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Abstract

Recent advances in 3D shape recognition have shown
that kernels based on diffusion geometry can be effectively
used to describe local features of deforming surfaces. In
this paper, we introduce a new framework that allows using
these kernels on 2D local patches, yielding a novel feature
point descriptor that is both invariant to non-rigid image
deformations and illumination changes.

In order to build the descriptor, 2D image patches are
embedded as 3D surfaces, by multiplying the intensity level
by an arbitrarily large and constant weight that favors
anisotropic diffusion and retains the gradient magnitude
information. Patches are then described in terms of a
heat kernel signature, which is made invariant to intensity
changes, rotation and scaling. The resulting feature point
descriptor is proven to be significantly more discriminative
than state of the art ones, even those which are specifically
designed for describing non-rigid image deformations.

1. Introduction
Building invariant region descriptors is a major topic of

research in computer vision with a wide range of appli-
cations in areas of object recognition and 3D reconstruc-
tion. Over the last decade, great success has been achieved
in designing descriptors invariant to certain types of geo-
metric and photometric transformations. For instance, the
SIFT [16] descriptor and many of its variants [1, 10, 17, 24]
have been proven invariant to affine deformations of both
spatial and intensity domains. In addition, affine defor-
mations can effectively approximate, at least on a local
scale, other image transformations including perspective
and viewpoint changes. However, this approximation is
no longer valid for general deformations as those occurring
when viewing an object that deforms non-rigidly [26].

In order to match points of interest under non-rigid im-
age deformations, recent approaches propose optimizing
complex objective functions that ensure global consistence
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among the spatial layout of all matches [8, 9, 11, 21, 25].
Yet, none of these approaches explicitly builds a descriptor
that goes beyond affine transformations. An interesting ex-
ception is [13], that proposes embedding the image as a 3D
surface and using a Geodesic Intensity Histogram (GIH) as
a feature point descriptor. However, while this approach is
robust to non-rigid deformations, its performance drops un-
der light changes. This is because the GIH considers defor-
mations as one-to-one mappings where image pixels only
change their position but not their intensities.

To overcome the inherent limitation of a metric that uses
GIH distances, we propose a novel descriptor based on the
Heat Kernel Signature (HKS) recently introduced for non-
rigid 3D shape recognition [20, 23], and which besides in-
variance to deformation, it has been demonstrated to be in-
variant to global isotropic scalings [5]. This is particularly
interesting in our context of images embedded on 3D sur-
faces, because illumination changes produce variations on
the intensity dimension that can be seen as local anisotropic
scalings, for which [5] still shows a good resilience.

Our main contribution is thus in using the tools of diffu-
sion geometry to build a descriptor for 2D image patches in-
variant to non-rigid deformations and photometric changes.
More specifically, we consider an intensity image I as a sur-
face in the (x, y, βI) space, where (x, y) are the spatial co-
ordinates and β is a parameter which is set to an arbitrarily
large value to ensure the descriptor preserves edge informa-
tion. Drawing motivation from the HKS [5, 23], we then
describe each feature point in terms of the heat it dissipates
onto its neighborhood over time. To increase robustness
against 2D and intensity noise, we consider the heat diffu-
sion process not only on the point of interest, but also on the
pixels of its neighborhood, accordingly weighed by a Gaus-
sian kernel. As shown in Fig. 1, the resulting descriptor
(which we call DaLI, for Deformation and Light Invariant)
outperforms state-of-the-art descriptors in matching points
of interest between images that have undergone non-rigid
deformations and photometric changes.

2. Related Work
The SIFT descriptor [16] has become the main reference

among keypoint descriptors, showing great success in cap-
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Figure 1. Comparing DaLI against other descriptors. Top: Matching under Non-Rigid Deormations. We compare DaLI, against
SIFT [16], DAISY [24] and GIH [13]. Colored circles indicate the match has been correctly found among the first n top candidates,
where n ≤ 10 is parameterized by the legend on the right. A feature is considered as mismatched when n > 10 and we indicate this with a
cross. Note that GIH, which is specifically designed for handling non-rigid deformations, yields very good results, similar to our approach.
Bottom: Matching under Non-Rigid Deformations and Light Changes. Under this situation, only our approach remains robust.

turing local affine deformations including scaling, rotation
and certain lighting changes. Since it is relatively slow to
compute, most of the subsequent works have focused in de-
veloping faster descriptors [1, 6, 10, 17, 24]. However, little
effort has been dedicated in building descriptors robust to
more general deformations.

The limitations of the affine-invariant descriptors when
solving correspondences under non-rigid deformations are
compensated by enforcing global consistency, both spatial
and photometric, among all the features [2, 3, 8, 9, 11, 21,
25]. Thus, all these methods do not handle the non-rigid
nature of the problem, and rely on solving complex opti-
mization functions for establishing matches.

An alternative approach, is to directly build a defor-
mation invariant descriptor. With that purpose, recent ap-
proaches in two-dimensional shape analysis have proposed
using different types of intrinsic geometry. For exam-
ple, [4, 14] define metrics based on the inner-distance, and
[15] proposes using geodesic distances. However, all these
methods require the shapes to be segmented out and repre-
sented by binary images, which is difficult to hold in prac-
tice. In [13], it was shown that geodesic distances, in com-
bination with an appropriate 3D embedding of the image,
were adequate to achieve deformation invariance in inten-
sity images. Yet, this method assumes that pixels only
change its position and not its intensity and, as shown in
Fig. 1, becomes unreliable under illumination changes.

Motivated by [13], we represent the images as 2D sur-
faces embedded in the 3D space. In fact, this is quite an
old idea, although it has been mostly employed for low
level vision tasks such as image denoising [22, 29] and seg-
mentation [28]. The fundamental difference between our
approach and [13] is that we then describe each feature
point on the embedded surface considering the heat diffu-
sion over time [5, 23] instead of using a Geodesic Intensity

Histogram. As we will show in the results section this yields
substantially improved robustness, especially to lighting
changes. Again, the heat diffusion theory has been used in
several early approaches for 3D shape analysis [12, 19, 20],
but to the best of our knowledge, it has never been used for
describing image patches in intensity images.

3. Deformation and Light Invariant Descriptor
Our approach is inspired by current methods [5, 23] that

suggest using the diffusion geometry for 3D shape recog-
nition. In this section we show how this theory may be
adapted for describing 2D local patches of images that un-
dergo non-rigid deformations and photometric changes.

3.1. Invariance to Non-Rigid Deformations
Let us assume we want to describe a 2D image patch P ,

of size S × S and centered on a point of interest p. In
order to apply the diffusion geometry theory on intensity
patches we regard them as 2D surfaces embedded in 3D
space (Fig. 2 Top-left). More formally, let f : P → M
be the mapping of the patch P to a 3D Riemannian mani-
fold M . We explicitly define this mapping by:

f : x → (x, y, βP (x)) ∀x ∈ P , (1)

where P (x) is the pixel intensity at x = (x, y)�, and β is a
parameter that, as we will discuss later, controls the amount
of gradient magnitude preserved in the descriptor.

Several recent methods [12, 19, 20, 23] have used the
heat diffusion geometry for capturing the local properties of
3D surfaces and performing shape recognition. Along these
lines, we describe each patch P based on the heat diffusion
equation over the manifold M :(

�M +
∂

∂t

)
u(x, t) = 0 , (2)
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Figure 2. DaLI descriptor. Top Left: Our central idea is to embed image patches on 3D surfaces and describe them based on heat diffusion
processes. We represent the heat diffusion as a stack of images in the frequency domain. Right: Various slices of our descriptor for
two different patches. Bottom Left: Value of the descriptor for the pixels marked by color circles in the images on the right. Note that
corresponding pixels have very similar signatures. However, the signature may change from one pixel to its immediate neighbor. For
instance, z2 is at one pixel distance from x2, but their signature is rather different. As a consequence, using the signature of a single
point as a descriptor is prone to be very sensitive to 2D noise in the feature detection process. We address this issue by simultaneously
considering the signature of all the pixels within the patch, weighted by a Gaussian function of the distance to the center of the patch.

where �M is the Laplace-Beltrami operator, a generaliza-
tion of the Laplacian to non-Euclidean spaces. The solution
k(x,y, t) of the heat equation is called the heat kernel, and
represents the amount of heat that is diffused between points
x and y at time t, considering a unit heat source at x at time
t = 0. For a compact manifold M , the heat kernel can be
expressed by following spectral expansion [7, 19]:

k(x,y, t) =
∞∑
i=0

e−λitφi(x)φi(y) , (3)

where {λi} and {φi} are the eigenvalues and eigenvectors
of �M . Based on this expansion, [23] proposes describing
a point p on M using the Heat Kernel Signature

HKS(p, t) = k(p,p, t) =

∞∑
i=0

e−λitφ2
i (p) , (4)

which is shown to be isometrically-invariant, and adequate
for capturing both the local properties of the shape around p
(when t → 0) and the global structure of M (when t → ∞).

However, while on smooth surfaces the HKS of neigh-
boring points are expected to be very similar, when dealing
with the irregular shapes that may result from embedding
image patches, the heat kernel turns to be highly unstable
along the spatial domain (Fig. 2 Bottom-left). This makes
the HKS particulary sensitive to noise in the 2D coordinates
of the keypoints. To handle this situation, we build the de-
scriptor of a point p by assembling the HKS of all points x
within the patch P , properly weighted by a Gaussian func-
tion of the distance to the center of the patch. Thus, we
define the following Deformation Invariant (DI) descriptor:

DI(p, t) = [HKS(x, t) ·G(x;p, σ)]∀x∈P , (5)

where G(x;p, σ) is a 2D Gaussian function with mean p
and standard deviation σ, evaluated at x.

The price we pay for achieving increased robustness
to 2D noise is an additional complexity of the descriptor.
That is, if HKS(p, t) is a function defined on the tempo-
ral domain R

+, the new descriptor DI(p, t) is defined on
S×S×R

+, the product of the spatial and temporal domains.
However, note that for our purposes this is still feasible, be-
cause we do not need to compute a descriptor for every pixel
of the image, but just for a few hundreds of points of inter-
est. Furthermore, as we will next discuss, the descriptor
may be highly compacted if we represent it in frequency
domain instead of time domain.

3.2. Invariance to Illumination Changes
An intrinsic limitation of the descriptor introduced in

Eq. 5 is that it is not illumination invariant. This is because
light changes, scale the manifoldM along the intensity axis,
and HKS is sensitive to scaling. Indeed, it can be shown that
an isotropic scaling of the manifold M by a factor α, scales
the eigenvectors and eigenvalues of Eq. 3 by factors 1/α
and 1/α2, respectively [19]. The HKS of a point αp ∈ αM
can then be written as

HKS(αp, t)=
∞∑
i=0

e−
λi
α2 tφ

2
i (p)

α2
=

1

α2
HKS(p,

t

α2
) , (6)

which is an amplitude and time scaled version of the origi-
nal HKS.

Nonetheless, under isotropic scalings, several alterna-
tives have been proposed to remove the dependence of HKS
to the scale parameter α. For instance, [19] suggests nor-
malizing the eigenvalues in Eq. 3. [5] proposes applying
three consecutive transformations on the HKS. First, the
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Figure 3. Invariance of the DaLI and DI descriptors to non-rigid
deformations and illumination changes. Top and Left Images:
Different degrees of deformation and light changes applied on
the top left reference patch P0. Deformations are applied ac-
cording to a function Def(·)∈{Def0, . . . ,Def11}, where Def11
corresponds to the maximal deformation. Light changes are pro-
duced by scaling the intensity of P0 by a gain g ∈ [0, 1]. Bot-
tom Graph: Given a deformation Def(·) and a gain factor g,
we compute the percentage of change of the DI descriptor by
‖DI(P0)− DI(Def(gP0))‖/‖DI(P0)‖. The percentage of change
for DaLI is computed in a similar way. Observe that the DaLI is
much less sensitive than DI, particularly to lighting changes.

time-dimension is logarithmically sampled, which turns the
time scaling into a time-shift, that is, the right-hand side
of Eq. 6 begets α−2HKS(p,−2 logα + log t). Second,
the amplitude scaling factor is removed by taking the log-
arithm and a derivative w.r.t. log t. The Heat kernel then
becomes ∂

∂ log tHKS(p,−2 logα + log t). The time-shift
term −2 logα is finally removed using the magnitude of
the Fourier transform, which yields SI-HKS(p, w), a scale
invariant version of the original HKS in the frequency do-
main. In addition, since most of the signal information is
concentrated in the low-frequency components, the com-
plexity of the descriptor may be highly reduced compared
to that of the HKS(p, t).

Another advantage of the SI-HKS signature is that al-
though it is specifically designed to remove the dependence
of the HKS to isotropic scalings, it is quite resilient to
anisotropic transformations, such as those produced by in-
tensity changes, that only affect the intensity dimension of
the manifold M . Thus, we will use this signature to define
our Deformation and Light Invariant (DaLI) descriptor1:

DaLI(p, w) = [SI-HKS(x, w) ·G(x;p, σ)]∀x∈P . (7)

Fig. 2 shows several slices of the DaLI descriptor at dif-
ferent frequencies for a patch and a deformed version of it.
As said above, observe that most of the signal is concen-
trated on the low frequency components. In Fig. 3 we com-
pare the sensitivity of the DI and DaLI descriptors to defor-

1In the rest of the paper we will indistinctly use DaLI(p, w) ≡
DaLI(p) ≡ DaLI(P ).

Figure 4. Left: Image patch. Center: Representation of the patch
as a triangular mesh. For clarity of presentation we only depict
the (x, y) dimension of the mesh. Note that besides the vertices
placed on the center of the pixels (black circles) we have intro-
duced additional intra-pixel vertices (white circles), that provide
finer heat diffusion results and higher tolerance to in-plane rota-
tions. Right: Definition of the angles used to compute the discrete
Laplace-Beltrami operator.

mation and light changes. Note that DaLI, in contrast DI,
remains almost invariant to light changes, and it also shows
a better performance under deformations. In the results sec-
tion, we will show that this invariance is also accompanied
by a high discriminability, yielding significantly better re-
sults in keypoint matching than existing approaches.

3.3. Handling in-Plane Rotation and Scaling
Although DaLI tolerates certain amounts of in-plane ro-

tation and scaling, it is not designed for these purposes.
This is because with the aim of increasing robustness to 2D
noise, we built the descriptor using all the pixels within the
patch, and their spatial relations have been retained. Thus,
if the patch is rotated or scaled, so will be the descriptor.

In order to handle this situation, during the matching pro-
cess we will consider several rotated and scaled copies of
the descriptors. Therefore, given DaLI(p1) and DaLI(p2)
we will compare them based on the following metric

d(p1,p2) = argmin
{θi,sj}

‖Tθi,sj (DaLI(p1))− DaLI(p2)‖ (8)

where ‖·‖ denotes the L2 norm and Tθi,sj (DaLI(p)) rotates
and scales DaLI(p) by an angle θi and a scale parameter sj ,
respectively. These parameters are chosen among a discrete
set of values θ and s.

3.4. Implementation Details
We next describe a number of important details to be

considered for the implementation of the DaLI descriptor.

Geometry of the embedding
For the numerical computation of the heat diffusion, it is
necessary to discretize the problem. Thus, the manifold
M on which the image patch is embedded is represented
by a triangulated mesh. Since it is known that the way
the heat diffusion behaves depends on the geometry of this
mesh [27], we examined different triangulations: structured
with either 6 or 8 neighbors per vertex, and unstructured.
Fig. 4 shows the representation we use for all the experi-
ments. Although it requires introducing additional vertices
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Figure 5. Preserving edge information. Larger values of the pa-
rameter β in Eq. 1 allow the descriptor to retain edge informa-
tion. Each row depicts the DaLI descriptor at frequencies w =
0, 2, 4, 6, 8 for a different value of β.

between the pixels, its symmetry with respect to the x and y
directions provides robustness to small amounts of rotation,
and more uniform diffusions than other configurations.

Another important variable of our design is the magni-
tude of the parameter β in Eq. 1, that controls the impor-
tance of the intensity coordinate with respect to the (x, y)
coordinates. In particular, as shown in Fig. 5, large values
of β allow our descriptor to preserve edge information. This
is a remarkable feature of the DaLI descriptor, because be-
sides being deformation and illumination invariant, edge in-
formation is useful to discriminate among different patches.

Discretization of the Laplace-Beltrami operator
In order to approximate the Laplace-Beltrami eigenfunc-
tions on the triangular mesh we use the cotangent scheme
described in [18]. We next detail the main steps.

Let {p1, . . . ,pnv
} be the vertices of a triangular mesh,

associated to an image patch embedded on a 3D manifold.
We approximate the discrete Laplacian by a nv ×nv matrix
L = A−1M where A is a diagonal matrix in which Aii

is proportional to the area of all triangles sharing the vertex
pi. M is a sparse matrix computed by:

Mij =

⎧⎨
⎩

∑
k mij if i = j

−mij if pi and pj are adjacent
0 otherwise

(9)

where mij = cot γ+
ij + cot γ−

ij , and γ+
ij and γ−

ij are the two
opposite angles depicted in Fig.4-Right. The eigenvectors
and eigenvalues of the discrete Laplace-Beltrami operator
may then be computed from the solution of the generalized
eigenproblem MΦ = ΛAΦ, where Λ is a diagonal ma-
trix, in which the eigenvalues {λi} and the columns of Φ
correspond to the eigenvectors {φi} in Eq. 3.

4. Experimental Results
In this section we compare DaLI against other descrip-

tors for matching points of interest in images that have un-
dergone non-rigid deformations and illumination changes.

Figure 6. DaLI performance for different values of the parame-
ters S, β, σ and wmax. We compute and average the match-
ing rate for the two pairs of images shown in Fig. 1 using
S ∈ {10, 20, 40, 60, 80} pixels, β ∈ {10, 102, 103, 2×103, 104},
σ ∈ { S

16
, S
8
, S
4
, S
2
, S} and wmax ∈ {5, 10, 20, 30}. The graph

depicts the results of this 4D parameter exploration, where the
color of each square represents the percentage of mismatched
points for a specific combination of the parameters.

4.1. Choosing Descriptor’s Parameters
Before doing the comparison we will take a closer look

at the parameters that control the performance of our de-
scriptor, namely the size S of the patch, the magnitude β of
the embedding, the degree σ of smoothing within the patch,
and the dimensionality wmax of the descriptor in the fre-
quency domain. In order to find their optimal values, we
used the images shown in Fig. 1, and computed mismatch
rates for a wide range of values for each of the parameters.

The results of this parameter sweeping experiment are
shown in Fig. 6. It can be seen that the most influential
parameters are the size of the patch and the magnitude of
the embedding. In particular, the best matching results are
obtained for 40 ≥ S ≥ 60 and 1000 ≥ β ≥ 2000. Note
that these levels of β, ensure that the image gradient is re-
tained by the descriptor. In fact, this was already expected,
as the gradient is an important clue for recognition. On
the other hand, the influence of the smoothing parameter
σ and especially of the number of components necessary
is rather limited. Yet, Fig. 6 still shows some pattern for
these parameters, such that the best results are obtained for
S
8 ≥ σ ≥ S

4 and 10 ≥ wmax ≥ 30. Based on this analysis,
in all the experiments we report in the next section we set
S = 60, β = 2000, σ = S

4 and wmax = 20. In addition,
by setting the rotation and scaling parameters of Eq. 8 to
φ = {−20, 10, 0, 10, 20} and s = {0.8, 1, 1.2}, we allow
descriptor rotations of 40 degrees and scalings up to 20%.

4.2. Comparison with Other Approaches

We compare the performance of our descriptor to that
of the SIFT [16], DAISY [24] and GIH [13]. The first
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Synthetic Deformations

Light Changes

Figure 7. Left: Sample images from the test set used for comparison. The dataset includes both synthetic and real deformations, and
considers different situations and levels of complexity, from the sharp deformations of a piece of cloth under wind to the smooth distortions
produced when an object is reflected on the water. In this case, we manually segmented the area of the image belonging to the object from
its reflection and performed matching between these two regions (Top-right). For the synthetic deformations we made sure to produce
highly non-linear transformations, in order to assess the robustness of the descriptors to non-affine deformations. Right: For evaluating
the method to light changes, the intensity of the images was non-linearly transformed as a sinusoidal function of increasing amplitude. In
the following we denote them as Light Condition #i where i ∈ {0, 1, 2, 3, 4}. The case i = 0 implies no light change.

two, are representative examples of local region descrip-
tors designed for robustness to affine deformations and cer-
tain lighting changes. The GIH, instead, is specifically
designed to handle non-rigid image deformations, but as
pointed previously, it assumes these deformations are the
result of changing the position of the pixels within the im-
age, but not their intensity. This makes GIH sensitive to
light changes. In order to address this issue, [13] proposes
introducing a scale parameter and compute the GIH descrip-
tor for different magnitudes of the intensity domain. When
small light changes are expected this parameter is assumed
to change within the interval [0.95, 1.05]. Since we want
to deal with relatively large illumination changes, we also
consider the case that this parameter changes within the in-
terval [0.25, 1.75]. The GIHs computed in each case will be
denoted by GIH[0.95, 1.05] and GIH[0.25, 1.75].

For evaluating the descriptors, we acquired a dataset of
non-rigidly deformed pairs of images, of 640× 480 pixels,
containing 10 real and 11 synthetic deformations. In addi-
tion, for each pair of images, the intensity of one of them
was progressively modified (in 5 steps) in order to simulate
photometric variations. As a result, the whole database is
made of 105 image pairs under different levels of deforma-

tion and photometric changes. Fig. 7 shows a few samples.
Given an image pair, we then compute the recognition

rate of each descriptor as follows: (1) Using the SIFT detec-
tor, we pick 100≥N≥200 points of interest in the first im-
age, and estimate their ground truth position in the second
image. (2) We then compute the descriptor for all keypoints
in the two images. (3) Based on the descriptor-specific met-
rics, we estimate the n top matches for each keypoint in the
first image, and compute the detection rate as

Detection Rate(n) = 100 ·Nc(n)/N , (10)

where Nc(n) is the number of keypoints from the first im-
age, that have the correct match among the top n candidates.

Fig. 8-Top shows the detection rate for the synthetic
dataset. Note that when no light changes are considered,
the GIH[0.95, 1.05] yields almost identical results as our
approach. However, its performance rapidly drops when
photometric changes are introduced. In fact, even the
GIH[0.25, 1.75] does not provide satisfactory results, show-
ing that increasing the representation capabilities of the
GIH is not necessarily correlated with a higher discrimi-
nation power. DaLI also consistently outperforms SIFT and
DAISY, which are not specifically designed to tackle non-
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Figure 8. Mean detection rate on the synthetic and real deformation data sets, and for increasing amounts of light change.

linear deformations as those we evaluate in the synthetic
experiments.

Under real deformations (Fig. 8-Bottom), the DAISY
and GIH approaches change their roles. From one hand,
when no light change is considered, DAISY performs al-
most equally as our approach. This is because most of
the deformations of our real dataset can be locally approx-
imated by affine transformations, for which both DAISY
and SIFT have been proven to be robust. These methods
can also tolerate certain photometric changes, but much
less than DaLI. On the other hand, the GIH performs quite
poorly for real deformations, even when no light changes
are considered. This reveals another limitation of this ap-
proach, in that it assumes the effect of deformations is to
locally change the position of image pixels, while in real
deformations some of the pixels may disappear due to oc-
clusions. Although our approach does not explicitly address
occlusions, we can partially handle them by weighing the
contribution of the pixels within each patch, by a function
of the distance to the center. This makes that most of the in-
formation of our descriptor is concentrated in a small region
surrounding the point of interest, and hence, being less sen-
sitive to occlusions. Fig. 9 shows the results for a few pairs
of input images. Observe how DaLI clearly outperforms the
other approaches.

An finally, in Fig. 10 we compare the methods when only
the best candidate is taken, that is, considering n = 1 in
Eq. 10. In addition, since our dataset contains repetitions of
the same experiments with increasing amounts of deforma-
tion, we split the analysis into small and large deformations.
Again, we show that our approach clearly does better than
other methods, especially under illumination changes.
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Figure 10. Detection Rates for small and large deformations, con-
sidering just the best candidate (n = 1).

5. Conclusion and Future Work
Heat diffusion theory has been recently shown effective

for 3D shape recognition tasks. In this paper, we have pro-
posed using these tools to build the DaLI, a feature point
descriptor for 2D image patches, that is invariant to non-
rigid deformations and light changes. The advantages of our
method with respect to state-of-the-art have been demon-
strated by extensively testing on images containing both real
and synthetic deformations.

There are still some issues that may be improved and are
left for future work. For instance, we are currently repre-
senting the descriptor as a 3D array defined on the spatial
and frequency domains. As a future work we will inves-
tigate different techniques for compacting this representa-
tion to allow for faster matching while retaining recognition
rates. In addition, the technique we use to handle in-plane
rotations and scaling searches within a wide range of val-
ues. This step can be readily speeded up, by incorporating
prior orientation and scale estimation into our descriptor, as
it is done for the SIFT descriptor.
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Figure 9. Matching results for a few samples from the test set. As in Fig. 1 the color of the circles indicates the position n of the correct
match among the top candidates. If n > 10 we consider the point as unmatched and mark it with a cross.
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