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Abstract

Color is a critical design factor for web pages, affecting
important factors such as viewer emotions and the overall
trust and satisfaction of a website. Effective coloring re-
quires design knowledge and expertise, but if this process
could be automated through data-driven modeling, efficient
exploration and alternative workflows would be possible.
However, this direction remains underexplored due to the
lack of a formalization of the web page colorization prob-
lem, datasets, and evaluation protocols. In this work, we
propose a new dataset consisting of e-commerce mobile web
pages in a tractable format, which are created by simplify-
ing the pages and extracting canonical color styles with a
common web browser. The web page colorization problem
is then formalized as a task of estimating plausible color
styles for a given web page content with a given hierarchical
structure of the elements. We present several Transformer-
based methods that are adapted to this task by prepending
structural message passing to capture hierarchical relation-
ships between elements. Experimental results, including a
quantitative evaluation designed for this task, demonstrate
the advantages of our methods over statistical and image
colorization methods. The code is available at https:
//github.com/CyberAgentAILab/webcolor.

1. Introduction
Color plays an important role in the visual communica-

tion of web pages. It is known that colors are associated
with certain emotions [15] and have a significant impact on
the trust and satisfaction of websites [7]. Effectively col-
oring web pages to achieve the design goals is a difficult
task, as it requires understanding the theories and heuristics
about colors and their combinations [27]. Another reason
for the difficulty lies in the implicit and practical require-
ments within a page, such as overall balance, contrast, and
differentiation of color connotations. Our aim is to over-
come these difficulties with data-driven modeling to facil-
itate new applications such as efficient design exploration
for designers, automated design for non-designers, and au-
tomated creation of landing pages for advertised products.

Despite its great industrial potential, the lack of es-
tablished benchmarks and the need for extensive domain
knowledge for data collection make it difficult to apply data-
driven methodologies to web page coloring, which may ex-
plain why there are fewer related studies in the literature.
Existing methods for coloring web pages either generate
color styles for some specific elements [30, 25] or require
already designed web pages [29, 11], and no method has
been investigated that can add plausible color styles to all
elements from scratch. Also, the datasets used in these
studies are not publicly available, making follow-up stud-
ies difficult. The image colorization techniques [1, 19] can
be applied to web page, however, they require an input im-
age and the extraction of structural color information from
the output image, which narrows the applicable scenarios
and would cause extraction errors that degrade quality.

In this work, we construct a new dataset to take the study
of web page coloring one step further. The challenges in
data collection are that raw web pages have many redundant
elements that do not affect their appearance, and the color
styles defined in their styling sheets are ambiguous as the
same color can be represented differently. To address these
challenges, we use a common web browser to simplify web
pages and retrieve the browser’s resolved styles as canonical
color styles.

The coloring problem is then formalized as a task of
generating plausible color styles for web pages provided
with content information and hierarchical structure of the
elements. We present several Transformer-based methods
adapted to this task. The hierarchical relationship between
elements affects the color style, since child elements are ba-
sically rendered on top of their parent elements. Our hierar-
chical modeling to capture these characteristics is achieved
by contextualizing the features with message passing [8] be-
fore feeding them into the Transformer network.

To evaluate the generated color styles in terms of quality
and diversity, we adapt the metric used in image generation
tasks [12] to ours and test whether the resulting pages sat-
isfy the standard contrast criterion. Quantitative and qual-
itative results demonstrate the advantages of our methods
over statistical and image colorization methods [19].

Our contributions are summarized as follows:
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• A dataset of e-commerce mobile web pages tailored
for automatic coloring of web pages.

• A problem formulation of the web page coloring and
Transformer [28]-based methods that capture hierar-
chical relationships between elements through struc-
tural message passing.

• Extensive evaluation including comparison with a
state-of-the-art image colorization method [19].

2. Related Work
2.1. Image Recoloring and Colorization

The problem of automatically determining color has
been extensively addressed, especially for images. There
are two common tasks: recoloring, which applies differ-
ent colors to a color image, and colorization, which applies
colors to a grayscale image. For both tasks, the reference-
based approach has been investigated, which is achieved
by finding a mapping between the color or luminance of
the source and the color of a given reference image or
palette [5, 24, 4, 17]. Volkova et al. [29] adapted this ap-
proach for recoloring a web page with a reference image.

The reference-based approach requires additional user
input, whereas the approach that uses color knowledge
learned from data does not. Earlier work in this direc-
tion used relatively simple models to learn cost functions,
such as color compatibility, and then colorize images or
2D patterns through optimization [22, 21]. Recently, deep
learning-based methods have been actively studied, espe-
cially for the image colorization task [1], and ColTran [19]
that employs the Transformer network [28] as its base
model has demonstrated state-of-the-art performance.

There are two concerns in applying image colorization
techniques to web pages. The first one is that the input is
an image, which narrows the applicable scenarios, and the
second is that the quality could be degraded by errors in ex-
tracting the colors from the output image to be used for the
web page. In our problem formulation, these concerns do
not arise because we treat web page coloring as an estima-
tion problem on structural data.

2.2. Data-driven Applications for Web Pages

Research on data-driven applications for web pages has
been actively studied in recent years in different communi-
ties, including question answering [6], semantic labeling of
elements [14], information retrieval [23], code generation
from a screenshot [3], layout generation [16], and GUI pho-
tomontage [31]. An earlier work on data-driven web page
styling is Webzeitgeist [20], a platform that provides several
data and demographics for over 100,000 web pages, but is
no longer publicly available.

Relatively few studies have been done for the automatic
coloring. Gu et al. [11] propose an optimization-based col-

Figure 1: Screenshots of randomly selected web pages.
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Figure 2: Data format of a web page in this study.

oring framework by combining several models, including a
color contrast model learned using 500 web pages, and con-
firm its effectiveness in two tasks: coloring with a prepared
palette and fine-tuning a color design. Zhao et al. [30] ad-
dress the task of estimating font attributes of an element,
including font color, from the surrounding context. Most
recently, Qiu et al. [25] propose a Transformer-based color
recommendation model for landing pages that is trained
with the masked prediction and the advertisement perfor-
mance prediction. Their model uses multiple color palettes
extracted from specific regions of annotated screenshots and
can recommend other colors for the target region.

In summary, there is no established method for adding
plausible color styles to all elements from scratch. There is
also no dataset available to study such a method, therefore,
we begin with the construction of a dataset on the structural
coloring of web pages.

3. Dataset Construction for Web Page Coloring

We first describe a generic preprocessing technique that
converts web pages into a tractable data format for machine
learning applications. We then describe the details of the
dataset we have constructed. Screenshots of randomly se-
lected web pages from our dataset are shown in Fig. 1.

3.1. Data Format and Preprocessing

We represent a web page as an ordered tree, where each
vertex is an element to be rendered on the page and has con-



tent and color style information (Fig. 2). We use HTML tags
of elements, their order in siblings in the tree, and low-level
features of images (e.g., average color) and text (e.g., word
counts) as content information, please refer to the supple-
mental material for details. For color styles, it is not triv-
ial to define what to extract. Also, raw web pages contain
many redundant elements for training the coloring model.
We discuss below our color style definition and simplifica-
tion technique.

3.1.1 Color Style Definition

Style information for a web page is defined in Cascading
Style Sheets (CSS), which basically consists of the speci-
fications of target elements (i.e., selector) and styles to be
applied (i.e., properties and their values). Here we consider
two representative properties color and background-color
as the color style, corresponding to the text and background
colors of the element, respectively. There are two possible
choices for where to obtain the values of these properties:
specified or computed values.

The specified values are the values defined in the style
sheets. For elements where values are not specified,
browser’s default CSS is applied. Available formats for
the values of color properties include RGBA values, color
keywords, and special keywords, such as “inherit”, which
causes the use of the same value as the parent element.
Thus, the same color in appearance can be represented in
different formats, and canonicalizing them requires extra
effort. The computed values, on the other hand, are the val-
ues resolved by browser. For our target properties, the val-
ues are disambiguated to RGBA format, which can be used
as the specified values without any change in appearance.
We use the computed values as the canonical values for the
target properties, and we additionally use the ground-truth
specified values for the other properties for visualization.

3.1.2 Web Page Simplification

Raw web pages contain many elements that do not con-
tribute to their appearance on the present screen, including
alternative elements such as elements that only appear on
laptop-sized screens and functional elements such as hid-
den input elements in submission forms. Many redundant
or less relevant elements should be eliminated, as they will
negatively affect the learning of the coloring model.

Here we consider keeping only those elements that con-
tribute to the first view on the mobile screen. A naive sim-
plification method would be to try removing an element and
if the appearance of the first view does not change, then re-
ally remove that element. Removing elements, however,
often breaks the original style when other elements are in-
volved in the CSS selector such as “div > a”. To avoid
such undesirable style corruption, before simplification, we

change the CSS to a different one that uses absolute selec-
tors such as “#element-1” and is carefully tailored to be
equivalent to the original style specification. As a result,
the average number of elements, excluding those placed in
the head element, was significantly reduced from 1656.1 to
61.4. Note that color styles applied to a simplified web page
can be applied to the original one if the correspondence of
the elements is recorded before and after the simplification.

3.2. Our Dataset

The dataset should have a large enough and diverse set of
web pages. We select the Klarna Product Page dataset [14]
as the source of web pages, which provides mobile web
pages for e-commerce in various countries and companies.
Specifically, we use snapshots of the web pages provided in
MHTML format, which can be replayed in a browser almost
identically to the original pages. Although the procedures
described in this section apply to the snapshots, they are
also applicable to web pages crawled in a general way.

We implement the process of the retrieval of the com-
puted values and the simplification of web pages using Se-
lenium WebDriver [26] and Google Chrome [9]. Complex
web pages that, even after simplification, still have more
than 200 elements or a tree depth of more than 30 are ex-
cluded. We also exclude web pages encoded in anything
other than utf-8 to simplify text processing. As a result, a
total of 44,048 web pages are left with an average number of
elements of 60.6 and an average tree depth of 9.3. The web
pages of the official training split is divided 9:1 for training
and validation, and those of the official test split for test-
ing, resulting in 27,630 pages for training, 3,190 pages for
validation, and 13,228 pages for testing.

4. Approach
We provide high-level explanations of our approach for

the sake of clarity, and details on message passing, model
architecture, and implementation are presented in the sup-
plemental material.

4.1. Overview

We define web page colorization as the task of generating
a color style for each element, given the content information
and the hierarchical structure of the elements. We denote
the index of an element as n, the number of elements on
the page as N , the set of color style as Y = {Yn}Nn=1, the
set of content information as C = {Cn}Nn=1, and the hier-
archical structure as T , respectively. Thus, the main objec-
tive of this task can be formulated as creating a function f
that generates color styles based on given conditions, i.e.,
f : (C, T ) 7→ Ŷ , where a variable with the hat symbol, i.e.
Ŷ , represents the estimate of that variable, i.e., Y .

Following the recent image colorization method [19],
we take a two-stage approach using a core model to
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Figure 3: Key components of our method for generating discrete color styles. Our method has three variants with different
core generation models, all using the same architecture of the content and style encoders and the style estimation head.
Element-wise content features are contextualized by features from other elements through hierarchical message passing.

generate low-resolution discrete styles X = {Xn}Nn=1,
i.e., g : (C, T ) 7→ X̂ , and a color upsampler to in-
crease the resolution of the colors to the desired size,
i.e., h : (X , C, T ) 7→ Ŷ . For quantization, we di-
vide the RGBA values into eight bins per channel, and
the RGB channels are grouped together. The discrete
text color of an element is then represented by a pair
of

(
xrgb ∈ {1, . . . , 83}, xalpha ∈ {1, . . . , 8}

)
. The same

quantization is applied to the background color. We con-
sider three core generation models: autoregressive model,
non-autoregressive model, and conditional variational au-
toencoder, which are all based on Transformer networks
and have the same architecture for the content and style en-
coders and the style estimation head. The core model and
the color upsampler are trained independently. Some key
components of our method are shown in Fig. 3.

4.2. Content and Style Processing

The content encoder takes content information for each
element {Cn}Nn=1 (the index n is omitted hereafter) as in-
put, and referring to the tree structure T , converts them
into d-dimensional content embeddings {hC} that reflect
the hierarchical relationship of the elements. We implement
the content encoder using bottom-up and top-down message
passing with residual connections, which is expressed as:

h̄C = MaxPool ({Embc (c) |c ∈ C}) , (1)
{hup} = MPup({h̄C},hleaf ;T ), (2)

{hdown} = MPdown({hup},hroot;T ), (3)
hC = h̄C + hdown, (4)

where MaxPool(·) is the max-pooling operator, Embc(·)
is the embedding function corresponding to the content c,
hleaf and hroot are learnable parameters, respectively. In

the bottom-up message passing MPup, the value hup of
an element is computed using the value h̄C of the element
and the values hup of the elements children or hleaf if the
element is a leaf node. The top-down message passing
MPdown is defined similarly in the reverse direction.

The style encoder maps a discrete color style X to a
style embedding hX ∈ Rd independently for each element.
Specifically, we represent an RGBA color by a vector ob-
tained by merging two embeddings corresponding to dis-
crete RGB and alpha values. The style embedding is ob-
tained by merging two color vectors corresponding to text
and background colors. For elements without text, we use a
special learnable embedding instead of the text color vector.
The style estimation head is the module in the final output
part that maps intermediate vectors representing element-
by-element styles to discrete RGB and alpha probabilities
for text and background colors, respectively.

4.3. Core Generation Models

The role of the core generation model is to generate a dis-
crete color style for each element {X̂} based on the given
conditions. Here, we implement this model using the Trans-
former network and train it with two different schemes:
maximum likelihood estimation (MLE) and conditional
variational autoencoder (CVAE). The model learned with
the MLE is further subdivided into two variants, autoregres-
sive and non-autoregressive models, resulting in a total of
three variants of the core model to be considered.

4.3.1 MLE-based Model

The models are trained by maximizing the log-likelihood.
Let θ be the model parameters, the objective is written as

max
θ

E [log pθ (X | C, T )] . (5)



Autoregressive Model: In the autoregressive model, the
conditional probability of the color styles is modeled as

pθ (X | C, T ) :=
N∏

n=1

p (Xn |X1, X2, · · · , Xn−1, C, T ) .

(6)
The order of the elements is defined by the pre-order tree
traversal.

Non-autoregressive Model: In the non-autoregressive
model, the conditional probability is assumed to be not con-
ditioned on the previous estimates and is modeled as

pθ (X | C, T ) :=
N∏

n=1

p (Xn | C, T ) . (7)

We implement these models with the Transformer net-
works as illustrated in the upper right of Fig. 3. The content
and style embeddings and the style estimation head used are
those described in Section 4.2.

4.3.2 CVAE-based Model

In general, the non-autoregressive model is capable of faster
inference than the autoregressive model, but is unable to
create a diverse colorizations for fixed input values. We in-
troduce latent variables into the non-autoregressive model
and extend it to the formulation of conditional variational
autoencoder, allowing for the generation of diverse outputs
from a single input.

Let us denote latent variables as Z ∈ RNd, the condi-
tional generative distribution as pθ (X |Z, C, T ), the poste-
rior as qϕ (Z | X , C, T ), and the prior as p (Z | C, T ), respec-
tively, the learning objective of CVAE is expressed as:

max
ϕ,θ

Eqϕ(Z | X ,C,T ) [log pθ (X |Z, C, T )]

− λKL (qϕ (Z | X , C, T ) ∥ p (Z | C, T )) , (8)

where ϕ and θ are the model parameters and λ is a hyper-
parameter to balance the two terms. We set λ = 0.1 for all
experiments.

Using multivariate Gaussian distributions with diagonal
covariance matrices, we model the conditional distributions
as follows:

qϕ (Z | X , C, T ) :=N (µ (X , C, T ) , Iσ (X , C, T )) , (9)

pθ (X |Z, C, T ) :=
N∏

n=1

p (Xn |Z, C, T ) , (10)

p (Z | C, T ) :=N (0, I) , (11)

where µ(·) and σ(·) are the functions that return parameters
corresponding to the mean and the variance of the Gaussian
distribution, respectively.

We implement this model with both the Transformer en-
coder and decoder as shown in the bottom right of Fig. 3.
The Transformer encoder takes content and style embed-
dings as input and produces the estimated mean and the es-
timated variance for each element. They are concatenated
for all elements and treated as the returned vectors of µ(·)
and σ(·) in Eq. (9), respectively. The latent variables Z
are then sampled from the Gaussian distribution using the
reparametrization trick and partitioned into a set of latent
vectors equal to the number of elements. The Transformer
decoder takes the latent vectors and embeddings as input
and estimates the color styles of all elements. Note that
the latent vectors are applied the positional encoding so that
the decoder can identify which latent vector corresponds to
which element.

4.4. Color Upsampler

The color upsampler takes the discrete color styles X as
input and generates the color styles in full resolution Ŷ . To
force the upsampled colors to stay in their original quanti-
zation bins, we estimate the proportions in the bins instead
of directly estimating the full-resolution colors. We train the
Transformer-based model to minimize the mean squared er-
ror between the predicted proportions and the ground-truth
proportions.

5. Experiments
We evaluate our methods against additional baseline

methods in terms of the quality and diversity of the gen-
erated color styles.

5.1. Methods

We employ baseline methods based on statistics of the
dataset and image colorization.

Statistics-based Coloring: We use simpler methods
based on statistics of color styles. Specifically, we first
collect the frequencies of the discrete color for each pair
of HTML tags and CSS properties in the training set.
The color is then determined by mode selection (mode) or
frequency-weighted sampling (sampling) and upsampled in
the same way as our methods. When sampling, we set the
same color for the same pair of tags and properties, encour-
aging consistent color styling within a single web page. For
pairs that appear in the test set but not in the training set, the
global frequencies across all the tags are referenced.

Image Colorization [19]: We adapt the image coloriza-
tion technique to our task as an additional baseline. The
main consideration of adaptation is that both input and out-
put are images rather than structural color information. We
use a screenshot of ground-truth web page converted to a



grayscale image as the input. Obtaining structural colors
from the output colorized image is not trivial, as it requires
knowing the correspondences between the pixel colors and
the element color styles. Inspired by chroma key composit-
ing, we assign an unused color to a target element, render
the web page, and consider the pixels with that color to be
the corresponding pixels. The colorized image is then ref-
erenced and the most dominant color in the corresponding
pixels is taken for the target element. We repeat this process
for all the elements. Note that in this process, all colors are
treated as opaque colors, i.e., the alpha value is 1.0. For the
specific method, we employ ColTran [19], a state-of-the-art
method based on Transformer, whose official implementa-
tion is publicly available1.

Our Methods: We use three methods with different
core models: the autoregressive model (AR), the non-
autoregressive model (NAR), and the conditional varia-
tional autoencoder (CVAE) described in Section 4. Each
method uses the same color upsampler and the same hy-
perparameters of the Transformer network, the details can
be found in the supplemental material. To generate with
the AR model, we use the same trained model with three
different decoding strategies: greedy decoding, top-p sam-
pling [13] with p=0.8 and p=0.9. Note that during training,
we exclude the text color of elements without text content
from the loss calculation because it does not affect the ap-
pearance.

5.2. Evaluation Metrics

Accuracy and Macro F-score: As proxy metrics for the
quality of the generated results, the reproducibility of the
ground-truth data is measured. We compute the accuracy
and the Macro F-score using the discrete RGB and alpha
values. The text color of elements without text content is
excluded from the computation. For the Macro F-score, the
average of class-wise F-scores is used.

Fréchet Color Distance: The diversity of the generated
results is another important measure. We devise a new met-
ric, named Fréchet Color Distance (FCD), with reference
to FID [12], which is widely used in the image generation
and colorization tasks. In the FID, the distance between
the distributions of the generated data and the real data is
computed using intermediate features of the pre-trained In-
ception Network. These high-level image features may not
represent well low-level color information, thus in the FCD,
histograms of the discrete RGB colors are used as the fea-
tures to compute the distribution distance. The histograms
are normalized by the number of elements, and their statis-
tics are calculated for background colors, text colors, and

1https://github.com/google-research/
google-research/tree/master/coltran

pixels, respectively, so that the diversity of the different per-
spectives can be measured. Note that the text color of ele-
ments without text content is excluded from the correspond-
ing histogram.

Contrast violation: The quality of the generated results
is evaluated from another perspective: accessibility. To in-
vestigate the accessibility of the generated results, we use
Lighthouse [10], a commonly used auditing tool in practice,
and consider the contrast audit, which is greatly affected by
color styles. The contrast audit is based on Web Content
Accessibility Guidelines 2.1 [18] and tests whether the con-
trast ratio between the background and text colors meets the
criteria for all the text on a page. We report the percentage
of pages and the average number of elements that violate
the contrast audit.

5.3. Color Style Generation

We summarize the quantitative results in Table 1 and the
qualitative results in Fig. 4. In the quantitative results, we
report the mean and standard deviation of one evaluation
for each of the three models trained with different random
seeds, and for Stats (sampling), we report them for three
evaluations. The qualitative results show screenshots of
web pages where the generated color styles are applied. For
those with multiple results, we first generate 20 variations
with a single model, then the one with the largest color dis-
tance is greedily selected, starting from a random selection.

The Fréchet Color Distances (FCDs) are calculated be-
tween two halves of the test set, one from the generated
results and the other from the ground-truth data. The FCDs
for real data use the other ground-truth data instead of the
generated results, allowing for reasonable comparisons with
other methods. The real data shows a large percentage
of web pages violating the contrast criterion, but this is
roughly consistent with the public statistics [2]. We con-
sider the metrics of contrast violation only for reference,
and consider them good if they do not differ significantly
from the real statistics.

The image colorization baseline ColTran [19] performs
well for the Pixel-FCD and poorly for the other metrics,
which may indicate that by using the ground-truth grayscale
screenshots, ColTran can generate plausible color styles
only for those with many corresponding pixels, such as the
background color of the body element. In color style ex-
traction from the colorized image, the extraction errors for
those with fewer corresponding pixels, such as the color for
smaller text as in the right example in Fig. 4, may be the
cause of contrast violation. Due to not considering the al-
pha composition in the extraction, RGB values obtained dif-
ferently from the ground-truth may cause poor accuracies,
BG-FCD, and Text-FCD.

The statistical baselines of structural coloring show

https://github.com/google-research/google-research/tree/master/coltran
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Figure 4: Qualitative comparison of color style generation. NAR and CVAE successfully generate more plausible color styles
than the others, and CVAE can produce multiple variations. Best viewed in color and zoom.



Table 1: Quantitative comparison of color style generation. The methods with dagger symbols (†) generate in a deterministic
manner, while the others generate in a stochastic manner. The Fréchet Color Distances are multiplied by 1e-3 for clarity.
Note that only ColTran uses the ground-truth grayscale screenshot, i.e., partial color information per pixel.

Accuracy Macro F-score Fréchet Color Distance Contrast violation
Method RGB ↑ Alpha ↑ RGB ↑ Alpha ↑ BG ↓ Text ↓ Pixel ↓ % Pages # Elements

ColTran [19] .285±.000 .411±.000 .009±.001 .101±.000 665.78±2.49 103.50±1.61 3.14±0.58 95.51±0.15 5.29±0.02

Stats (mode)† .717 .891 .003 .219 20.94 263.11 7.43 34.17 1.18
Stats (sampling) .621±.000 .821±.000 .004±.000 .207±.001 0.71±0.02 82.22±0.31 169.80±1.05 94.41±0.08 4.47±0.02

AR (greedy)† .720±.002 .886±.002 .033±.002 .405±.003 2.93±0.33 39.19±2.61 22.98±3.21 66.43±0.70 2.02±0.02

AR (top-p, p=0.8) .717±.003 .885±.002 .032±.002 .403±.002 2.63±0.37 33.79±3.59 33.67±0.55 71.00±1.12 2.30±0.06

AR (top-p, p=0.9) .714±.003 .883±.003 .030±.002 .402±.006 2.40±0.33 33.00±3.81 37.44±0.30 73.42±1.01 2.40±0.06

NAR† .773±.001 .929±.001 .076±.001 .670±.002 1.57±0.33 21.81±2.20 5.98±1.23 74.02±0.92 2.25±0.09

CVAE .771±.001 .929±.000 .069±.001 .665±.003 1.50±0.04 28.14±1.13 4.20±0.19 74.71±0.19 2.23±0.05

CVAE w/o message passing .762±.001 .918±.000 .062±.002 .620±.005 2.16±0.03 33.02±2.82 10.58±1.29 75.10±0.79 2.29±0.06

CVAE w/o residual connection .768±.001 .927±.000 .064±.000 .647±.009 1.41±0.25 29.94±2.58 5.40±1.17 74.25±0.87 2.20±0.07

Real data 1.000 1.000 1.000 1.000 0.08 3.04 0.56 71.72 2.39

higher accuracies and lower macro F-scores, which indi-
cates the imbalance of color styles where typical color
styles, such as black text and white background, appear
much more frequently than other color styles. The Stats
(sampling) improves BG-FCD and Text-FCD and degrades
Pixel-FCD compared to Stats (mode). The former is as
expected, and the latter can be interpreted because typical
color styles are often assigned to those with many corre-
sponding pixels in the ground-truth data. For contrast vio-
lation, the results indicate that assigning typical color styles
leads to fewer violations, while sampling background and
text colors independently leads to more violations.

Our Transformer-based methods generally perform bet-
ter than the other baselines, and the trends in contrast vio-
lations are similar to the real data. In AR, accuracies and
FCDs show that sampling method can control the typical-
ity of the output. Both NAR and CVAE outperform the AR
variants with comparable scores and show better visual re-
sults than the others.

Ablation study: We perform an ablation study to investi-
gate the performance contribution of the design of the hier-
archical contextualization. The results using CVAE as the
base model are summarized in the lower part of Table 1
and show that removing message passing degrades perfor-
mance, suggesting the importance of usage of hierarchical
modeling. We can also see that the performance is degraded
without using the residual connection, indicating that they
may help propagate only the minimum information in com-
plex message passing.

6. Limitations and Discussion
While our methods succeed in generating relatively plau-

sible color styles, they are still far from perfect. A typical

failure case is the functional coloring that informs the prod-
uct color or the current slide in a slideshow (i.e., carousel),
as can be found in Fig. 4. The challenge with the func-
tional coloring stems from the fact that necessary informa-
tion is removed by the simplification or is not included on
the page in the first place. The necessary information is the
representative color to distinguish variations for the product
color, and the order of the displayed slide for the slideshow.
To address this issue, explicit information needs to be added
as additional content or the user needs to modify it in post-
processing.

Elements with certain styles are inevitably associated
with specific color styles. For example, an element with
a “round” style should have a background color. However,
our methods can fail to handle such styling rules. Adding
color-related styles could improve the situation, but one
needs to consider which and how much to add. It may be
necessary to find a way to handle all the complex CSS prop-
erties in a unified and efficient manner, which may also lead
to the extension of CSS property generation beyond color.

There is still room for improvement regarding the
dataset. The e-commerce mobile web pages used in our
study have low relevance between individual product im-
ages and color styles, making them unsuitable for evaluat-
ing the harmony between images and colors. Also, it has
not been tested whether our methods can handle more ele-
ments, such as full-page view on a mobile-sized screen or
on a laptop-sized screen. To facilitate these studies, we be-
lieve that the development of stable data collection tool and
the construction of large-scale datasets using such a tool are
promising future directions.
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