
Pacific Graphics 2021
E. Eisemann, K. Singh, and F.-L Zhang
(Guest Editors)

Volume 40 (2021), Number 7

Modeling Visual Containment for Web Page Layout Optimization

K. Kikuchi1, M. Otani2, K. Yamaguchi2, and E. Simo-Serra1

1Waseda University, Japan 2CyberAgent, Japan

Figure 1: Given a set of elements and reference designs, our method automatically generates a plausible web page layout. Our method first

estimates a layout tree representing visual containment, and then optimizes the layout with learned tree-aware energies. While the existing

method fails to visually organize the elements, our method is successful through hierarchical layout parameterization via layout tree.

Abstract

Web pages have become fundamental in conveying information for companies and individuals, yet designing web page layouts

remains a challenging task for inexperienced individuals despite web builders and templates. Visual containment, in which

elements are grouped together and placed inside container elements, is an efficient design strategy for organizing elements in a

limited display, and is widely implemented in most web page designs. Yet, visual containment has not been explicitly addressed

in the research on generating layouts from scratch, which may be due to the lack of hierarchical structure. In this work, we

represent such visual containment as a layout tree, and formulate the layout design task as a hierarchical optimization problem.

We first estimate the layout tree from a given a set of elements, which is then used to compute tree-aware energies corresponding

to various desirable design properties such as alignment or spacing. Using an optimization approach also allows our method

to naturally incorporate user intentions and create an interactive web design application. We obtain a dataset of diverse and

popular real-world web designs to optimize and evaluate various aspects of our method. Experimental results show that our

method generates better quality layouts compared to the baseline method.

CCS Concepts

• Human-centered computing → Interaction design process and methods; • Applied computing → Computer-aided design;

1. Introduction

The World Wide Web has become one of the major backbones of
modern society with nearly 200 million active websites [Net20].

This has led to web design and aesthetics to play a fundamental
role in visual communication [Tho07]. The design of a website af-
fects users’ perception and behavior [FGO09], leading to an in-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

This is the accepted version of the following article: "Modeling Visual Containment for Web Page Layout Optimization", which has
been published in final form at http://onlinelibrary.wiley.com. This article may be used for non-commercial purposes in
accordance with the Wiley Self-Archiving Policy [http://olabout.wiley.com/WileyCDA/Section/id-820227.html].

http://onlinelibrary.wiley.com
http://olabout.wiley.com/WileyCDA/Section/id-820227.html

K. Kikuchi, M. Otani, K. Yamaguchi, and E. Simo-Serra / Modeling Visual Containment for Web Page Layout Optimization

creased investment in web design. This huge and steady demand
of websites has promoted the development of web builders, e.g.,
Dreamweaver, Wix.com, and Webflow, which have significantly
lowered the entry bar to creating websites. However, web design
is still difficult for non-technical users who lack knowledge on de-
sign principles and guidelines [Skl11,Wil15]. Given that the use of
examples is common in practice [LSK∗10], we focus on assisting
the web design process, especially the web page layout, by utilizing
reference designs.

Visual containment is an efficient design strategy for organizing
elements in a limited display, and the container is implemented in
many web frameworks as a basic layout element [Boo21, Web21].
Containers are used to group elements that play a similar role, e.g.,
menu buttons or gallery images. Web pages that have elements with
similar roles distributed across different container elements can be
impractical and aesthetically unpleasing. Our work incorporates the
concept of visual containment directly by using a tree hierarchy of
elements which we denote as the layout tree.

Our approach consists of posing the task of graphic design lay-
out as an optimization problem that determines the position and
size of all elements that form the layout. We model the visual con-
tainment with a layout tree that represents it as parent-child rela-
tionships, which can be estimated from a set of elements. Gener-
ating layouts through optimization rather than inference, our ap-
proach enables flexible interactive design that follows users’ inten-
tions and expectations by changing optimization parameters and
adding objective functions on demand. We build upon the previous
works [OAH14,OAH15], which model important design properties
such as alignment, symmetry, and spacing as energy terms to be
minimized. In particular, we modify those terms to be tree-aware,
and introduce new terms such as alignment to parent and match-
ing to reference masks. We also employ the modern derivative-free
algorithm [Han16], which greatly speeds up the optimization pro-
cess. A high-level overview of our approach is shown in Fig.1.

We collected a dataset of real-world web pages, which we call
WebForest, in order to train and evaluate the methods. The data was
collected by crawling popular websites based on traffic analysis.
For each web page, we not only store the position, HTML text,
and hierarchy of the elements, but also manipulate the visibility to
capture an occlusion-free image of each element, making it unique
among commonly used datasets.

We designed an experiment to enable automatic evaluation of
layout generation with references, and the proposed method shows
quantitatively and qualitatively better results than the baseline. The
proposed method also performed better in perceptual evaluation by
user voting. To evaluate the method in a more practical scenario, we
developed an interactive design tool that incorporates our method,
and obtained encouraging results through online experiments.

In summary, our key contributions are as follows:
• An optimization-based hierarchical layout model focused on vi-

sual containment.
• A method to compute a layout tree from a set of elements.
• A new dataset for studying the layout with visual containment

problem.
• In-depth evaluation of the proposed approach comparing to the

existing approaches [OAH14, OAH15].

2. Related Work

2.1. Graphic Layout Generation

Early work on layout generation has been seen in the appli-
cation in on-screen articles [JLS∗03], and more recently there
has been research targeting layouts in various media such as
comics [CCL12], single-page graphic design [OAH14, OAH15],
magazine covers [YMX∗16], scientific posters [QFY∗19], mobile
UIs [SWO∗20], and web pages [PCLC16, DTSO20, LNDO20].
Pang et al. [PCLC16] propose a method for optimizing web de-
sign so that the user attention follows the path given by the de-
signer. O’Donovan et al. [OAH14] tailor energy functions for
single-page graphic designs such as advertisements, flyers, and
posters. Their energy enforces several design guidelines, includ-
ing alignment, symmetry, and white space. They later use a sim-
plified energy model to build an interactive system [OAH15].
Dayama et al. [DTSO20] formulate the grid layout problem as
mixed integer linear programming, and develop a wireframing tool
with real-time layout suggestions.

Recent deep learning approaches [LXZ∗19] have been shown
to approximate data distributions well without domain-specific
knowledge with sufficient training data, but it is difficult to re-
flect the user’s intention under interaction. Lee et al. [LJE∗20] and
Li et al. [LYZ∗20] learn user intents with conditioning on user con-
straints, even though their methods do not guarantee the constraints
are satisfied. Zheng et al. [ZQCL19] report a method for generat-
ing a variety of magazine layouts considering the content of images
and text. Also, Li et al. [LAZ∗20] concurrently performed a layout
completion task using a tree-based transformer.

Another important line of research is the retargeting of web
pages for responsive design. AERO [VV15], given contents,
searches for the suitable one from the pre-defined HTML tem-
plates, including those for PC and mobile screens. Sinha and
Karim [SK15] formalize responsive design as a constraint repair
problem for the hierarchical representation of web pages, and
built a recommendation tool called DECOR. More recently, C-
RWD [LZS∗21] automatically converts existing web designs into
those suitable for different screen widths based on integer program-
ming and grid layout. These studies require a completed design or
hierarchy, and cannot generate a design from scratch.

In this work, we consider visual containment in layout gener-
ation. Although a limited form of containment appears in the lit-
erature (e.g., text over image in [ZQCL19] or relation inference
in [LJE∗20]), we go further and explicitly model the container-
containee relationships among visual elements, and propose a lay-
out tree estimation approach. We adapt energy models of the exist-
ing work [OAH14,OAH15] to explicitly utilize visual containment
and tree structures. Our results show that hierarchical modeling is
essential in effectively generating complex real-world web designs.

2.2. Exemplar-based GUI Design

Web design often leverages existing designs to produce
new pages. For efficient navigation of inspiring designs,
Ritchie et al. [RKK11] build a style-based web design navigator
named d.tour. Gallery D.C. [CFX∗19] accumulates millions of web
designs to build a GUI component gallery.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

K. Kikuchi, M. Otani, K. Yamaguchi, and E. Simo-Serra / Modeling Visual Containment for Web Page Layout Optimization

For data-driven GUI design, d.mix [HWCK07] samples Web
APIs on various external sites to build a personalized mashup view.
Pix2code [Bel18] generates a code that can be rendered to repro-
duce a given GUI screenshot. FaceOff is a data-driven system that
combines a set of templates to create a single harmonious GUI tem-
plate [ZHM19]. Kumar et al. [KTAK11] address the DOM node
matching problem for style transfer from a reference web page. Ku-
mar et al. [KST∗13] later built a scalable data collection framework
for web design, in order to provide insights to designers.

Our approach shares the spirit of exemplar-based design in that
we take reference designs to construct positional energy terms and
train a specialized layout model with them.

2.3. Interactive Design

Providing useful feedback to the designer is another important task.
Todi et al. [TWO16] propose an interactive layout optimization sys-
tem that starts from a sketch. Swearngin et al. [SWO∗20] design
constraints at a high level of abstraction, and propose a system that
supports rapid exploration of UI alternatives through a constraint
solver. GUIComp [LKH∗20] is an authoring tool that gives vari-
ous real-time feedback to the current design. Aalto Interface Met-
rics [ODPK∗18] is an online tool that quantitatively evaluates web
designs, and the designers can easily find shortcomings in their de-
signs. Zhao et al. [ZCL18] model the compatibility of font against
surrounding contexts in the web design.

In this work, we built an interactive tool similar to [OAH15] for
user study and incorporated our model as a layout recommender.

3. Dataset

In order to train our model and perform in-depth evaluation, we
have constructed a large-scale dataset of real-world web pages with
a focus on visual containment that we call the WebForest dataset.
They have been obtained by crawling a wide variety of web pages
based on the popularity scores. Having been designed for the mod-
elling of visual containment, unlike existing datasets, our dataset
provides images and metadata for each element, the layout trees,
read-orders, and semantic labels for each web page.

We compare existing datasets with ours in Table 1. For datasets
such as Rico [DHF∗17], where only the whole image is provided,
it may be possible to obtain images for each element as we do,
through image inpainting techniques. They will, however, likely
introduce artifacts that damage the perceptual quality and become
difficult to evaluate the layout quality by user voting.

3.1. Web Page Crawling

We build a dataset consisting of diverse real-world web pages by
using a traffic analysis tool. In particular, we use the API pro-
vided by Alexa Internet [Int21] to pick the top pages of up to
20 popular websites in each of the 1,848 subcategories including
Top/Science/Academic_Departments, Top/Regional/North_America/Health,
and Top/Business/Industrial_Goods_and_Services/Bearings, to name a
few, and obtain 26,409 pages. We crawl the HTML text for each
page, and the position, size, and rendered image for each element.

(a) Screenshot (b) Layout tree

Figure 2: An example web page from https://example.

com/. The parent-child relationships in the layout tree (b) repre-

sent visual containment of the elements on the rendered screen (a).

We filter out inappropriate pages such as 404 errors and cases
where reconstruction of a page screenshot from crawled data yields
a higher error. We also filter out too simple pages with less than five
elements, and too complex pages with more than 50 elements, such
as those having many decorative elements. After filtering, we ob-
tained 4,521 pages in total, and split them into 4,122 for training
and validation and 399 for testing, ensuring that the distributions of
the number of elements in a page are roughly the same.

Obtaining rendered images of all elements in a page without
occlusion is not supported by modern browsers. In order to over-
come this limitation, we rely on the Selenium WebDriver [Sel21]
which allows automating visibility control and screenshot captur-
ing. In particular, we set the browser’s default background color
to transparent, and use JavaScript to make all elements except the
target one transparent. We can then capture a screenshot and crop
the non-transparent region to obtain the isolated element. Note that
despite the development efforts, about 60% of the total pages fail
because the design changes while taking a screenshot of each ele-
ment, which is due to the dynamics caused by JavaScript, such as
carousels. This may be solved by disabling JavaScript functions re-
lated to dynamics, such as overriding the setInterval function with
a function that does nothing, but we leave it for future work.

3.2. Layout Tree

The layout tree represents the visual containment of the elements
in a web page, i.e., the children of a parent element will all be vi-
sually contained inside the parent. Web pages are designed using a
Document Object Model (DOM) tree which seems like could play
the role of a layout tree, however, the DOM tree has many spuri-
ous nodes and many different node types play similar roles, making
it unsuited for modeling visual containment. For this purpose, we
convert a DOM tree into a tractable layout tree, similar to the Bento
algorithm [KTAK11]. First, we keep only those elements where any
of the descendants is visible. We then remove elements that are too
small or completely overlapped, and merge pairs of overlapping
elements if the Intersection over Union (IoU) is large or they are
painted in exactly the same color. If all the descendant elements
are inline text, we also merge them into the ancestor element. We
then rearrange the tree so that the parent-child relationships corre-
spond to the visual containment on the page. Finally, we remove the
functional intermediate nodes so that all elements have visual com-
ponents. An example page and its layout tree are shown in Fig. 2.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://example.com/
https://example.com/

K. Kikuchi, M. Otani, K. Yamaguchi, and E. Simo-Serra / Modeling Visual Containment for Web Page Layout Optimization

Table 1: Comparison with public datasets used in graphic layout research. We note that the existing datasets are not suitable when consid-

ering visual containment as they do not provide hierarchy or appropriate images which could perceptually degrade the rearranged design.

Dataset # Samples Annotation

Rico [DHF∗17] 72.2 k Screenshots, view hierarchies, semantic labels, and layouts. No images for each element.

Magazine [ZQCL19] 3.9 k Cropped and partially masked images, keywords, and layouts. Not all images being

pixel-perfect and no hierarchical structures.

WebForest (Ours) 4.5 k Image and position for all elements, layout trees, ordering, and semantic labels

Table 2: Overview of the energy terms comprising our model,

which can be roughly grouped into 7 different categories.

Category (Num.) Description

alignment (15) coarse align. of sibling/parent-child, fine
align., and align. consistency.

scale (14) size mean enlargement, size variance reduc-
tion, and matching size order to metadata.

spacing (7) element spacing, white space, edge margin.
symmetry (4) vert. & horiz. symmetry and asymmetry.
position (2) matching to reference masks.
overlap (1) avoiding element overlap.
ordering (1) matching read-order to metadata.

3.3. Metadata

We extract and simplify metadata from web pages to use them as
simple hints in our later experiments. We first specify an element’s
role in the web page. Since HTML tags do not often represent the
actual element role, we assign the semantic label to an element ac-
cording to its properties by using heuristic rules. The label set used
in our work contains six labels: text, button, input, graphic, image,
and container. Detailed labeling rules can be found in the supple-
mental material.

We then specify the positional order and the rough size of the el-
ements, named read-order and importance, respectively, which are
necessary to make the generated layout obey the user’s expecta-
tions. We compute these metadata from the position and size of the
elements in the ground-truth layout. We assign the read-order to
the elements in top-left to bottom-right order. The values of impor-
tance used in our work contains five types: 0 (x-small), 1 (small),
2 (medium), 3 (large), and 4 (x-large). We defined the importance
metadata separately for text and non-text elements, and determined
their values by performing k-means clustering, using the CSS font
size attribute for text elements and area for non-text elements. Fi-
nally, since the text element can have multiple lines, we approxi-
mated its number of lines from the height and font size attribute.

4. Approach

4.1. Overview

We define a layout problem as an optimization over layout param-

eters X that specify the position and size of each element. In partic-
ular, we consider a layout tree T that represents the visual contain-
ment among elements, and assume we are given the configuration C

consisting of semantic labels and read-order of elements and so on.
The objective is to solve for the best layout parameters X.

We formulate the layout optimization into a two-step process.
First we solve for the best layout tree from a set of elements, then
solve for the optimal layout:

argmin
X

EX (X,C,argmin
T

ET) , (1)

where EX and ET are energy functions for the design layout and
the layout tree, respectively.

The energy term EX is composed of the weighted sum of 44
different components corresponding to various aspects of graphic
design such as alignment, or symmetry and can be written by:

EX (X,C,T) = ∑
k

wkEk(X,C,T) , (2)

where wk is the k-th weight and Ek the k-th energy function. An
overview of our energy terms is summarized in Table 2. We learn
the weights wk from a small set of reference designs.

In the rest of this section, we first describe the layout parame-
terization defined by a layout tree (§4.2) and an optimization-based
method for estimating the layout tree (§4.3). We then explain the
tree-aware layout energy terms derived from various design heuris-
tics (§4.4). Lastly, we describe a method for solving Eq. (1) by
stochastic optimization (§4.5) and learning the energy weights in
Eq. (2) by inverse optimization (§4.6).

4.2. Layout Parameterization

For each web page we consider a fixed number N of elements and
we model each element with three parameters corresponding to
horizontal position, vertical position, and element height. Unlike
previous work [OAH14], parameters are not defined to be absolute,
but relative to the parent container element, e.g., a horizontal posi-
tion of 0 corresponds to the left-most side of the parent container,
while a value of 1 corresponds to the right-most side of the par-
ent container. The height is also normalized such that a value of
1 corresponds to the parent height. We directly enforce the visual
containment in our parameterization by restricting the position and
height inside the parent container. The parameters of the entire lay-
out X consist of the parameters of all the elements concatenated to-
gether, thus dim(X) = 3N. Note that for simplicity, we assume that
the aspect ratio is provided for each element. Alternative elements
can be handled with additional indicator parameters [OAH14].

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

K. Kikuchi, M. Otani, K. Yamaguchi, and E. Simo-Serra / Modeling Visual Containment for Web Page Layout Optimization

ALGORITHM 1: Tree optimization using simulated annealing

Input: tree energy model ET, initial temperature tinit, final
temperature tfin, # iterations Niter, number to keep Nkeep

Output: optimized feasible tree T∗

t← tinit

∆t← (tinit− tfin)/Niter

Tcurr← create_flattened_tree()
H← {Tcurr}
for i = 1 to Niter do

Tnext← create_neighbor_tree(Tcurr)

if ET(Tnext)≤ ET(Tcurr) then
p← 1

else

p← exp((ET(Tcurr)−ET(Tnext))/t)
end

if random() < p then
Tcurr← Tnext

H←H∪{Tcurr}
if Nkeep < |H| then

H← discard_worst_tree(ET,H)

end

end

t← t−∆t
end

while 0 < |H| do

T∗← get_best_tree(ET,H)
if not violate_any_bounds(T∗) then

return T∗

else

H←H\{T∗}
end

end

4.3. Layout Tree Estimation

We define layout tree as a rooted tree T, where each node in the
layout tree corresponds to an element in the layout. The layout tree
must be a valid tree and its parent-child relationship must be plausi-
ble. We consider layout tree estimation as the optimization problem
to search for a tree that minimizes tree energy model ET as follows:

ET(T) = αancEanc +αsibEsib +αleafEleaf (3)

where Eanc, Esib, Eleaf are the anchor, sibling, and leaf energies,
respectively, and αanc, αsib, and αleaf are weights learnt from data.
In our approach, we restrict the search space to only valid trees and
evaluate the plausibility of the layout tree by the energy model.

4.3.1. Tree Energy

For efficient optimization, we use a matrix representation of the
layout tree T = {A,S,L}. In particular we define the ancestor ma-
trix A ∈ {0,1}N×N where Ai, j is set to 1 if the i-th element is an
ancestor of the j-th element in the tree or 0 otherwise. Similarly,
we define the sibling matrix S ∈ {0,1}N×N where Si, j is 1 if the
i-th and j-th elements are siblings, 0 otherwise. Finally, we define
the leaf vector L ∈ {0,1}N where Li is 1 if the i-th element is a leaf
or 0 otherwise.

We calculate the probabilities of an element being a leaf, a pair of
elements being siblings, and a pair of elements being parent-child
by using binary classifiers with random forests [Bre01] that take

Table 3: Quantitative evaluation of the tree estimation approach.

We evaluate using the F1 scores of ancestors, siblings, and leaves.

The estimated trees get better F1 scores than the flattened trees.

Layout tree Fanc ↑ Fsib ↑ Fleaf ↑

Flattened 0.000 0.574 0.915
Estimated 0.426 0.622 0.963

element features as an input. For each element we compute a 14-
dimensional feature vector that uses simple features such as the as-
pect ratio and mean RGB values, and a complete list is provided in
the supplemental material. In the case of predicting whether or not
elements are siblings or have a parent-child relationship, we simply
concatenate the features as the input for the random forest. We train
three random forest models using the training and validation split
of our dataset, with the ground-truth properties as positive and all
other possibilities as negative samples. We calibrate the classifiers
to treat their output as a probability [NMC05]. We report that F1
scores for the binary classification of the tree properties are 0.334,
0.580, and 0.966 for ancestor, sibling, and leaf, respectively.

We then obtain the probably matrix of elements being siblings
S̄ ∈ [0,1]N×N , the probably matrix of elements being parent-child
Ā ∈ [0,1]N×N , and the probably vector of elements being leaves
L̄ ∈ [0,1]N . These are defined analogously to S, A, and L, with
the only difference being that they are probability values instead of
binary 0 or 1 values. We consider energies that increase the average
of the estimated probabilities for each tree property, which can be
written as:

Eanc(A, Ā) = ED(A, Ā) Esib(S, S̄) = ED(S, S̄)

Eleaf(L, L̄) = 2ED(L, L̄)−1 , (4)

where

ED(X,Y) = 1−
1

2N
(〈X,Y〉+ 〈(1−X),(1−Y)〉) , (5)

with 〈X,Y〉 = ∑i, j Xi jYi j being the inner product of matrices or
vectors.

4.3.2. Tree Optimization

We write the tree optimization problem as:

argmin
A,S,L

αancEanc(A, Ā)+αsibEsib(S, S̄)+αleafEleaf(L, L̄)

subject to {A,S,L} being a valid tree. (6)

Searching for the layout tree that minimizes Eq. (6) is a difficult
optimization problem due to its huge search space. The tree opti-
mization problem has been actively studied in the discipline of phy-
logenetics and is known to be NP-hard [NSvHM14]. We optimize
with simulated annealing [KGV83], which is a stochastic optimiza-
tion method in which a temperature parameter controls how much
change is allowed at each iteration. The initial tree is a flattened tree
in which each element is a child of the root element, and thus is a
valid tree. We use a strategy of linearly decreasing the temperature,
which allows the algorithm to accept changes to higher energies
with high probability in the early stage, and thus avoid falling into
local solutions. At the end of the optimization, the algorithm rarely

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

K. Kikuchi, M. Otani, K. Yamaguchi, and E. Simo-Serra / Modeling Visual Containment for Web Page Layout Optimization

(a) Label mask (b) Depth mask

Figure 3: Example of label and depth masks for the same web page

as in Fig. 2.

accepts changes to higher energies. We randomly use two proposal
strategies to modify the current tree at each iteration: swapping the
two elements, and making one element a child of another. We note
that both these operations ensure that the current solution is a valid
tree and there is no additional need to enforce any other constraints.

We perform optimization for 100,000 iterations, and it takes
less than 10 seconds on a machine with a Intel(R) Xeon(R) Plat-
inum 8260 CPU (2.40GHz). The weights αanc, αsib, and αleaf of
Eq. (6) are tuned with the training and validation split using Op-
tuna [ASY∗19]. We summarize the entire algorithm in Algorithm
1. We compare the optimized tree with the initial flat tree in Ta-
ble 3, where we can see the optimization significantly outperforms
the naive flattening strategy and mostly improves the independent
prediction results. For details on the F1 score calculation, please
refer to the supplemental material.

4.4. Layout Energy Model

We build our model upon the work of [OAH14], modify most of the
energy terms to make use of the layout tree, in addition to add new
terms that are suited to the visual containment model. We note that
each of the terms has an independent non-negative weight that is
learned from reference designs, thus it is common to define energy
terms that are contrary to each other and let the model learn which
term is important for a given web page. Below we give a high-level
overview of the energy terms, for the details, please refer to the
supplemental material.

4.4.1. Label and Depth Mask

We extend on previous work that only consider text and graphic la-
bels, and assign each element as being one of six labels as explained
in §3.3. We use these labels to construct a label mask, where for
each pixel in the rendered screen, we compute whether or not a
pixel contains any element of a label for each label. In a similar
approach, we also construct a depth mask using the levels of the
layout tree like z-values. For each pixel in the mask, we use the
the maximum level of the corresponding elements and normalize it
as the root element being 0 and the leaf elements being 1. These
mask representations are used in the energy terms described in the
following subsections, and an example is shown in Fig. 3.

4.4.2. Alignment

In general, alignment of elements leads to aesthetically pleasing
layouts. Instead of limiting the alignment to arbitrary element pairs,

we focus on exploiting the layout tree and look at alignment be-
tween siblings and parent-children. We consider six possible align-
ment types: Left, X-center, Right, Top, Y-center, and Bottom. We
first define a coarse alignment terms that encourages adjacent sib-
ling elements to be aligned to each other, and one that encourages
the alignment of parents and their children for each of the six align-
ment types. This gives a total of 12 different terms. We additionally
add fine alignment terms for both horizontal and vertical alignment
that penalize misalignment if nearly aligned in order to encourage
full alignment. Finally, we encourage elements to share the same
type of alignment with a group alignment term. This term penalizes
the presence of many different alignment types and thus encourages
a more uniformed alignment for the design layout.

4.4.3. Symmetry

Symmetry can play an important role in graphic design. For this
purpose, we implement a simple check for both symmetry and
asymmetry, depending on how the terms are weighted, our mehtod
can optimize towards either symmetry or asymmetry. We imple-
ment the terms by using the depth mask, which is flipped either
horizontally or vertically, with the energy term measuring how sim-
ilar the flipped version is to the original version. Thus, this term is
a global term that considers the symmetry of the entire layout.

4.4.4. Spacing

The amount of spacing is very important on the visual impact of a
design, and we evaluate it using seven terms. The first two terms
guide the elements to increase the proportion of the white space
area within the entire canvas or parent element. The another term
promotes a larger average distance between elements, and another
term encourages the elements to be spread throughout the page. We
also add two terms that gather the elements to the center, and im-
plement it by promoting larger margins between the outermost ele-
ment and the edge of the entire canvas or parent element. The last
term facilitates uniform vertical spacing of adjacent text elements.

4.4.5. Scale

In general, an element should be large enough to be seen, but not
too large to be aesthetically unpleasant. Our model has per-label
energy terms that encourage larger sizes of content elements, and
per-label energy terms that suppress the variance in scale of ele-
ments with the same label We also have two terms that encourage
the scale of the elements to correlate with the importance metadata:
one for text elements, and one for non-text elements. This is usually
called emphasis in the literature [OAH14, SWO∗20].

4.4.6. Position

Given that web pages can have very complex layouts, it is difficult
to reflect the positional trends in the reference designs with simple
statistics for each label as in previous work [OAH14]. Instead, we
opt to represent the position of elements as a mask and evaluate the
consistency of the masks between the reference and current design.
With the idea that the mask should cover the reference mask with
minimal over or under coverage, we borrow the concept of the F1
score to design two matching terms: one for the label masks, and
one for the depth masks.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

K. Kikuchi, M. Otani, K. Yamaguchi, and E. Simo-Serra / Modeling Visual Containment for Web Page Layout Optimization

4.4.7. Overlap and Ordering

Under the assumption that sibling elements should not overlap each
other, we design an energy term to penalize the amount of overlap
between siblings. Additionally, to achieve the reading order of the
elements as intended by the user, we encourage the elements to be
arranged according to the read-order metadata.

4.5. Optimization

While the previous work [OAH14] relies on simulated annealing to
optimize a layout by changing elements basically one-by-one, we
found that while this only works for a limited number of elements,
and it performs very poorly when dealing with large amounts of
elements in the web pages of our dataset. We opt to use the CMA-
ES [Han16] algorithm, which is an efficient derivative-free opti-
mization algorithm. With CMA-ES, the candidate solutions are
modeled as a multivariate normal distribution where the covari-
ance matrix represents the pairwise dependencies between vari-
ables. The covariance matrix is updated progressively based on the
values evaluated by the objective function for sampled candidates.
We set the maximum number of iterations to 1,000, and run eight
optimizers in parallel and select the minimum. We measured the
time taken to optimize the web pages in our test set, and the me-
dian time was 85.5 seconds on a machine with a Intel(R) Xeon(R)
Platinum 8260 CPU (2.40GHz).

4.6. Learning Model Parameters

Our model consists of 44 energy terms, and each term has a
weight parameter that can be learned. Following the existing stud-
ies [OAH14,OAH15], we learn the weight parameters w by Nonlin-
ear Inverse Optimization (NIO) [LHP05]. We search for weights w

in Eq. (2) that minimize the following equation G, given a set of
layout problems (X̄,C̄, T̄) ∈ X as reference:

G(w)=
1
|X | ∑

(X̄,C̄,T̄)∈X

(

∑
k

wkEk(X̄,C̄, T̄)−min
X

∑
k

wkEk(X,C̄, T̄)

)

(7)
We note that in general, we use the estimated tree T̄ = argminTET

unless otherwise specified.

We then minimize G using gradient descent with line search.
With the optimal layout X⋆ obtained by the optimization explained
in the previous section, the gradient of G can be approximated as:

dG(w)

dw
≈

1
|X | ∑

(X̄,C̄,T̄)∈X

(

∂EX (X̄,C̄, T̄)

∂w
−

∂EX (X
⋆,C̄, T̄)

∂w

)

(8)

We reparameterize wk = exp(βk) to force the weight parameters to
be non-negative, and the actual optimization is done for βk.

5. Automatic Evaluation of Layout Generation

To validate our method, we design an automatic evaluation exper-
iment by simulating how a user creates designs with our layout
model. We summarize below the simulated user behavior.

1. Ideation. The user ideates a desired design in his or her mind.
We call that design as target design, and we select a real web
page from our dataset and consider it as target design.

Table 4: Reconstructive correctness of automatic layout optimiza-

tion. The correctness is computed based on IoU dIoU, position er-

ror dpos, and scale error dscale. The layouts optimized by our model

outperform the baseline layouts in all the metrics.

Method dIoU ↑ dpos ↓ dscale ↓

LLSPGD 0.080 0.472 2.384
Ours 0.091 0.448 2.152

Ours (oracle) 0.330 0.235 1.622

2. Reference search. The user finds reference designs that are sim-
ilar to the design in his or her mind. We imitate this behavior by
retrieving similar designs to the target design and use them as
references X when optimizing the weight parameters w.

3. Generation. The user sets the desirable metadata, and our
method automatically generates a design. In the experiments,
we compute the metadata C from the ground-truth target design.

4. Evaluation. The user evaluates the generated design to see if it
is good enough. We evaluate the generated design by measuring
the difference with the target design using several metrics.

5.1. Reference Search

We use the web pages in the test set of our dataset for the tar-
get design and the pages in the train-validation set for a pool for
searching references. We train an autoencoder on layouts and use
the bottleneck feature of the autoencoder to compute the similar-
ity between layouts, as in the design search used in the litera-
ture [DHF∗17,LCS∗18]. Our encoder, which consists of seven con-
volutional layers, takes a concatenation of a label mask and a depth
mask as input. To retrieve references, we sort the candidate designs
by Euclidean distance of the bottleneck features, and preferentially
select those with similar label types that appear in the target design.

5.2. Evaluation Metrics

We evaluate generated layouts with the reconstructive correctness
metrics: IoU dIoU, position error dpos, and scale error dscale. IoU is
computed with the intersection over union of the elements between
the generated layout and target layout, position and scale metrics
are the average errors normalized by the page size. For full details,
please refer to the supplemental material. We evaluated all pages in
the test set using the above metrics and report the mean values.

5.3. Comparison with Existing Approach

We compare our layout model with the approach of [OAH14]
while applying the simplification and speed-up techniques used
in [OAH15, O’D15], which we denote as LLSPGD. Other existing
methods are difficult to compare fairly with ours because they have
different problem settings, for example, the method in [DTSO20]
assumes no overlap and uses a single layout model with no training
capability. We implement LLSPGD using layout parameterization
with a flat tree, and use the same optimization and learning methods
and reference designs to make the comparison as fair as possible.

We show the generated results by ours and LLSPGD in Fig. 4,

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

K. Kikuchi, M. Otani, K. Yamaguchi, and E. Simo-Serra / Modeling Visual Containment for Web Page Layout Optimization

LLSPGD Ours Ours (oracle)

Figure 4: Comparison with the baseline LLSPGD method [OAH14, OAH15]. LLSPGD uses the mean and variance of element positions

per label to model positional trends, which can capture simple cases but not complex ones. On the other hand, our method successfully

captures complex positional trends through the mask representations. Our method is also successful in organizing elements by modeling

visual containment. Our method in the last row is a failure case of element ordering due to a critical tree estimation error (the gray container

should be placed at the top as a header).

and Fig. 5 revealing more detailed settings. We observe that the
layouts of LLSPGD often suffer from inadequate overlaps of el-
ements. Although LLSPGD uses an overlap avoidance term, it
is designed for simple layouts with little or no overlap, whereas
the web page layouts often have overlap. Our method, on the other
hand, avoids this issue by computing only the overlap penalty be-
tween sibling elements. The examples demonstrate the importance
of visual containment especially for designing layouts with many
elements. Quantitative results are shown in Table 4, where we can
see that the layouts optimized by our method reconstruct the target
layouts better than those by the baseline in all the metrics. Ours (or-
acle) is the result considered to be the upper bound of our method,
which uses ground-truth for layout trees and references, and shows
that using more accurate trees and references can lead to a signifi-
cant improvement. Further ablation study reveals how the use of the

Table 5: User voting result for the optimized layout. The layout

optimized by our method received a larger number of votes.

Votes

Method Quality Similarity

LLSPGD 124 152
Ours 275 247

layout tree and our energy model contributes to the performance,
see the supplemental material for details. We note, however, that
given the multi-modal nature of the problem, the metrics based on
a single ground-truth may not be adequate, and we complement
them with a user study below.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

K. Kikuchi, M. Otani, K. Yamaguchi, and E. Simo-Serra / Modeling Visual Containment for Web Page Layout Optimization

(a) LLSPGD (t1) Estimated tree (t2) Oracle tree

(b) Ours (r1) Reference A (r2) Reference B

(c) Ours (oracle w/o self-reference) (d) Ours (oracle) (e) Ground-truth

(a) LLSPGD (t1) Estimated tree (t2) Oracle tree

(b) Ours (r1) Reference A (r2) Reference B

(c) Ours (oracle w/o self-reference) (d) Ours (oracle) (e) Ground-truth

Figure 5: Qualitative comparison with LLSPGD. We use the same two reference designs (r1 and r2) for both LLSPGD and our method. Our

method (b) produces better results than LLSPGD (a). The failure of our method (d) using the oracle tree and self-reference to reconstruct

fine details may be due to the use of low resolution masks to reduce computational cost.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

K. Kikuchi, M. Otani, K. Yamaguchi, and E. Simo-Serra / Modeling Visual Containment for Web Page Layout Optimization

Figure 6: Comparison of optimization methods. We measured the

elapsed time and energy values for two layout problems (shown by

line style). We performed 10 trials for each condition, and show the

mean values by line and the standard deviations by range.

We conducted a pairwise comparison based on user perception
using Amazon Mechanical Turk (MTurk). The MTurk workers are
displayed with a pair of designs by ours and the baseline and se-
lect one of the designs according to the question. The questions are
about quality - “Which one is better?”, or similarity - “Which one

is more similar to the references?”. The displayed positions of the
designs change randomly, and only when the question is about sim-

ilarity, the reference designs are displayed together. We issued 798
tasks (two questions for 399 configurations in the test split), paid ¢2
for a vote, and 43 workers voted (the number of votes per worker
varied from 1 to 104). Table 5 summarizes the results. The layout
optimized by our method received a larger number of votes. Using
the Pearson’s chi-square test, we found a significant difference in
the number of votes for both questions about quality (p = 4e-14)
and similarity (p = 2e-06).

5.4. Effects of Optimization Algorithms

Our method employs CMA-ES instead of simulated annealing used
in the previous work. Fig. 6 shows the benefits of CMA-ES com-
pared to simulated annealing in layout optimization. The compari-
son demonstrates that CMA-ES achieves better convergence speed
and obtains a better minima than simulated annealing, which sam-
ples only one candidate solution from the designed proposal dis-
tribution for each iteration. CMA-ES is more efficient because it
samples multiple candidate solutions from the normal distribution
per iteration. Exploiting multiple candidates further allows us to
find better solutions in shorter time.

6. Interactive Evaluation via Online User Study

We next compare our method with the baseline LLSPGD method in
an interactive scenario. For this purpose, we developed a web-based
design tool and conducted an online user study using Amazon Me-
chanical Turk (MTurk). The tool interface can be seen in Fig. 7.

Figure 7: Our interactive design tool. The right panel shows layout

suggestions based on the current canvas state, and the left panel

shows the current layout tree.

6.1. Interactive Design Tool

We developed a tool for interactive experiments. Referring to the
previous work [OAH15], we implemented the following features:

• Layout editing. Moving and scaling of elements, and manipula-
tion of their overlapping order.

• Tree editing. The layout tree is shown as a tree view, and is syn-
chronized with the current layout. The user can edit the tree by
manipulating the elements on either the tree view or canvas.

• Layout suggestions. Using the current state, the stochastic opti-
mizers with the pre-trained model run in parallel, and the result-
ing layouts are displayed as suggestions. The suggestions can be
zoomed in by mouse over and applied to the canvas by click.

We also added some features to control the suggestions implicitly
or explicitly to follow the user’s expectations and intentions.

• Element fixing. The user can fix either or both the position and
size of elements. The corresponding parameters of fixed ele-
ments are excluded from layout optimization.

• Temporary grouping. When the user selects multiple elements,
the optimizer preserves relative positions and sizes among them.

• Local exploration. To prevent the suggestions from changing sig-
nificantly from the current layout, we add extra terms to penalize
quadratically for both movement and scaling of the elements.

Note that since the layout tree is available in the interactive setting,
we use it instead of the optimized tree in Eq. (1). The working
behavior of our tool can be found in the supplemental video.

6.2. Setup

We conducted an online user study using MTurk. We instructed the
workers to assume the following scenario: “Suppose your friend

asks you to create a one-page web site and provides you with two

reference designs. Your goal is to design a website following the

style of the reference designs.” We also presented a demonstra-
tion video to show them how to use the interface. Each worker
was assigned tasks to create five layouts for different designs, and
randomly assigned either the proposed method or the LLSPGD
method. In the case of the LLSPGD method, we fix the layout tree
to flat and disable its editing. The layout is initialized with the lay-
out optimization method. The worker then revises the design using

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

K. Kikuchi, M. Otani, K. Yamaguchi, and E. Simo-Serra / Modeling Visual Containment for Web Page Layout Optimization

the provided tool and submits a design when the worker is satisfied
with the result. After completing the design task, we asked them
to answer a survey about the usability and suggestion. We use the
completion time and the completed design to compare the methods.

6.2.1. Results

59 workers participated in our experiment, and their ages ranged
from 19 to 61 years old. $4 for a task. 31 workers used LLSPGD
and the remaining 28 workers used our method. In the early exper-
iments, the results were not stored correctly, so there were fewer
valid results. 128 designs were created using LLSPGD and 116 de-
signs were created using our method. We report only the high-level
results, and the details are provided in the supplemental material.

The results of the survey show that our tool was perceived as easy
to use, and many workers found the task enjoyable. Regarding the
suggestions, roughly half of the workers responded positively, but
it was difficult to clearly claim the differences in response trends
based on the backend methods. This result may suggest that users’
expectations of layout suggestions are high, and that there is a need
to control their expectations and further improve the method.

We conducted a pairwise comparison in the same way as in Sec-
tion 5.3. We selected the first 100 completed designs for both meth-
ods and collected five votes for each comparison. We used the Pear-
son’s chi-square test and do not found a significant difference in
the number of votes for both questions about quality (p = 0.53)
and similarity (p = 0.33), which is to be expected as the users are
allowed to take time to edit until they are satisfied with the results.

We then compare the two sets of completion time. The average
completion time using the proposed method roughly 38% shorter
than that using the LLSPGD method (3.7 and 5.1 minutes, respec-
tively). This result indicates that the proposed method was able
to omit more necessary editing through the layout initialization.
Using the Mann-Whitney U test (two-sided), we found there to
not be a statistically significant difference in the completion time
(p = 0.12). This is likely due to noisy network issues and the fact
that workers can freely pause the task execution. It is likely that
more experiments in more controlled settings might be able to give
more significance to the result.

7. Limitations and Discussion

Modelling visual containment as a layout tree and integrating it into
the optimization is able to improve the quality of the results while
enabling processing of design layouts with a large number of ele-
ments, which was not possible with previous approaches. For ap-
plying our method to other graphic layout problems, a hierarchical
structure is required to train the tree energies. In mobile app lay-
outs, for example, the view hierarchy could be used. If such struc-
ture is not available, it should be possible to use some heuristic rules
to create a layout tree instead of obtaining one by estimation. One
of the drawbacks of our method comes from the pipeline, i.e., a fail-
ure in tree optimization makes it difficult to succeed in later layout
optimization, and we believe that the joint optimization of tree and
layout is worth investigating. Also, with a tree-based approach like
ours, it is difficult to define the layout structure when an element
overlaps two or more elements at the same time. Such cases are

rarely found in web pages, but to adapt the similar concept to other
domains, a directed acyclic graph-based approach, where overlaps
are represented by edges, may be a reasonable modification.

While our method can support any screen width thanks to the
relative parameterization, the inability of handling alternative ele-
ments and the necessity of placing all the given elements can be ob-
stacles in applying our method to a responsive design scenario, such
as converting a PC design to a mobile one. An extension to these
limitations could be to add indicator variables for pre-defined alter-
natives (e.g., text elements with different line breaks) and visibil-
ities of elements to the optimization target. Further improvements
may require a tractable modeling of the web rendering process.

Additionally, while the approach is significantly faster and more
efficient than the existing works, learning styles from few refer-
ences by inverse optimization is still too computationally expen-
sive, and handcrafting the basis energies can be a drag on the rep-
resentation capability of the model. Our collected dataset allows
us to study deep learning based approaches, and we believe that a
promising research direction for layout generation is to introduce a
few-shot learning scheme [WYKN20].

Our experiments also show that the dataset plays a critical role
in the results, with better reference designs providing a large in-
crease in performance. To efficiently search for better reference de-
signs that users are looking for in their minds, adopting a method
that interactively searches over an approximated data distribu-
tion [CKL∗20] may be an interesting line of research.

Acknowledgement

This work is partially supported by Waseda University Leading
Graduate Program for Embodiment Informatics.

References

[ASY∗19] AKIBA T., SANO S., YANASE T., OHTA T., KOYAMA M.:
Optuna: A next-generation hyperparameter optimization framework. In
ACM SIGKDD (2019), pp. 2623–2631. 6

[Bel18] BELTRAMELLI T.: Pix2code: Generating code from a graphical
user interface screenshot. In CHI EICS (2018), pp. 1–6. 3

[Boo21] BOOTSTRAP: Overview · bootstrap, 2021. URL:
https://getbootstrap.com/docs/4.1/layout/

overview/#containers. 2

[Bre01] BREIMAN L.: Random forests. Machine learning 45, 1 (2001),
5–32. 5

[CCL12] CAO Y., CHAN A. B., LAU R. W. H.: Automatic stylistic
manga layout. ACM TOG 31, 6 (2012). 2

[CFX∗19] CHEN C., FENG S., XING Z., LIU L., ZHAO S., WANG

J.: Gallery d.c.: Design search and knowledge discovery through auto-
created gui component gallery. ACM HCI 3, CSCW (2019). 2

[CKL∗20] CHIU C.-H., KOYAMA Y., LAI Y.-C., IGARASHI T., YUE

Y.: Human-in-the-loop differential subspace search in high-dimensional
latent space. ACM TOG 39, 4 (2020). 11

[DHF∗17] DEKA B., HUANG Z., FRANZEN C., HIBSCHMAN J., AFER-
GAN D., LI Y., NICHOLS J., KUMAR R.: Rico: A mobile app dataset
for building data-driven design applications. In ACM UIST (2017),
p. 845–854. 3, 4, 7

[DTSO20] DAYAMA N. R., TODI K., SAARELAINEN T., OULASVIRTA

A.: Grids: Interactive layout design with integer programming. In ACM

SIGCHI (2020), p. 1–13. 2, 7

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://getbootstrap.com/docs/4.1/layout/overview/#containers
https://getbootstrap.com/docs/4.1/layout/overview/#containers

K. Kikuchi, M. Otani, K. Yamaguchi, and E. Simo-Serra / Modeling Visual Containment for Web Page Layout Optimization

[FGO09] FLAVIAN C., GURREA R., ORÚS C.: Web design: a key factor
for the website success. J. Syst. Inf. Technol. 11, 2 (2009). 1

[Han16] HANSEN N.: The CMA evolution strategy: A tutorial. CoRR

abs/1604.00772 (2016). 2, 7

[HWCK07] HARTMANN B., WU L., COLLINS K., KLEMMER S. R.:
Programming by a sample: Rapidly creating web applications with
d.mix. In ACM UIST (2007), p. 241–250. 3

[Int21] INTERNET A.: Keyword research, competitive analysis, & web-
site ranking | alexa, 2021. URL: https://www.alexa.com/. 3

[JLS∗03] JACOBS C., LI W., SCHRIER E., BARGERON D., SALESIN

D.: Adaptive grid-based document layout. In ACM SIGGRAPH (2003),
p. 838–847. 2

[KGV83] KIRKPATRICK S., GELATT C. D., VECCHI M. P.: Optimiza-
tion by simulated annealing. Science 220, 4598 (1983), 671–680. 5

[KST∗13] KUMAR R., SATYANARAYAN A., TORRES C., LIM M., AH-
MAD S., KLEMMER S. R., TALTON J. O.: Webzeitgeist: Design mining
the web. In ACM SIGCHI (2013), p. 3083–3092. 3

[KTAK11] KUMAR R., TALTON J. O., AHMAD S., KLEMMER S. R.:
Bricolage: Example-based retargeting for web design. In ACM SIGCHI

(2011), p. 2197–2206. 3

[LAZ∗20] LI Y., AMELOT J., ZHOU X., BENGIO S., SI S.: Auto com-
pletion of user interface layout design using transformer-based tree de-
coders. CoRR abs/2001.05308 (2020). 2

[LCS∗18] LIU T. F., CRAFT M., SITU J., YUMER E., MECH R., KU-
MAR R.: Learning design semantics for mobile apps. In ACM UIST

(2018), p. 569–579. 7

[LHP05] LIU C. K., HERTZMANN A., POPOVIĆ Z.: Learning physics-
based motion style with nonlinear inverse optimization. ACM TOG 24,
3 (2005), 1071–1081. 7

[LJE∗20] LEE H.-Y., JIANG L., ESSA I., LE P. B., GONG H., YANG

M.-H., YANG W.: Neural design network: Graphic layout generation
with constraints. In ECCV (2020), pp. 491–506. 2

[LKH∗20] LEE C., KIM S., HAN D., YANG H., PARK Y.-W., KWON

B. C., KO S.: Guicomp: A gui design assistant with real-time, multi-
faceted feedback. In ACM SIGCHI (2020), p. 1–13. 3

[LNDO20] LAINE M., NAKAJIMA A., DAYAMA N., OULASVIRTA A.:
Layout as a service (laas): A service platform for self-optimizing web
layouts. In ICWE (2020), pp. 19–26. 2

[LSK∗10] LEE B., SRIVASTAVA S., KUMAR R., BRAFMAN R., KLEM-
MER S. R.: Designing with interactive example galleries. In ACM

SIGCHI (2010), p. 2257–2266. 2

[LXZ∗19] LI J., XU T., ZHANG J., HERTZMANN A., YANG J.: Lay-
outGAN: Generating graphic layouts with wireframe discriminator. In
ICLR (2019). 2

[LYZ∗20] LI J., YANG J., ZHANG J., LIU C., WANG C., XU T.:
Attribute-conditioned layout gan for automatic graphic design. IEEE

TVCG Early Access (2020). 2

[LZS∗21] LAINE M., ZHANG Y., SANTALA S., JOKINEN J. P. P.,
OULASVIRTA A.: Responsive and personalized web layouts with integer
programming. In ACM HCI (2021), vol. 5. 2

[Net20] NETCRAFT: December 2020 Web Server Survey.
https://news.netcraft.com/archives/2020/12/22/

december-2020-web-server-survey.html, 2020. [Online:
accessed 25-January-2021]. 1

[NMC05] NICULESCU-MIZIL A., CARUANA R.: Predicting good prob-
abilities with supervised learning. In ICML (2005), pp. 625–632. 5

[NSvHM14] NGUYEN L.-T., SCHMIDT H. A., VON HAESELER A.,
MINH B. Q.: IQ-TREE: A fast and effective stochastic algorithm for
estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 1
(2014), 268–274. 5

[OAH14] O’DONOVAN P., AGARWALA A., HERTZMANN A.: Learning
layouts for single-page graphic designs. IEEE TVCG 20, 8 (2014), 1200–
1213. 2, 4, 6, 7, 8

[OAH15] O’DONOVAN P., AGARWALA A., HERTZMANN A.: Design-
scape: Design with interactive layout suggestions. In ACM SIGCHI

(2015), p. 1221–1224. 2, 3, 7, 8, 10

[O’D15] O’DONOVAN P.: Learning Design: Aesthetic Models for Color,

Layout and Typography. PhD thesis, University of Toronto, 2015. 7

[ODPK∗18] OULASVIRTA A., DE PASCALE S., KOCH J., LANGERAK

T., JOKINEN J., TODI K., LAINE M., KRISTHOMBUGE M., ZHU Y.,
MINIUKOVICH A., PALMAS G., WEINKAUF T.: Aalto interface metrics
(aim): A service and codebase for computational gui evaluation. In ACM

UIST (2018), pp. 16–19. 3

[PCLC16] PANG X., CAO Y., LAU R. W. H., CHAN A. B.: Directing
user attention via visual flow on web designs. ACM TOG 35, 6 (2016). 2

[QFY∗19] QIANG Y.-T., FU Y.-W., YU X., GUO Y.-W., ZHOU Z.-H.,
SIGAL L.: Learning to generate posters of scientific papers by proba-
bilistic graphical models. Journal of Comput. Sci. and Technol. 34, 1
(2019). 2

[RKK11] RITCHIE D., KEJRIWAL A. A., KLEMMER S. R.: D.tour:
Style-based exploration of design example galleries. In ACM UIST

(2011), p. 165–174. 2

[Sel21] SELENIUM: Seleniumhq browser automation, 2021. URL:
https://www.selenium.dev/. 3

[SK15] SINHA N., KARIM R.: Responsive designs in a snap. In ACM

FSE (2015), p. 544–554. 2

[Skl11] SKLAR J.: Principles of web design: the web technologies series.
2011. 2

[SWO∗20] SWEARNGIN A., WANG C., OLESON A., FOGARTY J., KO

A. J.: Scout: Rapid exploration of interface layout alternatives through
high-level design constraints. In ACM SIGCHI (2020), p. 1–13. 2, 3, 6

[Tho07] THORLACIUS L.: The role of aesthetics in web design. Nordi-

com Review 28, 1 (2007), 63–76. 1

[TWO16] TODI K., WEIR D., OULASVIRTA A.: Sketchplore: Sketch
and explore with a layout optimiser. In ACM DIS (2016), p. 543–555. 3

[VV15] VERNICA R., VENKATA N. D.: Aero: An extensible framework
for adaptive web layout synthesis. In ACM DocEng (2015), p. 187–190.
2

[Web21] WEBFLOW: Container | webflow university, 2021. URL:
https://university.webflow.com/lesson/container.
2

[Wil15] WILLIAMS R.: The non-designer’s design book: Design and ty-

pographic principles for the visual novice. 2015. 2

[WYKN20] WANG Y., YAO Q., KWOK J. T., NI L. M.: Generalizing
from a few examples: A survey on few-shot learning. ACM Comput.

Surv. 53, 3 (2020). 11

[YMX∗16] YANG X., MEI T., XU Y.-Q., RUI Y., LI S.: Automatic gen-
eration of visual-textual presentation layout. ACM TOMM 12, 2 (2016).
2

[ZCL18] ZHAO N., CAO Y., LAU R. W.: Modeling fonts in context:
Font prediction on web designs. Comput. Graph. Forum 37, 7 (2018),
385–395. 3

[ZHM19] ZHENG S., HU Z., MA Y.: Faceoff: Assisting the manifes-
tation design of web graphical user interface. In ACM WSDM (2019),
p. 774–777. 3

[ZQCL19] ZHENG X., QIAO X., CAO Y., LAU R. W. H.: Content-aware
generative modeling of graphic design layouts. ACM TOG 38, 4 (2019).
2, 4

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://www.alexa.com/
https://news.netcraft.com/archives/2020/12/22/december-2020-web-server-survey.html
https://news.netcraft.com/archives/2020/12/22/december-2020-web-server-survey.html
https://www.selenium.dev/
https://university.webflow.com/lesson/container

