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Fig. 1. Split Filling Mechanism (SFM). Given the left line art and (a) some user scribbles, the SFM separate the scribbles into (b) several groups and estimate
(c) the influence area of each group to accurately control the colour segmentation. Afterwards, the SFM performs (d) data-driven colourisation in each group
to generate visually satisfying colour combinations to assist artists. The outputs are merged together to achieve the right result. Flower Mouse © used with
artist permission.

Flat filling is a critical step in digital artistic content creation with the objec-
tive of filling line arts with flat colours.We present a deep learning framework
for user-guided line art flat filling that can compute the “influence areas”
of the user colour scribbles, i.e., the areas where the user scribbles should
propagate and influence. This framework explicitly controls such scribble
influence areas for artists to manipulate the colours of image details and
avoid colour leakage/contamination between scribbles, and simultaneously,
leverages data-driven colour generation to facilitate content creation. This
framework is based on a Split Filling Mechanism (SFM), which first splits
the user scribbles into individual groups and then independently processes
the colours and influence areas of each group with a Convolutional Neural
Network (CNN). Learned from more than a million illustrations, the frame-
work can estimate the scribble influence areas in a content-aware manner,
and can smartly generate visually pleasing colours to assist the daily works
of artists. We show that our proposed framework is easy to use, allowing
even amateurs to obtain professional-quality results on a wide variety of
line arts.

1 INTRODUCTION
Flat filling is a process to colour line arts with fairly flat colours
according to the artists’ specifications. This technique originates
from the on-paper cartoon animation of the 1930s and remains
critical in the digital painting era, as these flat-coloured results
exhibit great versatility in a wide variety of art workflows. Not only
these flat colours can be directly blended with the line arts to create
cartoon-like illustrations, they can also be used as independent

foundations without blending the line arts for further adjustments
towards more sophisticated and plentiful digital paintings.
In computer vision and graphics, two broad paradigms of user-

guided line art colourisation exist: traditional user scribble prop-
agation and learning-based interactive colourisation. In the first
paradigm, typical methods like LazyBrush [Sykora et al. 2009] and
Manga Colourisation [Qu et al. 2006] can explicitly and accurately
control the “influence areas” of user scribbles, i.e., the areas where
those scribbles should propagate and influence, by matching the
high-frequency/amplitude image constituents with hand-defined
prior/energy. In professional use cases, the precise control of scrib-
bles’ influence areas is indispensable for artists in editing detailed
colours. Ideally, supposing such influence areas are satisfactorily
solved, the colouring procedure will be free from colour leakages, as
they only propagate colour indices without colour values contami-
nating each other. Besides, as scribble propagation entirely relies on
user inputs, the related workflows are labour-intensive and require
users to have artistic knowledge to obtain professional results.

In the second paradigm, typical learning-based interactive colouri-
sation methods such as PaintsChainer [TaiZan 2016] and Zhang et
al. [Zhang et al. 2018] colourise line arts by learning parametric
mappings from sparse lines and user inputs to colourful illustrations,
and they can be post-processed with image flattening methods (e.g.,
[Felzenszwalb and Huttenlocher 2004; Zhang et al. 2020]) to meet
the flat filling requirement. With the data-driven nature, these meth-
ods can “smartly” generate visually pleasing colour combinations
for in-the-wild line arts while reducing the burden on the artist and
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stimulating the artist’s creation aspiration. Given that these meth-
ods do not explicitly control the influence areas of each scribble,
users often need to go through tedious trail-and-errors when they
attempt to control the accurate colouring on small detailed regions,
or when they want to eliminate the colour leakage between multiple
adjacent scribbles.
Might we be able to get the best of both worlds, controlling the

influence areas of user scribbles accurately to meet professional
use cases, while at the same time incorporating data-driven colour
generation capability to inspire and facilitate content creation? We
propose the Split Filling Mechanism (SFM) to achieve these two
goals simultaneously as shown in Fig. 1. Firstly, to control the influ-
ence areas of scribbles, the SFM splits user scribbles (Fig. 1-(a)) into
several groups (Fig. 1-(b)) and independently estimates the influence
areas of each group (Fig. 1-(c)), preventing unwanted colour contam-
ination/leakage between scribble groups. Then, to generate colours
for line arts through learning, the SFM framework learns from one
million of illustrations to generate useful colour combinations in
each scribble group (Fig. 1-(d)). In this way, the split filling in these
groups can be merged into the final output (Fig. 1-right), where the
accurate control of scribble influence and the data-driven colour
generation capability is concurrently achieved, allowing for high
quality line art flat filling.
Most creative tools in content manipulation are defined either

non-parametrically, e.g., as an energy formulation, or with paramet-
ric mechanisms such as a deep learning model. Behaviours of those
tools are therefore entirely conditioned by either human-defined
propositions or machine-learned knowledge. Our approach differs in
that it yields a joint effect of parametric models and non-parametric
rules. Through SFM, the algorithm may end up with a more satisfac-
tory procedure for interpreting user indications to flat filling results
than what would be possible for either end-to-end learning models
or human-defined principles.
Our contributions are as follows: (1) We analyse the merits and

goals of traditional propagation-based and interactive learning-
based colourisation methods, and then motivate the problem to
get the best of both worlds to simultaneously control the influence
areas of user scribbles and generate plausible colour combinations.
(2) We propose the Split Filling Mechanism (SFM) framework con-
sisting of the split scribble processing and data-driven colourisation
steps. (3) We show that the proposed approach can handle a diver-
sity of complex line drawings, enabling both artists and amateurs
to easily achieve high-quality flat filling results.

2 RELATED WORK
Flat Filling. Since the original “flood filling” algorithm, going back
to the “bucket” tool on the first Apple computer, the Apple I [Woz-
niak 1976], many methods have been proposed to fill colours within
a user-defined area. Shaw et al. [2004] propose to speed up the flat
filling process using an efficient tree search algorithm. Optimisation-
based approaches have also been used to propagate the colour from
user scribbles in black-and-white photograph [Levin et al. 2004], and
further extended to the case of filling colours in patterned manga
screen-tones [Qu et al. 2006]. LazyBrush [Sykora et al. 2009] is one
of the most well known variants of an optimisation approach to

fill colour in line drawings, rough sketches, and even screen-toned
manga. The popular opensource software GIMP uses an auto-closing
algorithm [Fourey et al. 2018] to compute flat filling regions in line
drawings. Trapped-ball flood filling [Hensman and Aizawa 2017]
is also commonly used to avoid small gaps in the line drawings.
Our proposed framework view the flat filling workflow as a split-
and-merge problem, and uses a data-driven approach to learn the
colourisation from one million illustrations.
Learning-based Sketch Colourisation. The prosperity of large-
scale learning techniques with copious amounts of available illus-
trations has popularised the usage of neural networks to colourise
images. Although initial research focused on black-and-white pho-
tography colourisation [He et al. 2018; Iizuka et al. 2016; Larsson
et al. 2016; Zhang et al. 2016, 2017b], research on the colourisation of
line drawings quickly appeared. Scribbler [Sangkloy et al. 2017] was
proposed to colour different line drawings with a particular focus on
bedroom scenes. Furusawa et al. [2017] proposed to colourise manga
with given different colour palettes. Adversarial losses [Goodfel-
low et al. 2014] have also proved popular in approaches such as
Deepcolour [Frans 2017] and Auto-painter [Liu et al. 2017] due
to their ability to produce more vivid and realistic colourisations.
PaintsChainer [TaiZan 2016] is an example of a commercial product
for learning-based sketch colourisation. A two-stage framework
to decompose the colourisation task into two independent stages
was proposed in [Zhang et al. 2018]. More recently, an attention-
based framework for line art video colourisation based on a few
video frame references has been proposed [Shi et al. 2020]. As an
alternative to directly learning a colourisation approach, style trans-
fer has also been used for colourisation [Chen et al. 2017; Gatys
et al. 2016; He et al. 2017; Hoffman et al. 2018; Liao et al. 2017; Zhu
et al. 2017]. Related to colourisation of line drawings, learning-based
inking approaches [Li et al. 2017; Liu et al. 2015; Simo-Serra et al.
2018a,b, 2016] can also be used to improve the input sketches and
consequently the afterwards colourisation. It is notable that those
approaches tend to produce results with pixel-level texture learnt
from their training data, whereas in many standard line-drawing-
based artistic creation workflows (e.g., cel-colouring, cel-shading,
etc.), artists need to fill colour in regions, and the colours in each
region must be flat and consistent. Thus, it remains an open prob-
lem to ease the line drawing flat filling task using data-driven or
learning-based approaches. In this research, we focus on the flat
filling which plays a very important role in modern illustration and
digital painting production.
Decomposition-based Image Processing. Decomposition is a
unique paradigm in image processing in which the splitting allows
easier manipulation of the image, and is especially used in colour
layer editing and blending. One of the most famous approaches is
intrinsic image decomposition [Barrow and Tenenbaum 1978], in
which images are split into albedo and shading layers. Generally it is
seen as a constrained optimisation problem [Shen et al. 2011], while
recent approaches leverage learning-based algorithms to directly
learn the mapping between input images and their albedo from large
amounts of data [Barron and Malik 2012; Gehler et al. 2011; Serra
et al. 2012]. Apart from intrinsic image decomposition, it is common
to fully split images into several component layers for image editing
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Fig. 2. Framework overview. Our framework splits the user scribbles by colours into virtual palette cells, using each cell to colour the image independently
as shown by each row. Finally, all the different colourisation results are merged into a single output image. Pea Princess © used with artist permission.

purposes before merging them back [Lin et al. 2017]. This decompo-
sition can be done adaptively based on colour segmentation [Aksoy
et al. 2017] or based on constrained optimisation [Koyama and Goto
2018]. Zhang et al. [2017a] propose to optimise the decomposition
to re-colour images. In this paper, our framework leverages a split
filling mechanism that groups the different user scribbles to produce
different colourisations that are finally merged together into a single
final result.

3 METHOD

3.1 Split filling mechanism
3.1.1 Overview. As shown in Fig. 2, the inputs of the framework
are a gray scale line drawing X ∈ Rw×h , with a width w and a
height h, and an user scribble map U ∈ Rw×h×4 with three RGB
channels plus an alpha channel, whereas the output is a flat filling
result Y ∈ Rw×h×3. This framework first split the user scribblesU
into N groups, yielding N split scribble maps Ui ∈ Rw×h×4 with
i ∈ {1, ...,N } indicating the group index. The goal is to estimate the
resulting colourCi ∈ Rw×h×3 and influence area Ii ∈ Rw×h of each
group, so as to merge them together to obtain the result Y .

3.1.2 Splitting user scribbles. We cluster the colours used in the
user scribble mapU into N clusters using the k-means colour clus-
tering algorithm, and use the obtained colour clusters to split the
user scribble mapU into a set of split scribble maps {U1...N } (Fig. 3-
(a)). One notice is that the naive RGB space k-means algorithm is
relatively weak in differing colours with perceptually distinguish-
able minor hue/chroma difference, thus, we use a colour chroma
transform to enhance it as

[r ,д,b]⊺ 7→

[
β ·

r + д + b

3
,

r

r + д + b
,

д

r + д + b

]⊺
. (1)

Under ideal conditions, i.e., if colours are fully separable with their
intensity (axis 1), red chromaticity (axis 2), and green chromaticity

(axis 3), this transform will perfectly separate different hue/chroma
colours along the second two axes. While more sophisticated colour
spaces have been proposed (e.g., [Omer and Werman 2004]), we find
that Eq. (1) is sufficient for the initial splitting. We scale the intensity
by β to balance the importance of the intensity and chromaticity.

3.1.3 Masking scribbles. As shown in Fig. 3-(a), we propose to com-
pute a scribble maskMi to ease further learning tasks. In each mask
Mi , the scribble pixels inUi are marked as “1”, whereas the remain-
ing scribble pixels inU are marked as “−1”, and the other pixels are
“0”.

3.1.4 Estimating influence areas and resulting colours. We train a
Convolutional Neural Network (CNN) to estimate the influence
areas and resulting colours of each scribble group. As shown in
Fig. 3-(b), the inputs of the neural network are the line drawing
X , split scribble map Ui , and split scribble mask Mi , whereas the
outputs are the predicted region skeleton map S ′i , colour map C ′

i ,
and influence map I ′i . These colour and influence maps serve as
a coarse initialization of the flat filling. The skeleton map is com-
puted with Zhang and Suen 1984 [Zhang and Suen 1984]’s region
skeleton intensity approach, which enables end-to-end region ma-
nipulation — arbitrary discrete regions can be converted to learnable
per-pixel skeleton intensity with the skeleton-from-region transform
(Appendix-A), and such skeleton can also reconstruct the original
regions with the region-from-skeleton transform (Appendix-B).

3.1.5 Interpreting regions. As shown in Fig. 3-(c), we compute the
average value of all estimated skeleton maps as S ′ =

∑N
i=1 S

′
i /N and

use the region-from-skeleton transform (Appendix-B) to obtain the
regions {Ωi ...n }. The final colour mapCi is computed by filling all
regions with the median colours sampled from the predicted colour
map C ′

i . Similarly, the final influence map Ii is computed from I ′i
by setting “1” to the best i-th influence map with the largest value
in each region, and “0” to the others.
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scribble map Ui ; split scribble mask Mi

X

U Ui Mi Si’ Ci’ Ii’ Ci Ii{Ω1...n }

S’

Y

neural
network

colour 
consistency 

optimisation

(b) Predicted region skeleton map Si’ ,  
colour map Ci’ and influence map Ii’

(c) Average skeleton map S’ ; initial regions {Ω1...n } ; 
flattened colour map Ci  and influence map Ii

(d) Output 
merged result Y

Fig. 3. Inference pipeline.We visualise the components involved in the inference pipeline of our framework. Flower #1 (line art) © used with artist permission.
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Fig. 4. Training data synthesis pipeline. We illustrate the involved components within our dataset synthesis step. Flower #2 © used with artist permission.

3.1.6 Finalizing results. Finally, as shown in Fig. 3-(d), we perform
a colour consistency optimization in each colour map Ci to merge
adjacent regions selectively and replace several predicted colours
with user scribble colours to improve the colour consistency and
tool usability. We use the same optimization approach in both the
inference phase and later dataset synthesis. Afterwards, the final
merging output is computed as

Y =
N∑
i=1

Ci ⊙ Ii . (2)

where ⊙ is the Hadamard product operator. We note that we apply
the same weights to each RGB channel.

3.1.7 colour consistency optimization. The overall idea of this opti-
mization is that we can merge several regions and their colours, so
that the model can learn to smartly and selectively merge several
regions and colourise them with consistent colours, according to
the user scribbles and the input line drawing context and semantics.
In particular, we note that each split scribble maskMi indicates a
region set Ψi as

Ψi = {Ωj | ∃p ∈ Ωj , (Mi )p = 1} , (3)

implying that the scribble maskMi value is "1" for at least one pixel
position p in a sampled region Ωj , i.e., at least one user scribble is

located in the region Ωj . Afterwards, we estimate the set of region
pairs (Ωa ,Ωb ) that can be merged

{(Ωa ,Ωb )|Ωa∈Ψi ,Ωb∈N(Ωa )∩Ψi , | |Ωa − Ωb | |2<τ }, (4)

where N(Ωi ) indicates the set of neighbor regions to Ωi , the term
Ωi is the mean colour value of Ωi , the operator | | · | |2 is the Eu-
clidean distance, and τ is a threshold hyper-parameter. The pair
set {(Ωa ,Ωb )} can be solved by brute force search, and we provide
customized search steps and detailed replication guidelines in the
supplementary material. We merge the region pairs from this set
and replace their colours with the colours of the scribbles covering
them to ensure the colour consistency.

3.2 Data preparation and optimisation
3.2.1 Dataset synthesis. As shown in Fig. 4, we synthesize a dataset
to train our model with the paired data of the line drawing map X ,
split scribble mapUi , split scribble maskMi , skeleton map S , colour
mapC , and the influence map Ii . The {X ,Ui ,Mi } are the fed inputs,
while the {S,C, Ii } are the learning objectives. To be specific, we
sample one million illustrations in the Danbooru dataset [Danbooru-
Community 2018]. Afterwards, given each illustration, we generate
a line drawing mapX with [Simo-Serra et al. 2018a] (Fig. 4-(b)), and
extract the initial regions {Ωi ...n } with [Zhang et al. 2020] (Fig. 4-
(b)). Then, using the skeleton-from-region transform (Appendix-A),
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(a) Layer coverage problem (b) Scribble reliability problem (c) Colour uncertainty problem

Fig. 5. Scribble problems. We illustrate common problems associated with the user scribbles synthesising steps. Our scribble synthesising approach is
tailored to resolve these problems. © used with artist permission.

32
64

128

256

512
1024

512

256

128
64

32

512

256

128
64

32

512

256

128
64 32

Line
drawing

X
( w × h )

Split 
scribble map

Ui
( w × h × 4 )

Split
scribble mask

Mi

( w × h )

Flat
colour map

C
( w × h × 3 )

Flat
influence map

Ii
( w × h )

Region 
skeleton map

S
( w × h )

Convolution layer & ReLU

Average pooling layer

Up-sampling layer

line drawing
X
split scribble
Ui
scribble mask
Mi Influence

decoder

Skeleton 
decoder

Colour
decoder

Colour map

Influence map

Skeleton map
MSE

MSE

MSE

CCi′

IiIi′

SSi′

Fig. 6. Neural network architecture. On the left we visualise the different components, and on the right we visualise the full architecture. All convolutional
layers use 3 × 3px kernels. We do not use any normalisation layers. The Mean Squared Error is indicated as “MSE”.

we convert these regions to a skeleton map S (Fig. 4-(b)). In parallel,
by filling all regions with the median colours sampled from the
illustration, we obtain the flat colour map C (Fig. 4-(b)). Next, we
use k-means in the aforementioned space (Eq. (1)) to cluster the flat
colour mapC and obtain the influence maps Ii (Fig. 4-(c)). For each
influence map Ii , we synthesize a split scribble mapUi (Fig. 4-(d)),
and these split scribble maps are merged into one scribble mapU
(Fig. 4-(e)). Finally, for each split scribble mapUi , we compute the
scribble maskMi (Fig. 4-(f)).

3.2.2 User scribble simulation. To simulate each split scribble map
Ui , we use straight lines with 3pxwidths between two pointsp1,p2 ∈

R2. The scribble colour is taken from the value ofC at p1, and the
endpoints {p1,p2} are randomly taken from a random region Ωj
that belongs to a region set Φi specified by the current i-th influence
map Ii with

Φi = {Ωj | ∀p ∈ Ωj , (Ii )p = 1} , (5)

indicating that the influence map Ii value is "1" for all pixel position
p in the sampled region Ωj . Next, we observe several common user
scribbles as shown in Fig. 5 and note three typical problems. (i) Layer
coverage. It is not clear what regions of the line drawing should be
influenced by each scribble. As shown in Fig. 5-(a), scribbles may
be needed to propagate to only nearby regions, or farther regions
depending on the context and semantics. (ii) Scribble reliability.
Users in general will not provide strictly accurate scribbles, and
instead may use conflicting colours for a single region, or scribbles
that go past region boundaries as shown in Fig. 5-(b). (iii) colour
uncertainty. It is not clear how the user input scribble colours should
be propagated. As shown in Fig. 5-(c), in some cases it may be
important to give a flat colour to the covered regions, while in others
it may be preferable to generate colour variations and transitions.

Although the SFM framework naturally mitigates these problems,
care must be takenwhen synthesizing the training scribbles. In order
to deal with the layer coverage issue, we randomly manipulate the
region coverage of each scribble, so that the model can learn to
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Fig. 7. Working with a small number of scribbles. We present results
with relatively simple and fewer scribbles, i.e., less than 20 scribbles. Big
Wolf, Jurassic, Old Tree Roots, Baby Dragon, Peony, and Mammoth © used
with artist permission.

estimate appropriate regions that are affected by each scribble. To
be specific, instead of sampling from the same region Ωj for p1 and
p2, we allow p2 to be taken from a region that is reachable from
p1 within the region set Φi . We implement this by performing a
random walk from Ωj to find a random k-step-neighbor region Ωk
to sample p2 from. We do a k = 3 step random walk to not obtain
regions that are too far away. Next, to tackle the scribble reliability
problem, we not only sample scribble endpoint positions within
fixed region area, but also from a surrounding area with r pixel
radius around the region (we use r = 15 by default) to simulate the
coarse scribbles outside of the sampled regions. Finally, we perform
the aforementioned colour consistency optimization in each colour
mapCi to simulate colour uncertainty, mimicking real scribbles that
are coarsely drawn by artists.

3.2.3 Training. As shown in Fig. 6, we use a Fully Convolutional
Neural Network (FCNN) with a common encoder and three decoders
to predict a colourmapC ′

i , an influencemap I ′i , and a region skeleton
map S ′i , respectively. The loss function can be written as

L = ∥C ′
i −C∥22︸      ︷︷      ︸

colour maps

+ ∥I ′i − Ii ∥
2
2︸      ︷︷      ︸

Influence maps

+ ∥S ′i − S ∥22︸     ︷︷     ︸
Skeleton maps

, (6)

where C is the ground truth colour map, Ii is the ground truth
influence map, and S is the ground truth region skeleton. It is notable
that we neither use masked loss nor adversarial learning. Give that
the architecture is fully convolutional, this model is applicable to
images of adjustable resolutions.

4 EXPERIMENTS
In this section, we perform a set of comparisons with existing ap-
proaches and ablation studies for an in-depth evaluation of the
proposed framework.

4.1 Examples with simple line art
We show some results with a relatively small number of scribbles
in Fig. 7. These results are obtained from non-artist amateur users
with our framework. All those results are achieved with less than
20 scribbles. Despite using a limited number of imprecise scribbles,
the line drawings can still be flat-filled with plausible visual quality
and can be directly used in many real-life artistic content creation
workflows.

4.2 User study
We first conduct a user study to test this framework with non-artist
amateur users. As we found that these users may have trouble with
picking appropriate colours, we have added auxiliary colour tables
purchased from a professional cartoon studio with some examples
shown in Fig. 8. By browsing these tables, which will be made
publicly available, amateur users are able to get quick inspiration
for their scribble colours. A break-down of an example result is
shown in Fig. 9. We can see how the amateur user can obtain near
professional-quality results, despite having no experience in artistic
illustration and digital painting. More examples are shown in the
supplementary materiel, including results from both amateur users
and professional artists.

4.3 Qualitative result
We show some qualitative results and layer break-downs in Fig. 10.
We can see how the proposed framework is applicable for line draw-
ings with a large diversity and complexity to obtain high-quality
results. More details and results are provided in the supplementary
material.

4.4 Comparison with existing approach
We compare the proposed framework with existing deep learning
and traditional algorithms in Fig. 11. In particular, we compare with
Two-Stage Sketch Colourisation [Zhang et al. 2018], Manga colouri-
sation [Qu et al. 2006], and LazyBrush [Sykora et al. 2009]. We
can see from the results that the deep-learning-based Two-Stage
Sketch Colourisation is unable to perform flat colourisation, while
the optimisation-based approaches of Manga colourisation and Lazy-
Brush are relatively weak in our specific illustration flat colourisa-
tion problem. Our split-and-merge approach is able to produce a
detailed segmentation with satisfying flat colouring.
We also compare our proposed approach with a combination of

existing approaches in Fig. 12. In particular, we use the GIMP line
drawing region extraction [Fourey et al. 2018] to obtain a region
segmentation, and use that to flatten the colours of the Two-Stage
Sketch Colourisation method [Zhang et al. 2018]. Despite using the
combination of two leading algorithms, the obtained results are
not as convincing as our proposed approach. We hypothesise that
this is due to the fact we are not only learning to colourise, but
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Energetic Romantic Cute Fresh Elegant Simple Science-fiction

... ... ... ... ... ... ...
Fig. 8. Auxiliary colour tables. We have collected 851 professional colour tables to help amateur users selecting colours, which we will make publicly
available. © used with artist permission.

(a) Input (b) Output

(c) Scribble 

(d)

(e)

(f)

Fig. 9. Amateur user result. We show an example result achieved by an amateur user who first browses the auxiliary colour tables for inspiration, and then
perform interactive colourisation of a complex line drawing in 8 minutes and 41 seconds. We show (a) the input line drawing, (b) output flat filling, (c) user
scribbles, (d) split scribble maps Ui , (e) colour maps Ci , and (f) influence maps Ii . Sky with Alice © used with artist permission.

also learning to perform a region segmentation and merging that
improves the colourisation in a single framework.

4.5 Quantitative analysis
We also perform an analysis of the results obtained by the users by
calculating how many regions are filled manually by user scribbles,
or filled automatically by our framework. In particular, we divide
all colourised regions into three categories:

(1) Automatic regions. The automatic regions are those regions with
no colour indications, i.e., regions that are not covered by any
user scribbles. Our framework needs to automatically generate
the colours for those regions.

(2) Manual regions. The manual regions are those regions coloured
with accurate user-indicated colours. As mentioned in § 3.1.4,
during the inference of our framework, we selectively merge

some regions and replace their colours with the accurate scribble
colours, according to Eq. (4) and the region structure estimated
by the neural networks. This enables users to directly control
and manipulate the precise colours of some specific regions, and
those specific regions are viewed as manual regions.

(3) Semi-automatic regions. Excepting the automatic and manual re-
gions, all the remaining regions are semi-automatic regions. The
colours of those regions are governed by both the users and the
neural networks. The users give rough scribbles with coarsely
defined colours, and our framework generate visually satisfying
colour transitions, variations, and gradients. Besides, as men-
tioned in § 3.1.7, the unreliable scribbles, i.e., those scribbles
with conflicting colours or boundary leakage, are also addressed
smartly by our framework in this category.
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Line art
X

User scribble
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Split scribble
Ui

Final outputColour map
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Influence map
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Result layer

User provided maps Our generated maps

Ii Ii

Fig. 10. Qualitative results. We show a break-down of several results with our proposed approach. More examples are provided in the supplementary
material. Flower with Alice, Tree Elves, Anna in Dream, Book Girl, and Reading Awake © used with artist permission.
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Line drawing Scribble Zhang et al. [2018] Qu et al. [2006] LazyBrush [2009] Ours

Fig. 11. Comparison with existing colourisation approaches. We compare our framework with [Qu et al. 2006; Sykora et al. 2009; Zhang et al. 2018].
Flower Angel, Comollon, Wisteria Flowers, Poison Skull, and Megumi © used with artist permission.
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Line drawing Scribble Zhang et al. [2018] GIMP region Zhang et al + GIMP Ours

Fig. 12. Comparison with combination of existing approaches for flat colourisation.We compare our approach with the colourisation method [Zhang
et al. 2018] combined with the segmentation method [Fourey et al. 2018]. Fountain Angel, Goblin, Robot, and Azalea © used with artist permission.
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Line drawing 1st screenshot 2nd screenshot 3rd  screenshot 4th screenshot 5th screenshot 6th screenshot

Fig. 13. Snapshots during user interaction.We present snapshots of the user scribble canvas and the result canvas captured during the interactive flat
filling. Squirrel, and Heavenly Girl © used with artist permission.

Table 1. Scribble analysis.We perform an analysis of the number of scrib-
bles used for the flat colourisation of different line drawings. We split the
region colourisation into three categories: automatically filled regions, semi-
automatically filled regions, and manually filled regions, depending on how
the framework has colourised each region.

Figure Auto region Semi-auto region Manual region

Flower Mouse 513 (46.43%) 510 (46.12%) 82 (7.44%)
Pea Princess 478 (47.31%) 442 (43.73%) 91 (8.96%)
Sky with Alice 551 (55.25%) 315 (31.56%) 132 (13.19%)
Prayer 530 (60.69%) 284 (32.52%) 59 (6.79%)
Flower with Alice 447 (54.56%) 261 (31.83%) 112 (13.62%)
Tree Elves 599 (59.13%) 366 (36.18%) 48 (4.69%)
Anna in Dream 643 (61.68%) 317 (30.42%) 82 (7.90%)
Book Girl 589 (53.80%) 377 (34.45%) 129 (11.75%)
Reading Awake 396 (44.61%) 362 (40.79%) 130 (14.60%)

Overall 53.72% ± 5.98% 36.40% ± 5.44% 9.88% ± 3.30%

Results of this analysis are shown in Table 1, where we can see
that most of the regions are automatically or semi-automatically
coloured, with only roughly 10% of the regions being manually
coloured. This highlights how satisfactory results can be obtained
with a relatively small number of scribbles.

4.6 User interaction analysis
we sample several snapshots during the interactive flat filling and
show them in Fig. 13. On one hand, we can see that users are able to
progressively and interactively improve the flat filling results using
our framework. On the other hand, our framework also does not fail
even when the scribbles are minimal in the beginning. Furthermore,
we also find that the users tend to draft up the initial colour compo-
sitions at the beginning time with a small number of scribbles, and
then retouch the details with more scribbles.
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Line drawing Scribbles τ = 0.01 τ = 0.1 (default)

Fig. 14. Analysis of the τ parameter. The parameter τ controls how the framework merges adjacent regions. For higher values of τ , more regions will be
merged. Different use cases may need different values of τ . Alice’s Night © used with artist permission.

Line drawing Scribbles W/o split-and-merge W/ split-and-merge (proposed)

Fig. 15. Significance of split filling mechanism. We compare the results obtained from our neural architecture with (w/) or without (w/o) the split filling
mechanism. One Leaf Knows Autumn © used with artist permission.

4.7 Ablative analysis
Our proposed approach not only depends on the user scribbles, but
also has an important hyper-parameter τ that controls how adjacent
regions are merged. As shown in Fig. 14, larger values of τ leads to
more regions beingmerged, while low values can conserve toomany
details and lead to non-flat fillings. We find that τ = 0.1 is a good
compromise and use it as a default and recommended configuration.

4.8 Significance of split filling mechanism
We compare our framework with a cloned version but without
the split-and-merge processing. To be specific, we train our neural
architecture (Fig. 6) with non-split data to directly estimate the final
colouring and regions. In this setting, the training inputs become the

line drawing X and non-split original user scribble mapU , whereas
the outputs are the region skeleton map S ′ and colour mapC ′. The
influence decoder in Fig. 6 is unused and the influence map loss in
Eq. (6) becomes zero. We directly use the estimated S ′ to compute
regions and flattenC ′ to get the final flat filling. All parameters and
pipelines, including the colour consistency optimisation, remain
same.
The results are shown in Fig. 15. We can see that the split-and-

merge processing is an indispensable part of our framework. In
absence of this processing, the outputs degenerate significantly
yielding hardly useable flat filling. This is mainly because our split-
and-merge processing mimics the real-life on-paper flat filling work-
flow with palette cells to manage colours and prevent unwanted
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Line drawing Amateur user

Professional user (2 years of digital painting experience) Professional user (5 years of digital painting experience)

Fig. 16. Comparison of results from amateur and professional users. We show results created by one amateur user and two professional artists. All
results are created using our framework. Prayer © used with artist permission.

Line drawing Scribbles Ours (raw) Blended (raw) Ours (with guided filter) Blended (with guided filter)

Fig. 17. Limitation. The generated regions can break the image structure, which is especially common when the input line drawing is a rough sketch. This
limitation can be meliorated to some extent using guided filters [He et al. 2013]. Zhao-Yun © used with artist permission.
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contamination between colour pigments. This characteristic is es-
sential for professional flat filling studios.

4.9 Comparison of professional and amateur users
We show comparisons of results from professional and amateur
users in Fig. 16, where all the results are achieved using our frame-
work. We can see that the amateur user result is competitive to the
professional ones, indicating that our framework has greatly helped
the invited amateur user to perform flat filling. Also, we can see in
this case that the result exhibit an accurate segmentation, and the
generated colour variations are surprisingly effective.

4.10 Limitation
The major limitation of our framework is that, when the input line
drawing is a rough sketch, the generated flat filling regions may
not strictly fit the image structure as shown in Fig. 17. This causes
aliasing distortion when the line drawing and the filled colours are
blended. One possible solution for this limitation is to use guided
filters [He et al. 2013] as a post-processing to improve the colour
maps before blending but this can lead to other issues such as colour
bleeding. How to further improve this structure consistency remains
an open problem.

5 CONCLUSION
We present a line drawing flat filling approach motivated by the
classic on-paper flat filling workflow. We observe the artist usage
of the grid palette, and find that the colour pigments in the same
palette cell can produce colour variations and transitions, whereas
those in separate palette cells will not influence each other. Based
on these observations, we propose to split the user scribble colours
into a virtual grid palette to manage the colours. Afterwards, we
perform independent colourisation in each palette cell and then
merges them back together. Results show that our approach is able
to handle diverse contents with complicated patterns and obtain
reliable high-quality colourisations. We also show that the presented
tool is helpful for both amateur users and professional artists.
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