environment as an unstructured set and extract abstract val-
ues that feature the data prior to processing with a normal
reinforcement learning method. The overview of our method,
shown in Fig. 1, shows that the input data are first processed
with PIFE. An added benefit is that this leads to increasing
the speed of the network since our method enables to decrease
the dimension of the input data.
As a representative example of danmaku games, we focused

on a Touhou Project game ‘東方花映塚～Phantasmagoria of
Flower View’ [5]. We implemented an OpenAI gym environ-
ment [6] for this game. This environment consists of a server
that handles multiple game instances and a client that connects
to the server to receive the observed data and control the
character (more details in Sec. III-A). The server launches an
instance of the game for each connection with a client and
uses DLL injection [7] to extract the current state of the game
that exists in the memory of the game.
In summary, our main contributions are as follows: (a) We

created a permutation-invariant deep reinforcement learning
method to deal with inputs that are lists of data. Compared with
classic deep networks to show our method performs better with



1

Fig. 2. A capture of a danmaku game. The player controls the red character
(marked with green circle) in the left screen and the right screen is for the
opponent. All other objects are bullets, enemies etc. which the player should
dodge and survive longer than the opponent.

less computational force. (b) We implemented an OpenAI gym
environment of a danmaku game, ‘Phantasmagoria of Flower
View’ to advance the research in the field.

II. Backgrounds
A. Danmaku Games and Touhou Series
Danmaku game, also known as bullet hell games, is a

popular game genre that is similar to ‘Shoot’em ups’ games.
Some examples of the shoot’em up games are the ‘Space
Invaders’ and the ‘Asteroids’. In these games, the player
controls a character in the game which can shoot bullets. There
are enemy characters on the screen and they shoot bullets as
well. The goal of the game is to hit the enemy characters with
the bullet while dodging their bullets. Fast reaction and very
precise control is required for players to score better. Danmaku
games also share the same feature with shoot’em up games,
however, the number of enemies and the number of bullets
they shoot are huge that the enemy’s bullets fill the screen
and there are not much space to dodge the bullets. This feature
distinguishes danmaku games from other shooting games and
the difficulty has attracted a lot of players for a long time. Fig.
2 shows a snap shot of danmaku games. The player controls
the red character placed around the middle of the left game
screen. All the white, red, yellow bullets are from the enemies
and the player has to dodge all of them through the tiny gaps
between the bullets.
Among other danmaku games, the Touhou Project series

created by the Team Shanghai Alice is very popular and
famous. Therefore, as a representative example of danmaku
games, we focused on one of the Touhou Project game ‘東
方花映塚～Phantasmagoria of Flower View’ [5]. Unlike other
Touhou Project games,東方花映塚 (Kaeiduka) is a competitive
game, where the objective is to defeat the opponent by sending
more bullets to the opponent’s field and eventually shoot them
down. The player can move up and down, left and right, fire
bullets, and use spell cards to send a barrage to the opponent’s

field. Thanks to this feature, it will be possible to play against
the agent after being well trained to know how well it performs.
Additionally, the game features large amounts of randomness
which force reinforcement agents to have to react to novel
circumstances encountered during gameplay.

B. Permutation-Invariant Networks
Within the field of supervised learning, there exists many

fields of studies according to the special features of the input
dataset. Permutation-invariant dataset is one of the interesting
fields for supervised learning. Permutation invariance means
that the order of objects in a list does not matter to determine
the feature or the meaning of the dataset. One example of a
permutation invariant dataset is point cloud which the data is
the coordinate of points in a multi-dimension space. The order
of the input data has no ‘meanings’ to what the data suggests.
The order of the coordinates could be completely shuffled, yet
the overall shape would not change at all. In order to train a
model with these kind of dataset efficiently, the output from
the model should be exactly same regardless of the order of
the input data.
To extract the feature of point cloud, PointNet [3] and

PointNet++ [4] were suggested. PointNet is used for solving
clustering and classification problems on point cloud data
and is mainly applied to automatic driving and construction
projects. PointNet is characterized by its ability to learn
regardless of order invariance [3], movement invariance [3],
and locality [4]. Given a set of n data, n-Max pooling is
performed in the last layer to obtain an output of arbitrary
dimensionality regardless of the number of data.

III. Proposed Approach
Our method for training the agent has the following compo-

nents: the permutation invariant reinforcement learning agent,
the game server who launches the game, and the game client
(gym environment) who connects the agent to the server.

A. Environment and Setup
Unfortunately, there has not been any previous attempts of

reinforcement learning applied to danmaku games. Meaning
that there are no existing implementations or wrappers of
the game that enables interaction using python. In order
to do machine learning with this game, we created a gym
environment: ‘Touhou Gym‘.
The Touhou Gym is based on the OpenAI gym environment

[6]. It is composed of two main components: the game server
and the game client. The game server will wait for a connection
from the client, and for each connection, the server starts a new
game instance that collects the data using DLL injection in the
game and sends it to the client. After the connection between
the client and the server is established, the client provides the
game data to the agent.

B. Network Structure
1) Permutation Invariant Feature Extractor (PIFE): As we

mentioned in Sec. III-A, there are four types of objects that



2

Fig. 3. Overview of the Permutation Invariant Feature Extractor (PIFE) used
in our architecture.

are permutation invariant in this game; Enemies, Bullets, Items,
and ExAttacks. In our model, we use four different Permutation
Invariant Feature Extractors (PIFE) and then concatenate the
output for further processing with the rest of the model. The
structure of PIFE shown in Fig. 3 is inspired from PointNet
and consists of three modules; an InputTNet, followed by a
multi layer perceptron (MLP), and finally, a max-pooling layer
outputs the feature vector of the given input. The InputTNet
aims to normalize the input data. The output is then passed
to an MLP and then to a max-pooling layer with the number
of input objects gives the feature vector of the given input
data. Through the use of max-pooling, the output becomes
the maximum value of the input values. Since the maximum
value is not affected by the order of the data, the PIFE is able
to extract the features that are invariant to the order of the
input.

2) Reinforcement Learning Methods: The player data and
the outputs of the four PIFE are concatenated and processed
by traditional reinforcement learning methods. Since all the
permutation-invariant data from the environment are processed
by PIFE, the network is able to select an action regardless
of the order and only by the underlying meaning of the
environment with traditional methods. In our experiment, three
methods were used to calculate the optimal action given the
player data and the outputs of the PIFEs; Dueling Double DQN
(D2DQN), Advantage Actor Critic (A2C), and Proximal Policy
Optimization (PPO).

IV. Comparison

Our goal is to show the effectiveness of our method on
environments with permutation invariant datasets i.e. Touhou
Gym. Therefore, we trained two variations of models; one
that has permutation invariance and one that does not using
the same gym environment. The model without permutation
invariance uses a two layer Fully Connected neural Network
(FCN) instead of the Permutation Invariant Feature Extractor
(PIFE). In this experiment, we used prioritized experience
replay with mini-batches of size 64. The behavior policy
was ε greedy with ε annealed from 1 to 0.01 and fixed at
0.01 thereafter. Both models trained for 150 games which are
roughly 150,000 iterations. The parameters of the D2DQN
model were copied to the second network after each game.
We utilized PFRL [8] for experiments.
Tab. I shows the number of parameters in the neural network

of each model. It is clear that the number of parameters of the
model using dueling neural network with permutation invariant

TABLE I
Number of parameters in the neural network of each model.

D2DQN A2C PPO

FCN 234,482,021 201,587,344 234,482,021
PIFE 43,104,035 10,209,358 43,104,035

TABLE II
Evaluation result of all agents. Average of 10 game plays.

FCN + D2DQN A2C PPO
PIFE + D2DQN A2C PPO

Ave. score 33798.49250 31601.54720 35596.64989
46700.18732 26153.88531 48222.17446

Ave. survival frames 10525.2 9312.4 11663.3
13269.6 8257.0 13642.8

is about five times less and model for A2C using permutation-
invariant is 20 times less than that of FCN. This difference not
only increases the training efficiency but also enables the agent
to react quicker to the game due to less computational time.

A. Quantitative Results
Fig. 4 shows the comparison of the total score of each game

using D2DQN and other methods. The orange line shows the
change of the total scores of each game during the training
using PIFE, and the blue line shows it of FCN. Comparing
the two lines, we can point out that figure of D2DQN and
PPO shows more rapid growth in PIFE compared to FCN.
Besides, PPO reached its peak after approximately 50 epochs.
This means that the model with permutation invariance is able
to learn more efficiently. However, looking at A2C, the growth
of score does not seem to vary between using PIFE and FCN.
Besides, the line of each method seem to only have small
improvements. In the case of A2C, it seems that the training
itself had a problem somewhere.
After training each agent for 150 epochs, we evaluated the

agents by making them play the game 10 times. The average
scores and the average number of frames the agent survived
are listed in Tab. II. Judging from the results, PIFE + PPO
showed the best performance of all and methods using PIFE
scored better than that of FCN except when combined with
A2C.

B. Qualitative Results
Fig. 5 to Fig. 8 are snapshots of the agent trained using

our PIFE playing the game. The pictures are taken rapidly
and shown from left to right. The character controlled by the
agent is the red character marked with a yellow circle. Fig.
5 is a sequence when the agent is successfully attacking the
opponents. The agent controls the character to move towards
the enemies and attacks them by shooting the bullets upwards.
Fig. 6 shows when the agent successfully avoids the bullets
in a very tough situation. The character is surrounded by
bullets, bars from below (which are also objects that should
be avoided), yet avoids all without being damages and escapes
from the difficult area. These pictures show that the agent is



3

Fig. 4. The total score of each game while training between FCN and PIFE using D2DQN (left), A2C (middle), and PPO (right).

Fig. 5. The agent successfully attacks
enemies.

Fig. 6. The agent successfully dodges
enemies.

Fig. 7. The agent successfully avoids
enemies and bullets.

Fig. 8. The agent fails to avoid irreg-
ular bullets.

successfully learning how to play the game, and to obtain more
scores.
Despite that the quantitative results of A2C (Fig. 4) did

not show good results and the total scores of each game did
not increase, from a qualitative perspective, the agent seemed
to be learning how to dodge the bullets pretty well. Around
the third iteration the agent already learned how to dodge the
normal bullets. However, the agent was not able to dodge some
uncommon enemies and bullets like the red big dots seen in
Fig. 8. The ability to avoid these kind of uncommon bullets
should be obtained with further exploration and more training,
however the agent started sticking on the top of the field after
the forth iteration. We were not able to suppress this behavior
and unfortunately, the agent continued to stick to the top even
with any combinations of the hyper parameters.

V. Limitations and Discussions
The results indicate that a permutation-invariant deep rein-

forcement learning method is effective for environments that
have permutation-invariant data structures. Compared to DQN
methods that use classic deep networks, our method can learn
faster with less computational force. However, the results show
that further improvements for using A2C in the Touhou gym
environment can be made. Moreover the stability of the agent
and the gym environment leaves a room for further exploration.
Especially, the issue that the agent has a possibility to stick to
the top of the screen is crucial.
Additionally, our contributions to implementing the gym

environment must open up a high potential for research in

danmaku games. This gym environment provides a way to
obtain the inner-stored values of the game from python easily.
This allows easier researches and testing of reinforcement
learning algorithms. Moreover, compatibility with the OpenAI
gym environment enables testing the environment with codes
implemented for other environments too.

References
[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van

Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
arXiv preprint arXiv:1312.5602, 2013.

[3] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
652–660.

[4] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space,” arXiv preprint
arXiv:1706.02413, 2017.

[5] ZUN, “弾幕開花宣言　東方花映塚　～ Phantasmagoria of Flower View.”
https://www16.big.or.jp/~zun/html/th09top.html, 2005.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[7] J. Shewmaker, “Analyzing dll injection,” GSM Presentation, 2006.
[8] Y. Fujita, P. Nagarajan, T. Kataoka, and T. Ishikawa, “Chainerrl: A

deep reinforcement learning library,” Journal of Machine Learning
Research, vol. 22, no. 77, pp. 1–14, 2021. [Online]. Available:
http://jmlr.org/papers/v22/20-376.html

https://www16.big.or.jp/~zun/html/th09top.html
http://jmlr.org/papers/v22/20-376.html

	I Introduction
	II Backgrounds
	II-A Danmaku Games and Touhou Series
	II-B Permutation-Invariant Networks

	III Proposed Approach
	III-A Environment and Setup
	III-B Network Structure
	III-B1 Permutation Invariant Feature Extractor (PIFE)
	III-B2 Reinforcement Learning Methods


	IV Comparison
	IV-A Quantitative Results
	IV-B Qualitative Results

	V Limitations and Discussions
	References

