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Abstract—Roguelike games are a challenging environment
for Reinforcement Learning (RL) algorithms due to having to
restart the game from the beginning when losing, randomized
procedural generation, and proper use of in-game items being
essential to success. While recent research has proposed roguelike
environments for RL algorithms and proposed models to handle
this challenging task, to the best of our knowledge, none have
dealt with the elephant in the room, i.e., handling of items. Items
play a fundamental role in roguelikes and are acquired during
gameplay. However, being an unordered set with a non-fixed
amount of elements which form part of the action space, it is not
straightforward to incorporate them into an RL framework. In
this work, we tackle the issue of having unordered sets be part of
the action space and propose an attention-based mechanism that
can select and deal with item-based actions. We also propose a
model that can handle complex actions and items through a meta
action framework and evaluate them on the challenging game of
NetHack. Experimental results show that our approach is able
to significantly outperform existing approaches.

Index Terms—reinforcement learning, attention, NetHack

I. INTRODUCTION

Designing autonomous agents to play video games can play

an important role in game balancing, testing, and design.

Furthermore, video games play an important role in devel-

oping robust Reinforcement Learning (RL) algorithms that

can then be applied to other real-world situations. In this

work, we tackle the challenging game of NetHack, a roguelike

game based on procedurally generated content, and develop

a general attention-based approach to handle unordered sets

of actions, such as inventory management, with autonomous

agents.

RL, a branch of machine learning, is a method that has the

great advantage of being able to learn without directly using

the label data. In particular, Deep Reinforcement Learning

(DRL), which incorporates deep learning techniques, has been

actively researched in recent years and is often applied to

games such as Atari 2600 [1], Go [2], and StarCraft II [3].

Among games, roguelikes are suitable as a challenging target

problem for DRL because they contain elements that current

DRL methods have not entirely overcome, such as a huge

state space, sparseness and delay of rewards, and the need for

strategies. According to [4], roguelikes are turn-based games,

and their grid-based environments are randomly procedurally

generated each time the game begins. The variety of enemies

and items makes the game complex enough that there are

multiple ways to complete the game. The required tasks

include resource management, combat with large numbers of

enemies, and exploration.

NetHack, which is the target problem of this research, is

one of the most popular open-source roguelikes, and it is still

being updated even though it is one of the earliest roguelikes.

The game’s objective is to search through over 50 levels

of procedurally generated dungeons using various items to

find the Amulet of Yendor and bring it back. It is incredibly

challenging even for humans because there is a wide variety of

enemies, items, and actions the player can take. Furthermore,

the dungeons are not straight paths but rather branching paths

that must be traversed back and forth. Examples of NetHack

screens are shown in Figure 1. The player can use four

main types of information: messages, dungeon, status, and

inventory. Messages show events and confirmation messages.

The dungeon shows the floor where the player @ is. Most

floors consist of square rooms and passages # (top figure), but

some floors do not (middle figure). An empty area indicates

that nothing exists or the area has not been explored. The status

indicates the player’s attributes such as strength, experience,

intelligence, and hunger. The inventory shows the items the

player possesses (bottom figure).

As described in Section II, there are several studies on

using DRL for roguelikes. However, most of these studies

focus on constructing the environment itself or on learning

in non-general situations. It is important that, to the best of

our knowledge, there is no study that deals with items in

the general situation that exist in most role-playing games,

including roguelikes, and whose use is essential. Therefore,

we propose a mechanism that handles items appropriately and

show its effectiveness in experimental results1.

Our main contributions are as follows:

• We propose an attention-based mechanism for handling

an unordered set of items in a deep reinforcement learning

framework.

• We develop a new agent model that significantly outper-

forms existing approaches in terms of in-game score on

the challenging game of NetHack.

• We perform an in-depth evaluation of the proposed ap-

proach and compare with existing approaches.

1The source code is available at https://github.com/izumiya-keisuke/
inventory-management
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Fig. 1. Examples of NetHack gameplay screens. The top two images show
examples of the main in-game screen, while the bottom images shows an
example of the inventory screen. Different parts of the screens are annotated
for ease of understanding.

II. RELATED WORK

A. Reinforcement Learning Algorithms

Mnih et al. [5] proposed a method that does not use experi-

ence replay but instead uses data collected by running multiple

agents in parallel, represented by asynchronous advantage

actor-critic (A3C). In addition to A3C, there are several other

methods belonging to the actor-critic method, such as Actor-

Critic with Experience Replay (ACER) [6], UNsupervised

REinforcement and Auxiliary Learning (UNREAL) [7], which

introduces auxiliary tasks in addition to experience replay, and

importance weighted actor-learner architecture (IMPALA) [8],

which can be extended to thousands of machines by elaborat-

ing on the data communication method and off-policy correc-

tion. Our approach is based on IMPALA with modifications te

be able to do inventory management. The details of IMPALA

are shown in Section III-A.

B. Reinforcement Learning for Games

Most of the modern RL algorithms are evaluated on Atari

2600 games provided by ALE [9] or the environments pro-

vided by OpenAI Gym [10] as a benchmark. For more popular

games, some studies tackled perfect information games such

as Go and Chess [2], [11]. There have also been studies on

multiplayer imperfect information games, such as StarCraft

II [3] and Dota 2 [12]. These methods combine the DRL

methods with MCTS [13]. There is also the research [14] that

used an environment based on Minecraft [15], [16], a game

that uses items similar to NetHack. In this research we focus

on roguelike game of Nethack.

C. Reinforcement Learning for Roguelikes

Some research has focused on tackling roguelikes with

RL. To facilitate RL’s application, highly customizable en-

vironments based on Rogue, the game that originated the

roguelike genre and a simpler game than NetHack, have

been created [17], [18]. With these environments, DRL tech-

niques aimed at the exploration of the dungeon [17]–[21]

(the exploration of the current floor and descending to the

deeper floor) have been proposed. For NetHack, the subject

of this study, some recent research has created environments

based on NetHack and tackled various tasks. Campbell and

Verbrugge [22] aimed at learning enemy combat with an

abstracted state and action space. They also focused on finding

hidden doors and passages, which is essential for dungeon

exploration, and proposed a method using occupancy maps to

achieve the goal efficiently. Küttler et al. [23] tackled several

tasks such as scoring a game and collecting gold in a general

situation by using random network distillation, which is one of

the exploration facilitation techniques. Most of these methods

do not take into account items, which are almost essential for

completing the game, and this is one of the issues to be solved.

In this research, we propose a technique which is able perform

inventory management based on attention allowing for signif-

icant performance improvements over existing approaches.

D. Attention

Attention is a mechanism widely used in deep learning

where the model can learn which parts of the data and

features to pay attention to has been actively studied in natural

language processing. In the past, attention had often used in

combination with an RNN, as in [24], but many methods

using attention alone have been proposed and showed better

performance than existing methods since the appearance of

Transformer models [25], which used self-attention without

RNN. Now models that use self-attention are commonly

employed in the field of image recognition, where Convolution

Neural Network (CNN) have been commonly used [26]. In the

field of RL, Berner et al. [12] used an attention mechanism to

choose the target unit, and Zambaldi et al. [27] used self-

attention to describe the relationship between entities. We

focus on the position-independent property of attention and

propose a mechanism to handle inventory using this property.



III. METHOD

A. Reinforcement Learning Background

RL is often modeled by Markov Decision Processes (MDP).

The state space and the action space are denoted as S and A,

respectively. The state at the discrete time t = 0, 1, 2, . . . is

denoted as St ∈ S . The action At ∈ A the agent takes at

time t brings a reward Rt and a new state St+1. The goal of

RL is to learn the policy π(a | s) = Pr{At = a | St = s}
that maximizes the expected return Eπ

[∑

t
γtRt

]
, where γ is

a discount factor.

We base our work on IMPALA [8], which is an asyn-

chronous off-policy actor-critic method. As in IMPALA, we

prepare multiple independent agents, actors, and environments

and update the parameters of the learning agent, learner, using

the data collected by these agents. We use an off-policy

correction method called V-trace because each actor has its

own local policy µ, which lags behind the learner’s policy π.

At the state s, the agent outputs the state value V (s), which

estimates the return from the state s, and a policy π(a | s).
The gradient of the loss function for the policy parameter is

ρt∇ log π(At | St)
{
Rt + γvt+1 − V (St)

}

︸ ︷︷ ︸

policy gradient term

+ β∇
∑

a∈A

−π(a | St) log π(a | St)

︸ ︷︷ ︸

entropy term

, (1)

where

vt = V (St) +

t+n−1∑

s=t

γs−t

(
s−1∏

i=t

ci

)

δs, (2)

δt = ρt
{
Rt + γV (St+1)− V (St)

}
, (3)

ρt = min

{

ρ,
π(At | St)

µ(At | St)

}

, (4)

ct = min

{

c,
π(At | St)

µ(At | St)

}

. (5)

β, n, ρ, and c are hyperparameters. The first term in (1) is a

policy gradient, and the second one is entropy. The gradient

of the loss function for the state value parameter is
{
vt −

V (St)
}
∇V (St).

B. Baseline Model

As a baseline, we use a slightly modified version of the

model used in [28], which is an unsurpassed model to our

best knowledge. The diagram of the model is shown above

the dashed line in Figure 2. The model can handle three of

the four types of main information as described in Section I,

all excluding the inventory. Since a message is a string of

256 characters in length, each character is embedded with its

ASCII code, and then the features of the message are extracted

by a 1D CNN. Although this is an outdated method in the field

of natural language processing, we use it because it is one of

the simplest models and message processing is not the focus

of our experiments. Status is a vector consisting of numerical

values such as HP and strength, and the feature is extracted

by a multilayer perceptron (MLP). The dungeon’s shape is

21 × 79, and each grid is a vector embedded with attributes

such as its color and its kind. We extract the feature of the

dungeon with a 2D CNN. In addition, the feature of 9 × 9
grids centered on the agent is extracted in the same way as

the entire dungeon. This has been validated by [29] and [30]

to help train the agent. These features are then concatenated

and input to the MLP and Gated Recurrent Unit (GRU) in that

order. h and h′ represent the hidden state at the previous time

and at the current time, respectively. Finally, the GRU output,

which can be regarded as the feature of the current state, is

input to two MLPs to obtain the state value and the policy.

C. Action Recursion

We add the embedding layer to the model to incorporate

knowledge of the previous action.In this layer, the agent’s

previous action is embedded and concatenated with the main

information’s features. It is intuitively that a player may

plan a sequence of actions. In particular, in NetHack, some

actions are often repeated multiple times, and others consist

of multiple actions. An example of the former is the search

for hidden passages or doors. If there are hidden passages or

doors in grids adjacent to the agent, it can find them with

a certain probability by using the search action. Therefore,

a common strategy is to repeat the search action a certain

number of times to find them. An example of the latter is

kicking and actions which use items. Kicking is composed

of two actions: the kick action itself and a kicking direction,

while the item-using action is composed of two actions: the

context of the action such as quaff and read and the item to

be used. Therefore, we need to input the actions that the agent

has taken before into the model. Although it is theoretically

possible for the model to learn to propagate this information

through the hidden state of the GRU layer, we found that in

practice, this effect did not occur and that it was beneficial to

directly use the previous action as an input.

It is possible to treat all pairs of actions and their targets as

separate actions to handle actions that require multiple inputs,

but we do not do so because this increases the size of the action

space and makes learning difficult. In NetHack, for example,

there are more than ten actions using items and more than

fifty types of items that can be held, so treating each potential

command pair as an action makes the size of the action space

beyond 500. Also, there is room for the number of actions

input to the model, but we decide to use only the previous

action because it should possible to consider any number of

actions thanks to GRU. Note that we embed the action with

the action space A′, which is defined in Section III-F.

D. Meta Actions

In NetHack, specifying an item is limited to a few situations,

such as selecting a potion to quaff immediately after selecting

a quaff action and selecting an armor to wear immediately

after selecting a wear action. In these situations, it is of

primary importance to specify an item. Therefore, we add the
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Fig. 2. Overview of our agent model architecture. The baseline model is shown above the dashed line. The whole model represents our proposed model
where we use attention-based inventory management framework. We note that there are still some other differences in low-level between our full model and
the baseline, such as the usage of meta actions.

meta action use item to the action space. When the agent

chooses this action, it specifies the item according to the

probability exp(yi)/
∑

i
exp(yi) where yi is the ith item’s

score. The method of calculating the score is described in

Section III-E.

The introduction of the meta action also has the advantage

that items can be handled independently from normal actions.

It is not easy for policy to incorporate items directly because

the number of items is not constant. Using meta actions

makes the size of the action space fixed and makes the

implementation easier. Furthermore, we can handle the normal

action space and the action space of inventory separately. We

propose the computation of the entropy term in the loss func-

tion described in Section III-F as one example of separating.

Besides, for the same reason as described in Section III-C, it

can prevent the action space from becoming too large.

E. Attention-Based Inventory Feature Extractor

It is not easy to handle the inventory appropriately with

neural networks because it is an unordered set of items. To

express the unordered nature, we propose the attention-based

mechanism to extract the feature of the inventory. First, each

item in the inventory is transformed into a vector xi using the

embedding and the MLP. This embedding is done in a similar

way to the embedding of each grid in the dungeon. Then, the

sum of vectors of all items, x =
∑

i
xi, is input to another

MLP, and the output is defined as the feature of the inventory.

Note that the summation does not depend on the order of

the items. The inventory feature is concatenated with other

main information features and the embedded previous action,

and the feature representation is processed in the same way

as the baseline model. Then, to specify the items to be used,

each item’s score is calculated using the attention operation.

Specifically, we denote the feature of the current state as f

and prepare the matrices WQ and WK and the vector wV,

and calculate each item’s score yi by the following equation:

yi =
q⊤ki√

dk
vi, (6)

where q = WQf , ki = WKxi, vi = w⊤
Vxi, and dk is the

dimension of q and ki.

The feature vector is then used with the item meta actions

to determine what item to use while being invariant to the

order of the items.

F. Loss Function

The use of the meta action and the attention-based item

selection policy necessitates modifying the loss function. First,

we define modified action spaces and policies. We denote the

use item action as b0 and the action using the ith item as bi.
The virtual action space is defined as Av = A ∪ {b0}, the

action space for the inventory is defined as Ai = {b1, b2, . . .},

and the actual action space is defined as A′ = A ∪ Ai.

Similarly, we define the virtual policy as πv : S×Av → [0, 1],
the policy for the inventory as πi : S × Ai → [0, 1], and the

actual policy as π′ : S × A′ → [0, 1]. Note that these policies

satisfy the following relations for all s ∈ S:

π′(a | s) =
{

πv(a | s) for a ∈ A,

πv(b0 | s)πi(a | s) for a ∈ Ai,
(7)

∑

a∈Av

πv(a | s) =
∑

a∈Ai

πi(a | s) =
∑

a∈A′

π′(a | s) = 1. (8)



The RL algorithm used in this study is IMPALA [8]. Among

the gradient of the loss function for the policy parameter, as

can be seen in (1), two modifications are applied: all π are

replaced with π′ in the policy gradient term, and the entropy

term is replaced with

∇
∑

a∈Av

−πv(a | St) log πv(a | St)

+ λπv(b0 | St)∇
∑

b∈Ai

−πi(b | St) log πi(b | St), (9)

where λ is a hyperparameter. When λ = 1, it means that

all actions belonging to A′ are treated equally in the entropy

calculation, and (9) is equal to ∇
∑

a∈A′ −π′(a | St) log π
′(a |

St).

IV. EXPERIMENTS AND RESULTS

A. Experiment Settings

In this study, we used the in-game score as a reward,

which shown in the status bar at the bottom as seen in

Figure 1. In NetHack, the in-game score can be earned by

various events, such as descending to a new level, defeating

enemies, or getting gold. We used this setting because it

contains many elements necessary to complete the game and

considers combat with enemies, which is often done with the

use of items, for which our model is explicitly designed to

handle. Furthermore, previous research described in Section II

restrict the actions that agents can take to movement only or

movement and a few other actions. In this study, however,

we used an action space covering most of the actions directly

related to the game.

We compared against the approach of Küttler et al. [28],

which is based on IMPALA [8] and TorchBeast [31] and uses

a limited amount of actions. In particular, only movement

in 8 directions, climbing up/down, reading messages, eating,

searching, and kicking are allowed for a total 14 different

actions. Our baseline extended the amount of actions by

considering an additional 11 actions (apply, drop, pickup,

puton, quaff, read, takeoff, throw, wear, wield, and zap) in

addition to meta actions. Our proposed approach extended

the baseline with action recursion, meta action, and attention-

based inventory feature extraction. We trained agents for all

approaches for one billion steps. In addition, we conducted

the tests over ten episodes with the same seed after training.

Most evaluation on NetHack was done using the character

as mon-hum-neu-mal (indicating that the role is monk, the

race is human, the alignment is neutral, and the gender is

male). The game content in NetHack varies greatly depend-

ing on the characters, especially on the roles. Therefore, in

addition to mon-hum-neu-mal, two other characters with

different characteristics were used in the experiment. The

additional characters were val-dwa-law-fem (valkyrie,

dwarf, lawful, and female) and tou-hum-neu-fem (tourist,

human, neutral, and female), and the characteristics of the used

characters are as follows:

TABLE I
AVERAGE SCORE OVER TEN EPISODES OF TESTING. WE SHOW RESULTS

FOR DIFFERENT APPROACHES AND THREE DIFFERENT CHARACTER

SCENARIOS. BEST RESULTS ARE SHOWN IN BOLD.

Monk Valkyrie Tourist

[28] 807.1 645.4 42.2

Baseline 1431.2 686.2 56.8

Ours w/o Inventory 1348.4 840.9 191.1

Ours w/o Action Recursion 1500.1 890.5 153.0

Ours 2345.0 906.7 283.7

Monk
2000

0
0 0.5 1 (x109)

Valkyrie

1000

1000

500

0
0 0.5 1 (x109)

200

0

100

Tourist

0 0.5 (x109)1

[28]
Baseline
w/o Inventory
w/o Recursion
Ours

Fig. 3. Average return during training. The horizontal axis shows the
training step, and the vertical one shows the average return of all agents.

• monk: strong at the beginning of the game, with various

items and high combat performance, but more challeng-

ing to conquer from the middle of the game.

• valkyrie: has very few items at the beginning of the

game, but the character has high combat performance.

• tourist: has various items but is very weak at the begin-

ning of the game, so tactics specific to this character is

required.

We evaluated all approaches independently in each of the three

character settings.

B. Comparison against Existing Approaches

We compared against existing approaches and testing results

are summarized in Table I and the training evolution is shown

in Figure 3. We can see that the proposed approach is able to

significantly outperform existing approaches. In particular, we

can see the largest relative increase in the most challenging

class Tourist, which does not start out with any combat skills

and must rely on inventory usage to stay alive.

C. Ablation Study

We compared four models’ performance: the baseline

model, the model without action recursion, the model without

the attention-based mechanism for the inventory, and the full

proposed model. Figure 3 shows the average return during

training, and Table I shows the average return in the test. We

can see that all the different components of our approach play

an important role in obtaining good results.



TABLE II
AVERAGE NUMBER OF TIMES THE AGENT TOOK THE ACTION OF USING

ITEMS WITHIN AN EPISODE. RESULTS ARE SHOWN FOR THE POLICY

LEARNED WHEN PLAYING WITH THE CLASS OF Monk. ACTIONS THAT

HAVE NOT BEEN TAKEN EVEN ONCE ARE OMITTED.

drop eat quaff read

Baseline 0.0 4.0 1.0 0.2

Ours w/o Inventory 0.0 6.8 2.6 0.0

Ours w/o Action Recursion 0.0 4.0 2.7 0.0

Ours 0.6 6.2 2.7 1.7

D. Effect of Difficulty

We can see that the difficulty of the game plays a fundamen-

tal role in the total score obtained. As Monk does not rely on

items and obtains strong intrinsic abilities when leveling up,

it shows the highest performance overall. Valkyrie and Tourist

rely heavily on items to stay alive and show lower performance

overall.

E. Analysis of the Policy

We show characteristic examples of the learned policy of

our model in Figure 4. The figures with black background

show the state of the game, and the probabilities on the right

side show the actions the agent will take in this state and their

probabilities. In the top three figures, the three actions with the

highest probability in the action space Av are shown. In the

bottom figure, the transitions of probabilities of the two actions

with the highest probability, search and North, are shown until

the agent takes search action five times in a row and finds the

hidden door. In addition, the inventory screens are shown in

the blue boxes and the probability of using each item, or πi, is

shown to the left of each item in the top two examples because

the action with the highest probability is use item.

The first example shows the screen immediately after the

agent takes the eat action, and the message at the top of the

screen asks the agent which item to eat. In the second example,

the agent is in the state immediately after taking the quaff

action and is asked the item to quaff. The third example shows

the state immediately after taking the kick action, and the agent

is asked in which direction to kick. The fourth example shows

the screen immediately after the agent moves to the left by the

West action.

We can see that in many cases, the agent is able to learn to

use items depending on the game state to stay alive. We can

see that the attention is able to understand the different usage

of the types of items and is invariant to the order of the items.

V. DISCUSSION AND CONCLUSION

We have presented an attention-based approach that is

able to handle unordered sets, such as item inventories, in

reinforcement learning models. We evaluate on the challenging

benchmark that is the roguelike game NetHack and have

shown that our proposed inventory management framework,

in combination with our handling of meta actions and action

recursion, our approach is able to significantly outperform

existing approaches.
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TABLE III
THE ITEM SPECIFIED BY THE ACTION THAT USES ITEMS. UP TO THREE

ITEMS ARE SHOWN IN ORDER OF THE NUMBER OF TIMES THEY HAVE BEEN

USED. THE NUMBER IN PARENTHESES INDICATES THE AVERAGE NUMBER

OF TIMES THE ITEM WERE USED. RESULTS ARE FOR THE CLASS OF Monk.

Action Used Items

drop unlabeled scroll (0.5), unknown potion (0.1)
eat food ration (3.0), apple (1.5), orange (1.0)
quaff potion of healing (2.7)
read spellbook (1.3), unknown scroll (0.2), unlabeled scroll (0.2)

As shown in Figure 3 and Table I, the proposed model

outperforms the existing model. The first example in Figure 4

shows that the agent was able to use items appropriately

because it selected edible items as targets to eat with a very

high probability at the right time. The bottom two examples

show the effect of action recursion. In the second example, the

agent was fighting two enemies and had very little HP left.

Therefore, the possible effective tactics are to flee or quaff

a potion of healing to recover HP, and this example shows

that the agent chose the latter. In the third example, the agent

was able to take kick action appropriately that requires two

consecutive actions: kick and the direction to kick. The door

+ on the south of the agent @ can be opened only by kicking

at the stage because the door is locked and the agent does

not have a key, so kicking is one of the appropriate actions

to take here. In the last example, some rooms likely exist on

the dungeon’s left side because it is unexplored there, but it is

difficult to imagine a path to the left side based on the currently

observable dungeon. Therefore, it is natural to assume that

there is a hidden door somewhere in the leftmost part of the

explored area where the agent @ is now, and it is appropriate

to search for it. In fact, the agent found the hidden door on the

left side after five search actions. Also, since the search action

searches around the agent, the agent cannot find the door if

it exists in the room’s upper left area. Therefore, one of the

natural strategies is to search upward again if the door is not

found after a certain amount of search actions. The probability

transitions of the search and North actions indicate that this

strategy is being taken.

The ablation study shown in Table II indicates that it is

necessary to incorporate both of mechanisms to use items

appropriately. The most frequently performed actions were eat

and quaff ; both are directly related to increasing the agent’s

survival time. The character we used, Monk, always has some

food and three potions of healing at the beginning of the

game. In NetHack, a hunger level progresses with actions, and

high hunger level makes the agent’s combat power weak and

eventually causes death by starvation. Therefore, eating food

is essential for the agent to survive for a long time and to be

able to get a higher reward. A potion of healing also helps

the agent’s survival since quaffing it restores HP. Besides, the

proposed model also took read actions. Monk starts the game

with a random scroll and is trained to read it if it is a scroll of

enchant armor. This is because reading it enhance the agent’s

AC, i.e. defense and evasion, which is advantageous in combat,

where most agent deaths occur. The list of items used is given

in Table III.

On the other hand, other actions of using items were not

learned. Many of them have a temporary disadvantage when

taken or use items that the Monk does not have at the beginning

of the game, i.e., items that need to be picked up to use. In

addition, the identity of items that the agent does not have at

the beginning of the game is unknown. It can only be revealed

by limited actions such as using the item or using a specific

item. However, some items have disadvantageous effects, and

the Monk does not have identifying items initially, so learning

these actions is difficult.

The model without the action recursion or inventory han-

dling mechanism successfully took actions of using items a

certain number of times. As mentioned earlier, an action to

use an item usually consists of multiple inputs, so it seems

impossible for a model that does not use action recursion to

learn this kind of action. However, a message often indicates

what input is required for the second action, as shown in

Figure 4. Therefore, although it is not easy to learn messages,

which are natural language, it is possible to learn actions that

require multiple inputs without action recursion. However, we

observed that the model often failed to take appropriate these

actions in the test. Also, the use of items is learned even though

the model does not use the inventory feature. In NetHack,

items are specified by the alphabetic characters shown on the

left of the inventory screen in the bottom figure in Figure 1.

Therefore, it is possible to learn using items that the agent has

at the beginning of the game without the inventory feature if

their alphabets are used to specify standard actions.

Figure 3 and Table I show that the proposed method’s

effectiveness is large for the Monk and the Tourist and small

for Valkyrie. The Monk and Tourist have many items at the

beginning of the game, but the Valkyrie has few items. As

mentioned earlier, it is not easy to learn to use items that

it does not possess at the beginning of the game, which is

the reason why the proposed method is not very effective for

Valkyrie.

Although our model allows for inventory usage, the agent

still has issues with long-term planning and is unable to learn

to equip new equipment. This is also partially due to the fact

that in NetHack, equipment is not always a strict upgrade,

it can be cursed and give large penalties in many situations.

Detecting if equipment is cursed or uncursing it is a hard

endeavour which discourages the agent from learning such

complex behaviours. We hope that with further developments

in reinforcement learning that it may be possible to overcome

such issues.

In conclusion, we have shown that our proposed model

is able to properly use items, which are essential elements

in role-playing games, including roguelikes. As a result, the

in-game score increased significantly. On the other hand, the

proposed model could not sufficiently learn the use of items

that were not possessed at the beginning of the game because

their identities were unknown at first. Also, our proposed



model did not consider spells, which is a common element

in many of role-playing games. Spells often have the same

feature: players can cast multiple spells, and casting them

consumes a shared resource. The proper handling of these

remains as future work.
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