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Abstract Neural rendering provides a fundamentally new
way to render photorealistic images. Similar to traditional
light-baking methods, neural rendering utilizes neural net-
works to bake representations of scenes, materials, and lights
into latent vectors learned from path-tracing ground truths.
However, existing neural rendering algorithms typically use
G-buffers to provide position, normal, and texture information
of scenes, which are prone to occlusion by transparent sur-
faces, leading to distortions and loss of detail in the rendered
images. To address this limitation, we propose a novel neural
rendering pipeline that accurately renders the scene behind
transparent surfaces with global illumination and variable
scenes. Our method separates the G-buffers of opaque and
transparent objects, retaining G-buffer information behind
transparent objects. Additionally, to render the transparent
objects with permutation invariance, we designed a new
permutation-invariant neural blending function. We integrate
our algorithm into an efficient custom renderer to achieve
real-time performance. Our results show that our method
is capable of rendering photorealistic images with variable
scenes and viewpoints, accurately capturing complex trans-
parent structures along with global illumination. Our renderer
can achieve real-time performance (256 × 256 at 63 FPS
and 512× 512 at 32 FPS) on scenes with multiple variable
transparent objects.

Keywords global illumination; neural rendering; real-time
rendering; transparency rendering

1 Introduction
Global illumination rendering has been a fundamental chal-
lenge in computer graphics due to the complexity of the
physical phenomena involved. Traditionally, path tracing
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Fig. 1 Transparency quality improvement. We introduce our
custom neural rendering framework to address transparency ren-
dering issues in existing neural rendering approaches. Compared
to Active Exploration, our method is capable of rendering objects
behind transparent surfaces with minimum loss of details with global
illumination effects.

algorithms [1, 2] have been the main method to render photo-
realistic images with high-quality global illumination effects.
However, such methods are known to be expensive and time-
consuming; rendering one image may take minutes. Baked
global illumination techniques, on the other hand, provide
efficient solutions for interactive rendering by pre-computing
lighting information. Methods such as lightmap baking and
light probes [3] have been commonly used in game engines
to generate real-time global illumination, but they have limi-
tations on dynamic scenes.

Recently, neural rendering approaches have emerged as
promising alternative for realistic image synthesis. Using
neural networks to represent scenes, materials, and lighting
can be seen as one type of pre-computation method. In the
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Fig. 2 Overview of our neural scene rendering framework. First, our rasterization-based renderer will first render the G-buffer, direct
lighting, and transparency buffers. Then, a neural network, which we denote as GlassNet, will use those buffers and rendering results as
inputs to synthesize high quality images with global illumination and accurate transparency. Details of GlassNet can be found in Sec. 3.4 and
Fig. 3.

early stage, neural rendering methods were only capable of
rendering fixed scenes under limited types of lighting with
complex spatial inputs [4]. More recently, by using G-buffer
as inputs, newer methods avoid using complex spatial data
such as point clouds, and are able to render scenes with vari-
able geometries, materials, and lighting [5–9]. However, the
usages of G-buffer re-introduces the classic problem of trans-
parency rendering. When generating G-buffers, the shading
information will be overwritten by transparent surfaces in
the front, as shown in Fig. 4. Without such crucial shading
information, rendering models can only hard code all the
information into the neural network based on ground truths,
which is unrealistic and ineffective, leading to poor quality.

To address this limitation, we propose a novel neural
rendering framework that separately renders opaque objects
and semi-transparent surfaces into two groups of G-buffers.
By doing this, all necessary shading information of both
opaque and transparent surfaces are preserved and can be
used for further rendering. Furthermore, we design a neural
blending function to encode the transparency buffer into a
latent representation with permutation invariance to achieve
Order-Independent-Transparency (OIT). Finally, we use a
deep CNN (Convolutional Neural Network) to encode scenes
and blend them with transparency representations, rendering
the resulting image with global illumination.

Our results show that we significantly improve the trans-
parency quality, exceeding the most recent neural approaches,
Active Exploration [8] and Neural Global Illumination [9].
Our method can accurately render the geometry and texture
details under transparent surfaces, whereas methods without
transparency buffers converge to low-quality results.

In summary, our main contributions are:

(1) A novel neural rendering framework preserves both
opaque and transparent information simultaneously on
buffers, providing accurate shading information on ren-
dering transparency.

(2) A neural blending function that encodes transparent
surfaces with permutation invariant, achieving OIT.

(3) A real-time renderer capable of rendering images with
high performance enabled by the above algorithms.

2 Related Work
2.1 Traditional Transparency Rendering

In the traditional forward rendering pipeline, various tech-
niques have been used to handle transparency. One widely
used algorithm is alpha blending [10], which utilizes a sepa-
rate alpha channel to control the color composition of semi-
transparent objects with opaque objects on each fragment.
However, alpha blending is order-dependent and requires
sorting of objects by depth, which can be impractical. The
high computational complexity is not the only problem of
those sorting-based algorithms. When transparent objects
intersect with each other, it is impossible to sort the objects
globally unless the sorting is done by fragments, which again
greatly increases the computational complexity. Another al-
gorithm called the A-Buffer algorithm [11] stores a list of
relevant fragments in each pixel, but sorting of all fragments
is required with unbounded memory usage. The Z3 algo-
rithm [12] is a similar algorithm with bounded memory usage
but comes with a trade-off in image quality. In contrast, our
proposed method does not require any sorting, and does not
generate a large amount of frame buffers during rendering
procedure.

To avoid sorting, several techniques have been introduced.
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Fig. 3 Architecture of GlassNet. Our proposed method, GlassNet, contains four building blocks including the scene encoder, F ; the
permutation invariant transparency buffer blending function, T ; the final blending network, B; and the rendering network, R. All parts are
trained jointly.

Depth peeling [13] renders objects in multiple passes, peel-
ing transparent objects based on the z-buffer. However, the
number of passes required by depth peeling increases the
computational cost.

These algorithms often encounter challenges in the mod-
ern deferred rendering pipeline. Deferred rendering [14] is
a technique that separates the geometric stage and lighting
stage into two passes. In the geometry pass, all the geometry
information is rendered into G-buffers to be used by the
lighting pass for shading. While deferred rendering signifi-
cantly improves rendering performance with multiple light
sources, it introduces complexity to transparency rendering.
Rendering geometry information into the G-buffer causes the
objects behind transparent surfaces to be occluded, making
it impossible to retain all geometry information without a
prohibitively large number of buffers. Several algorithms
solve this problem with worsened image quality. [15, 16].
By applying a permutation-invariant blending algorithm, our
method can combine generated transparency information
during inference, while only requiring two frame buffers
regardless of the number of transparent objects, significantly
lowering the memory usage.

Several neural rendering approaches utilize the G-buffers as
input for their neural networks [6, 8, 9, 17], resulting in these
methods also encountering transparency occlusion issues
with the G-buffers, causing bad image quality. In contrast,

our method is not affected by such issues and supports OIT
rendering.

2.2 Baked Global Illumination

Different from expensive path tracing methods, which are
the main approach to render photorealistic images in the
modern film industry [18], baked or precomputed global
illumination methods are more often used in interactive or
real-time settings [19].

Lightmap baking is a popular technique used widely in
modern game engines [20]. It precomputes the diffuse global
illumination and uses interpolation to generate global illumi-
nation during rendering. Several methods have been proposed
to generate the lightmap offline, such as by radiosity [21] or
path-tracing. Naively, baked lightmap only supports static
scenes with diffuse objects. Light probes technique was intro-
duced to enable global illumination for dynamic objects [3].
McGuire et al. [22] extended light probes to support glossy
surfaces. However, such methods are limited to either static
lighting or a limited amount of light transportation types.

Several neural approaches use neural networks to encode
the scene representation into neural vectors and synthesize
global illumination such as Compositional Neural Scene
Representations (CNSR) [6], Active Exploration and Neural
Global Illumination. Similar to such neural approaches, our
method can render global illumination with dynamic scenes
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with various light transportation types, with support for
transparent objects.

2.3 Neural Rendering

Using neural networks for rendering is a rapidly developing
research topic that provides fundamentally new approaches to
photorealistic rendering. We will introduce the closest related
paper to this work. We refer to [23] for a more detailed neural
rendering survey.

Initially, Ren et al. [4] used neural networks to learn indirect
lights from dynamic lighting and roughness with fixed geom-
etry, complex spatial data, and only point lights. Later, Eslami
et al. [5] proposed a method that trains an encoder-decoder
neural network to represent scenes as latent vectors. CNSR
by Granskog et al. further improved the interpretability of the
neural scene representation by partitioning the scene represen-
tation vectors into sections of lighting, materials, geometry,
etc. Similar to our method, most recent solutions [6–9] use
G-buffers as the input to the neural networks to produce
indirect lighting and global illumination. Using G-buffers
instead of point clouds or voxel data simplifies the input data.
Such algorithms can usually be seen as precomputed light
transportation and a form of scene baking. Using neural net-
works to precompute wavelet function has also shown strong
improvement on glossy global illumination [24]. Attempts on
high performance real-time neural rendering are also made
by Xin et al. [17], but only limited on single-bounce diffuse
indirect illumination

However, using G-buffers as inputs brings back the classic
issue caused by transparent objects. The G-buffers cannot
provide information on objects behind transparent surfaces,
ending with poor rendering quality by such methods. In our
framework, we use independent G-buffers for the transparent
objects and a permutation invariant neural network to achieve
OIT. Note that the recent studies in neural rendering are mainly
orthogonal to our proposed method with different goals. Our
method can be directly combined with those methods to
improve the rendering quality further.

2.4 Permutation Invariant Machine Learning

PointNet [25] uses a multi-layer perceptron network to trans-
form the input into latent vectors and uses a symmetric
function to compose such vectors, which is proved to be a
simple but strong method. PointNet inspires how our render-
ing neural network can process each transparency input to
cancel the permutation order dependency. We refer a more
detailed review of permutation-invariant neural network to
Section 6 of [26].

3 Proposed Approach
3.1 Overview

Given a scene, the goal of our approach is to bake a neural
scene representation into a neural network that can correctly
approximate global illumination with variable parameters of
material, geometry, and lighting without being affected by
transparent surfaces. For any shading position, x, on surfaces,
the outgoing radiance, Lo, can be calculated by the Rendering
Equation[1]:

Lo(x, ωo) =

∫
Ω

Li(x, ωi)fx(x, ωo, ωi)|nx · ωi|dωi

+ Le(x, ωo)

(1)

where fx andnx represent the BSDF and normal; ωo indicates
outgoing or viewing direction, ωi indicates the incident di-
rection; Li and Le denote the incident radiance and emission
radiance. Ω denotes a hemisphere.

The Rendering Equation can also be written into the follow-
ing form such as the direct lighting and the indirect lighting
are separated:

Lo(x, ωo) = Le(x, ωo) + Ld(x, ωo) + Lg(x, ωi) (2)

where Ld is the direct lighting, and Lg is the indirect lighting
which contributes mainly to the global illumination. Current
methods use high-dimension complex non-linear functions,
i.e., neural networks, to predict Lo(x, ωo) given all the nec-
essary geometry, lighting, and material parameters as inputs.
In contrast, our approach consists of a neural network, which
we denote as GlassNet, to predict the indirect lighting, Lg , as
shown in Fig. 2. We use Linearly Transformed Cosines (LTCs)
[27] as a sufficient approximation to the direct illumination
termLd as an input to our neural network to achieve efficiency.
Notice that as an input to the neural network, Ld is not neces-
sarily to be analytically accurate because the neural network
will learn the complexity of the lighting transportation from
the path tracing ground truths.

Most recent methods provide necessary shading informa-
tion such as ωo, position, texture, and material parameters
through G-buffers. However, the naive approach using G-
buffers as input brings a significant problem: as shown in
Fig. 4, important shading information is hidden by transparent
surfaces. We propose a new neural rendering framework that
separately draws opaque G-buffers and transparency buffers,
preserving all the information, including the transparent sur-
faces and the objects behind those. Then, we introduce a
symmetric neural function to cancel the permutation de-
pendency in the transparency buffers and generate a neural
transparency representations as shown in Sec. 3.3.
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Fig. 4 Our G-buffer scene representation approach. Instead
of naively rendering the entire scene to a single set of G-buffers,
we use separate buffers for the transparent objects, allowing us to
represent complex transparency visibility in scenes accurately.

3.2 Transparency Buffers

For a given scene, we rasterize each transparent surface into
a list of G-buffers containing all the information required
by a traditional path tracer to render Lo, including position,
surface normal, albedo, ωo, and material parameters as shown
in Fig. 5. We generate a set of buffers with a size of (w, h, c ∗
(t + 1)), where w, h and c denote the width, height and
channel of images. t is the number of transparent objects in
the scene. Finally, our rasterization-based renderer creates
the opaque G-buffers, and use LTCs to compute the direct
lighting Ld. By doing so, we can preserve all the necessary
information on both normal surfaces and transparent surfaces.

However, further processing is necessary for the naive
transparency buffer to be a good representation as a neu-
ral network input. Generally, neural networks are known
to depend on the order of inputs[25]. Inputting the naive
transparency buffer will cause our rendering network to be
order-dependent on transparency. With modern rendering
engine optimization features such as batch rendering[28] and
occlusion culling[29], the order of rendered objects cannot be
guaranteed. The surfaces can even be culled during rendering.
It is also infeasible to sort the rendered buffers after rendering.
In order to solve this problem, we designed a symmetric neu-
ral network invariant to permutation to blend the transparency
buffer.

3.3 Permutation Invariant Neural Representation

We design a blending invariant algorithm to cancel any sen-
sitivity to the order of the inputs while significantly lowering
the memory usage during inference as shown in Sec. 4.4.1,
inspired by traditional transparency algorithms such as alpha
blending. In alpha blending, the function, T , of compositing

transparent objects can be described as[10, 30, 31]:

T
({

(C1, α1), (C2, α2), . . . , (Ct, αt)
})

=

t∑
i=1

αi Ci zi

(3)
where Ci and αi respectively are the color and the alpha value
of each transparent object. zi is the product of all alpha values
in front of the object:

zi =

{
1 if i = t∏t−i

j=1(1− αj) otherwise
(4)

This function is clearly input-order-dependent, but it can be
revised into a function with permutation invariant to inputs.

Based on the alpha blending function with the inspiration
from the PointNet, we design our permutation invariant
transparency buffer blending function, T , to generate the
neural representation, τ :

T
(
{b1, b2, . . . , bt}, σ

)
≈ g

(
h(b1, σ), h(b2, σ), . . . , h(bt, σ)

)
=

t∑
i=1

h(bi, σ) = τ (5)

where b is the transparency buffer, g is a symmetric function,
σ is a scene representation, andh is a neural network shared by
all the transparency buffers generating neural representations.
We use addition as g to match the alpha blending function,
which clearly makes this function mathematically permutation
invariant to inputs. This allows the neural network to blend
all the transparency buffers into a single latent vector that is
independent of the input order.

3.4 Rendering Model

We introduce our rendering model, GlassNet as shown in
Fig. 2. GlassNet has four components: the scene encoder,
F ; the permutation invariant transparency buffer blending
function, T ; the final blending network, B; and the rendering
network, R. Both F and B use U-Net [32] as the network
backend, whereas other networks use multi-layer CNN with-
out down-sampling. All four components are trained jointly
as one neural network. Full details of the model are shown in
Fig. 3.

The scene encoding network, F , accepts tensors contain-
ing the position, normal, texture, material parameters, ωo,
depth buffer, and direct lighting. It then generates a neural
scene representation, σ. Similarly, each transparency buffer
is processed by T , generating the neural representation of
transparent surfaces ρ. All the inputs use positional encoding
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Ground Truth

Fig. 5 G-buffer, transparency buffer, and ground truth. Our method can overcome the noise in the ground truth.

by Mildenhall et al. [33] to capture high-frequency informa-
tion. Afterward, the blending network B blends the scene
representation σ and transparent object representations ρ and
processes visibility. By doing so, B generates the final neural
buffer, ϕ.

Finally, the rendering network R takes the neural buffer
ϕ with additional direct lighting as input to render the final
image. Although previous works, such as Neural Global Illu-
mination, report using convectional neural network structure
on the rendering network can lead to distortion of shapes, we
find that this problem can usually be solved by using kernels
with the size of 1× 1 at the end of the network, and adding
larger kernel can help with global effects such as blurring.
For balancing the render quality and performance, the Glass-
Net is trained with lower resolution (256 × 256) textures,
G-buffers, and ground truths. A multi-layer CNN is used as
a super-sampling network that super-samples the result at
×2 the original resolution. Given that we can cheaply get
high-resolution texture and G-buffer from the rasterizer, the
super-sampling network can be simple to achieve real-time
performance.

3.5 Training

We train the model in an end-to-end fashion to bake a specific
scene by randomly sampling camera angles and positions
within certain ranges of each scene following uniform dis-
tributions to render ground truth images. In particular, for
each scene, we generate output image and G-buffer pairs for
training. The ground truth is rendered by the modern path
tracer, Mitsuba 3 [34]. For the G-buffer and direct lighting
generation, we implemented our custom rasterization renderer
using OpenGL in C++, with CUDA support to support neural
network inference. As a loss function, we choose is the com-

Fig. 6 Randomly selected images from datasets. The transparent
areas are highlighted by the blue masks in the second row.

bination of Structural Similarity Index Measure (SSIM) [35]
and L1 loss.

4 Experiments
4.1 Experimental Settings

The input and output resolution used for training are both
256× 256 px. The super-sampling network uses 512× 512

textures to super-sample the 256 × 256 GlassNet rendered
results to 512 × 512 px, improving the visual quality. In
addition, all inputs are positional encoded using the method
proposed by Mildenhall et al.. All types of inputs and ground
truth images are shown in Figure 5. We used a relatively low
number of path tracing samples and did not pre-process the
data with a denoiser.

We used Adam optimizer [36] to perform gradient descent
with different hyperparameters on each scene. The dataset
details and hyperparameters such as train/validation/test splits,
learning rate and regularization for each scene can be found
in Appendix A. The training time varies from 5 to 10 hours
using 8 RTX 2080 Ti GPUs, depending on the scene.

As evaluation metrics, we use Mean Absolute Error (MAE),
LPIPS [37], DSSIM [38], and Peak Signal-to-Noise Ratio
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Fig. 7 Qualitative comparison. We compare with Active Exploration in several challenging scenes. Note that our method can preserve
details of objects behind transparent surfaces with the synthesis of global illumination. All scenes are rendered on test sets with different
camera views from the training set. The transparent areas are indicated by yellow dashed lines in the column of ground truths.
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Scene Method Metrics
MAE ↓ LIPIPS ↓ DSSIM ↓ PSNR ↑ T.MAE ↓ T.PSNR ↑

BATHROOM Active Exp. 0.01475 0.02995 0.04840 30.85680 0.06170 23.72751
Neural G.I. 0.00934 0.00961 0.02280 35.03145 0.03888 28.31231

Naive 0.02131 0.04409 0.05622 29.17893 0.08208 22.41524
Ours 0.00808 0.00686 0.01887 36.81351 0.02738 32.46141

CORNELLBOX Active Exp. 0.03237 0.18584 0.20583 25.21868 0.10491 19.78125
Neural G.I. 0.04093 0.12171 0.19213 24.13943 0.13141 17.84513

Naive 0.04988 0.20916 0.23296 22.90424 0.15471 17.80871
Ours 0.02142 0.01595 0.05436 29.75453 0.06087 25.44725

DESK Active Exp. 0.01739 0.05523 0.06117 27.87549 0.15792 16.31566
Neural G.I. 0.01733 0.04327 0.04985 29.34936 0.12360 17.96721

Naive 0.03274 0.07845 0.07987 26.16205 0.19205 15.75951
Ours 0.01658 0.01150 0.01782 34.82217 0.05487 28.24681

CORNELLBOX8 Active Exp. 0.02911 0.17719 0.20583 26.16428 0.08924 21.14504
Neural G.I. 0.04307 0.19579 0.27657 22.83434 0.13061 17.90722

Naive 0.05093 0.28167 0.31939 21.84069 0.15147 17.09835
Ours 0.02064 0.04152 0.07311 28.56370 0.05721 24.25974

Table 1 Quantitative comparison. We compare our approach with the naive baseline, Active Exploration and Neural Global Illumination
on several scenes with diverse metrics. T.MAE and T.PSNR denote the MAE loss and PSNR on the areas of the image with transparent
objects. Best result is denoted in bold.

(PSNR). For transparency quality evaluation, we use PSNR
and MAE computed on pixels rendered with transparency
(T.MAE and T.PSNR).

4.2 Comparison with the State-of-the-Art

We compared with Active Exploration and Neural Global
Illumination, as they are the closest recent work. Comparisons
were carried out in 4 challenging scenes: BATHROOM,
CORNELLBOX, DESK, and CORNELLBOX8 as shown
in Fig. 6. The BATHROOM was modified from the Bitterli
dataset [39], while DESK and CORNELLBOX were creating
using existing models [40], to focus on transparency effects.
In CORNELLBOX8, We added 4 more transparent objects
to CORNELLBOX to explore the performance under the
condition of high number of transparent objects. Qualitative
results are shown in Fig. 1 and Fig. 7, while quantitative
results are shown in Tab. 1. A comparison with real-time path
tracing method is also demonstrated in Fig. 8

From the qualitative comparison in Fig. 7 we can see
that although Active Exploration performed well in many
areas, without transparency buffers, the neural network could
not synthesize the area behind the semi-transparent surfaces
without losing fundamental details. In the DESK and COR-
NELLBOX scenes, the text texture was almost impossible
to render without provided texture information. Instead, our
method could synthesize all the texture accurately. Further-
more, in the BATHROOM scene, all the detailed shapes
behind the glass such as taps were missing in the Active
Exploration, where our method preserved them well. The

Scene Method Metrics
DSSIM ↓ T.MAE ↓ T.PSNR ↑

CORNELLBOX CNSR 0.1502 0.0973 20.4854
Ours 0.0451 0.0457 26.2100

DESK CNSR 0.0539 0.1115 18.5453
Ours 0.0174 0.0533 28.6498

Table 2 Quantitative comparison with CNSR. Best result is
highlighted in bold.

quantitative comparison in Tab. 1 corroborates the visual
improvement of our method, which achieves better values on
most metrics, with more significant improvements on parts of
the image that need transparency. In addition, the rendering
results and comparison video are available in Video S1 in the
Electronic Supplementary Material.

Overall, our method preserves the details of texture and
geometry of shape well. The global illumination effects such
as mirror reflection are also well synthesized. Our approach
shows strong performance on preserve all the high frequency
texture, which is also shown on the wood texture of the
BATHROOM scene. Such details are extremely hard to be
synthesized behind nearly transparent surfaces without trans-
parency buffers.

Our experiments show that the transparency buffer is es-
sential for neural network to render objects behind transparent
surfaces accurately. Although the global illumination effects
are not the main focus of our method, we also demonstrate
good quality on indirect diffuse lighting, mirror reflection,
and soft shadows on par with existing approaches.

We also compared our method to CNSR to further verify the
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(a) Ground truth (b) Ours (c) Denoised Optix

Fig. 8 Comparison to real-time ray tracing. The real-time path
tracing denoiser failed to reconstruct the high frequency texture and
small objects behind the glass.

effectiveness of our approach to transparency. We generated
the dataset in the format CNSR requires and used the identical
dataset to train the CNSR model and our model. The results
are shown in Fig. 9 and Tab. 2. The transparency quality
rendered by our approach is significantly better. Note that this
comparison experiment is only supplementary since the main
focus of the two methods is different.

In addition, we compared our approach to the real-time
path tracing method in Fig. 8. We used 32 samples per
pixel to generate the path tracing image with a standard
Optix denoiser [41]. The Optix denoiser failed to reconstruct
the wood texture and the tape behind the glass, while our
algorithm rendered such objects accurately. Due to the glass,
the denoiser can no longer rely on albedo and normal AOV to
gain extra information, causing the loss of details.

Size Type # of Trans. Obj.
1 2 4 8

256× 256
Framerate (FPS) 100 77 63 45
Frametime (ms) 10 13 16 22

512× 512
Framerate (FPS) 50 37 32 23
Frametime (ms) 20 27 31 43

1024× 1024†CARN
Framerate (FPS) 24 21 20 18
Frametime (ms) 41 47 50 55

1024× 1024†NSRR
Framerate (FPS) 17 16 15 12
Frametime (ms) 56 62 66 78

Table 3 Performance evaluation. We can interactively render all
test cases. † 1024×1024 achieves by an external supersampling net-
work, CARN or NSRR with temporal stability, as a post-processing
procedure.

4.3 Ablation Study

Although various previous works such as Active Explo-
ration and CNSR reported that the PixelGenerator has better
up-sampling performance than CNN, we found that Pixel-
Generator is not able to effectively synthesize the transparent
structure given the same amount of training time as CNN.
We implemented the same rendering network structure with

MAE↓ LIPIPS↓ DSSIM↓ PSNR↑
w/o P.E. 0.023711 0.026580 0.059718 28.937529
L1 Loss 0.023923 0.033820 0.072169 25.218679

Ours 0.021424 0.015953 0.054358 29.754528
Table 4 Impact of positional encoding and loss functions.
Our experiments show the combination of positional encoding and
L1SSIM loss function achieves the best performance of the network.
Best result is highlighted in bold.

MAE MAE (inv. order) Difference
BATHROOM 0.00805 0.00805 0.00000

DESK 0.01658 0.01658 0.00000
CORNELLBOX 0.02125 0.02125 0.00000

Table 5 MAE on different transparency buffer order. We invert
the order of transparency buffer, and achieve identical rendering
results.

PixelGenerator as the backbone network. Section 4.2 shows
that PixelGenerator failed to reconstruct the glossy effects on
transparent objects given 400 training iterations.

To overcome the bad up-sampling performance of CNN,
an up-sampling network is solely trained to super-sample the
rendered images at two times the resolution. Our experiment
shows fine-tuning the model with a smaller high-resolution
dataset cannot achieve good visual effects. Figure 13 shows
that the image generated by our up-sampling network has
better visual quality, especially on high-roughness transparent
objects, than retraining the CNN.

We studied the influence of positional encoding on our
method. Mildenhall et al.show that positional encoding can
help neural networks learn high-frequency information; there-
fore, all the inputs to our neural network are positional en-
coded. We also demonstrate that using the combination of
MAE loss and DSSIM loss can achieve the best quality, with
quantitative results are shown in Tab. 4. Furthermore, we
verified the effectiveness of our permutation-invariant algo-
rithm. Table 5 shows that shuffled transparency buffer causes
on effect on our model performance.

4.4 Performance Evaluation
4.4.1 Real-time Performance
We tested our renderer on one RTX 4090, and the performance
is shown in Tab. 3. The computation time of our algorithm does
not significantly grow w.r.t. the complexity of meshes because
the transparent buffers only separately record each transparent
object instead of each primitive. The CORNELLBOX and
DESK (30,344 and 38,400 triangles of transparent objects)
show that our method can efficiently render complex meshes.

Furthermore, the neural blending algorithm shown in
Eq. (5) also grows linearly w.r.t. the number of transpar-
ent objects given a specific resolution because h is n O(1)



10 Z. Zhang, E. Simo-Serra

Ground Truth Ours CNSR
CO

R
N

EL
LB

O
X

Fig. 9 Rendering results of ours and Granskog et al. Our method preserves the transparency quality better. The transparent areas are
indicated by yellow dashed lines.

(a) PixelGenerator (b) CNN

Fig. 10 PixelGenerator v.s. CNN. Under the same training itera-
tions, PixelGenerator completely failed to capture the glossy effects
on the glass bunny.

function under specific input size. With the resolution of
512 × 512, one extra transparent object costs 3.3 ms more
time on average. We believe this cost can be further optimized
by pruning the model.

Our approach can be further supersampled by other existing
fast supersampling networks. As examples, we demonstrate
that by using CARN[42] and NSRR[43] as post-processing
models, our method can reach 1024× 1024 resolution with
anti-aliasing effects. The results can be found in Tab. 3, Fig. 11,
and Video S1 in the Electronic Supplementary Material.

4.4.2 Memory Efficiency
The permutation invariant blending algorithm also has a
memory efficiency advantage over existing approaches. With
traditional methods, the model has to receive all transparency
buffers in order to make inference, so that the memory
costs grow linearly w.r.t. the number of transparent objects.
However, with our proposed algorithm, there is no additional
framebuffer costs because the model can operate on a single
buffer of each transparent objects, and then add it to the
summed latent representation. The memory usage comparison

Fig. 11 Result in combining with other supersampling models.
We demonstrate that using external supersampling models such as
NSRR can further supersample our results to 1024× 1024.

RAM (GB) VRAM (GB)
Active Exploration 2.50 11

Ours 0.68 4
Table 6 Runtime memory usage comparison. We compare our
method with Active Exploration on 512×512 with three transparent
objects. Least memory usage is highlighted in bold.

is plotted in Fig. 12 approximated by framebuffer usage. We
can see that our permutation invariant blending algorithm
has constant space growth w.r.t. the number of transparent
objects.

We also compare the actual runtime RAM and VRAM
usage of our method with that of Active Exploration. The
experiment uses the DESK scene with the resolution of
512×512 to test the memory performance. Table 6 shows our
implementation significantly reduces the required runtime
memory.

5 Limitations and Discussion
Although our method shows significant improvements in
neural rendering of scenes with transparent objects with full
OIT, our method relies on two fundamental assumptions
about scenes: the presence of transparent surfaces with a
low refraction index and the absence of participating media.
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Fig. 12 Buffer memory usage comparison. Under 256×256, one
transparent object buffer causes around 4.5 megabytes of memory.
Our blending algorithm is summation based and thus do not require
space to store each transparency buffer.

(a) Ground truth (b) Supersampling (c) Fine-tuned

Fig. 13 Fine-tuning v.s. Supersampling. Fine-tuning network on
512× 512 data has bad quality of roughness effects. The window
frame should be blurred out as in the ground truth.

However, when refraction occurs, the shading information
provided by the G-buffer is no longer accurate, which becomes
an even more significant issue on spherical surfaces. This
limitation is illustrated in Fig. 14. Our rendering network
currently struggles to produce correct results when strong
refraction effects are present. Additionally, due to the use of
G-buffers, our framework is unable to represent participating
media, leading to the ineffective synthesis of volumetric
effects.

As a problem of neural rendering in general, current neural
rendering approaches perform relatively poorly on high-
resolution images. Although our method uses CARN or NSRR
as a post-processing supersampling procedure to boost the
resolution further to 1024× 1024 as described in Sec. 4.4.1,
further attempts to raise resolution will significantly affect
the performance, causing low framerates. Further research
may focus on the performance of neural rendering in high-
resolution settings.

Another potential direction for future research is incorporat-

(a) Ground truth (b) Ours

Fig. 14 Failed case. When the refraction effects dominate, our
method can no longer accurately render surfaces under transparent
objects because G-buffer cannot provide useful information.

ing path prediction techniques, such as the method proposed
by Li et al. [44], into scene representation. Furthermore,
exploring efficient approaches for representing participating
media on both the input and neural network sides presents an
intriguing research topic.

Several orthogonal methods can be combined with our
work. For example, the Monte Carlo sampling technique
proposed in Active Exploration can be utilized to improve the
effects such as perfect mirror reflection and caustic effects.
Neural Global Illumination uses radiance cues as inputs to
the model, which improves the scene representation learning.

Appendix

Table 7 records the key scene settings and hyperparameters
during the dataset generation, training, and evaluation.

Declaration of competing interest

The authors have no competing interests to declare that are
relevant to the content of this article. No funding was received
to assist with the preparation of this manuscript.

Electronic Supplementary Material

The rendering video recorded in real-time is available in the
electronic supplementary material of this article. The code is
publicly available on https://github.com/ziyangz5/NeuralBa
kingTransparency/.
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