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Abstract

We propose a neural screen-space refraction baking method

for global illumination rendering, with applicability to real-

time 3D games. Existing neural global illumination render-

ing methods often struggle with refractive objects due to

the lack of texture information in G-Buffers. While some

existing approaches extend neural global illumination to re-

fractive objects by predicting texture maps (UV maps), they

are limited to objects with simple geometry and UV maps. In

contrast, our method bakes refracted textures without these

assumptions by directly encoding the world coordinates of

refracted objects into the neural network instead of UV co-

ordinates. Our experiments demonstrate that our approach

performs better on refraction rendering than previous meth-

ods. Additionally, we investigate the differences in neural

network performance when baking coordinates in different

spaces, such as world space, screen space, and UV space,

showing the best results yielded by baking in world-space

coordinates.

1. Introduction

Global illumination rendering is a fundamental problem in

computer graphics, playing a fundamental role in generat-

ing realistic images from 3D scenes. While offline global

illumination can be well achieved by expensive path tracing

algorithms [14], real-time global illumination still remains a

challenging problem, critical for real-time 3D games. Tradi-

tionally, precomputing, or “baking”, the global illumination

is a common practice to achieve real-time global illumina-

tion rendering. Recently, using neural networks to bake the

global illumination has extended traditional precomputation

methods’ capability to handle dynamic scenes and complex

light transportation.

A popular approach for modern 3D rendering in games is

deferred rendering, where information about objects in the

screen is rasterized to G-buffers, containing information such
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Figure 1. Overview of our method. To accurately bake the re-

fracted texture, supporting the neural global illumination rendering,

we precompute the refracted world coordinates, and then transform

them into screen-space to perform color mapping. Compared to

the baseline, CrystalNet [25], our method can generate high-quality

refracted textures, and thus improve the rendering quality.

as diffuse colours, normals, etc. Afterwards, the shading is

done directly in screen space using the information provided

by G-buffers. Neural Global Illumination [6, 9, 11, 25] re-

places the shading algorithm with a neural network, making



use of the G-buffers to provide the neural network with all

the necessary information to predict the global illumination

without the need to embed all geometric details and complex

color information into the network itself. Using G-buffers

also allows the neural network to avoid relying on complex

spatial data such as point clouds, thereby greatly reducing

computational complexity. Furthermore, G-buffers can be

easily accessed from rasterization-based renderers, which

makes neural global illumination accessible to modern game

engines.

However, using G-buffers as input has a limitation: they

do not capture information about objects visible through re-

fraction in refractive objects. When rendering refractive ob-

jects, because of lacking information provided by G-buffers,

the neural networks have to encode the complex texture

color, and thus leading to inaccurate rendering. Zhang and

Simo-Serra [25] proposed a method to predict the refracted

texture as texture coordinates to reduce the frequency of the

learning targets, which is more friendly to neural networks.

However, the method assumes that the texture mapping is

simple and smooth. In practice, texture mapping is often

complex and discontinuous, which makes the UV mapping

prediction method less effective. Furthermore, the texture

coordinates are sensitive to small errors, which makes the

prediction of texture coordinates more challenging.

In this paper, we propose neural screen-space refraction

baking, a method that predicts refracted world coordinates us-

ing a neural network, and then transforms these coordinates

into screen-space to perform color mapping. Our method

does not require models with high quality texture mappings

and is therefore more robust to models with complex or irreg-

ular texture mappings than previous UV-coordinate-based

methods [25]. Because our method only uses G-buffers and

camera transformation matrices as inputs, it can be easily

deployed in modern game engines. The overview of our

method can be found in Fig. 1 and Fig. 2.

In summary, our contributions are as follows:

• A neural screen-space refraction baking method that gen-

erates high-quality refracted textures without requiring

high-quality texture mapping.

• Experimental results showing that the quality of the gener-

ated refraction textures is highest when predicted in world

coordinates, rather than in texture space or directly in

screen space.

2. Related Work

2.1. Traditional Refraction Rendering

Early attempts addressed refraction rendering with arbitrary

refractive shapes and were able to handle both distant light-

ing and nearby objects [22, 23]. However, these methods

could handle only two refractive surfaces due to limitations

in their approximations. Oliveira and Brauwers extended

refraction rendering to deformable objects [16], but their

method was limited to distant lighting. A precomputation-

based method using ray tracing was also proposed [10], but

it is restricted to static objects due to the precomputation

step.

Furthermore, in modern rasterization-based game engines,

refraction rendering is often achieved using screen-space

refraction [17, 21]. However, the methods mentioned above

are generally limited to few refractions, simple refractive

meshes, or static scenes. In contrast, our method can handle

an arbitrary number of refractive objects in dynamic scenes.

Rough surface refraction is also an important topic in

refraction rendering. Existing methods have explored this us-

ing voxel-based techniques [7], approximations of the BTDF

with spherical Gaussians [4], among others. In this paper, we

only study the refraction of smooth surfaces as the previous

work [25] has shown that neural networks are often highly ca-

pable of capturing low-frequency global illumination effects,

such as roughness.

2.2. Neural Global Illumination

Neural global illumination provides a powerful way to gener-

ate real-time global illumination effects without path tracing.

In the earliest attempt[18], Ren et al. used a neural net-

work to bake the global illumination with static geometries.

Later works extended this to dynamic scenes by training

encoder-decoder networks to represent scenes[8, 11]. Later

approaches such as Active Exploration [6] explore the way

to importance sample the scene to improve the training pro-

cedure.

In parallel, neural radiosity methods precompute the

global illumination by predicting a residual to the rendering

equation [12]. Such methods often use lightweight neural

networks and thus have low computational costs. Later,

several methods extend this to dynamic scenes [3, 20].

However, these methods are not designed to handle re-

fraction. Many modern neural global illumination meth-

ods [6, 9, 11] use G-buffers as input to neural networks,

providing the models with essential information, particu-

larly for complex texture colors. However, G-buffers do not

capture information about objects visible through refractive

surfaces. Since neural networks are known to struggle with

encoding high-frequency information, lacking such data in

the G-buffer means the network no longer has access to ac-

curate texture information, resulting in inaccurate rendering.

2.3. Neural Refraction Rendering

To solve the refraction issue for neural global illumination,

a method proposed an architecture, GlassNet [26], to sup-

port order-independent-transparency and high quality trans-

parency rendering in neural rendering. This method, how-

ever, only assumes the index of refraction is one. Later,

CrystalNet [25] extended GlassNet to support full refractive



objects by predicting the UV coordinates of the refracted

texture. However, it requires refracted objects to have sim-

ple and smooth texture mappings. Our method, in contrast,

predicts the world coordinates of refracted objects and then

converts them to screen-space coordinates, which does not

require high-quality texture mapping.

3. Proposed Approach

3.1. Overview of Neural Global Illumination

In neural global illumination, the overall objective is to pre-

dict the radiance that arrives at the camera from scene sur-

faces using a neural network, trained on ground truths gen-

erated by path tracing. At position p given a ray with the

incident and outgoing directions,ωi and ωo, the outgoing

radiance, Lo, is given by the rendering equation [14]:

Lo(p, ωo) =

∫

Ω

Li(p, ωi)f(ωo, ωi)|n ·ωi| dωi+Le(p, ωo)

(1)

where Li is the incoming radiance, f is the BRDF, n is

the surface normal. The integral is over the hemisphere Ω of

possible incident directions. Le is the emitted radiance.

To avoid doing expensive path tracing, we can train a

neural network renderer, R, to precompute the radiance

inside the neural network, and predict Lo at a given position.

R accepts all parameters that are necessary for a regular

renderer to compute Lo, including the world position, normal

and texture. Those parameters are often provided as G-

buffers rendered in a rasterization renderer. Providing those

information helps the neural network to only focus on the

illumination precomputation instead of the geometry and

texture reconstruction. Usually, to further help the learning

process, screen-space textures and direct lighting rendered

in the rasterization renderer are also passed into the neural

renderer. The process of rendering the scene with R can be

summarized as follows:

Lo(p, ωo) ≈ R(p, ωo,n,m, c, Ld) (2)

where m is the material information including roughness

and texture color, c is the screenspace texture color, and Ld

is the direct lighting.

3.2. Neural Refraction Baking

Benefiting from G-buffers and direct lighting, neural net-

works do not need to store all the geometry and texture

information within the network itself, which is one of the

crucial reasons why they can bake global illumination well

with a relatively small number of parameters. Low-frequency

global illumination, such as ambient occlusion, soft shad-

ows, and color bleeding, can be well captured by these neu-

ral renderers given enough training data. However, neural

global illumination baking methods often perform poorly in

high-frequency areas, especially on refraction effects, as the

G-buffer can no longer provide enough information.

To formally define the problem, we can separate the inci-

dent radiance into two parts, Li for the incoming radiance

above a surface and Li for the incoming radiance below the

surface. All reflection-related terms are colored in orange,

and all refraction-related terms are colored in blue. The

rendering equation can be expanded as follows:

Lo(p, ωo) =

∫

Ω+

Li(p, ωi)fr(ωo, ωi)|n · ωi| dωi+

∫

Ω−

Li(p, ωi)ft(ωo, ωi)|n · ωi| dωi

(3)

Baking the reflection scattering is relatively simple as it

is possible to use G-buffers and direct rendering, and neural

networks only need to encode global illumination rather

than high-frequency details such as textures. However, on

refractive surfaces, the neural network needs to encode all

the high-frequency texture color inside the network as the

lack of G-buffers. Under the expanded rendering equation,

R can be extended to:

R(p, ωo,n,m, c, Ld) = R(·) +R(·, γ̂) (4)

where · represents all the parameters in R and γ̂ represents

all the information about objects refracted onto the refractive

surfaces. Regular neural global illumination methods implic-

itly encode γ̂ inside the network, which leads to blurry and

inaccurate refraction effects, especially on high-frequency

textures. To help the neural network to precompute Li, it

is possible to use another neural network, R-buffer (refrac-

tion buffer) generator, B, to precompute the refracted texture

information in a neural network friendly form. Previous

works [25] uses B to bake γ̂ the refracted texture as texture

coordinate maps, and then use texture mapping to reconstruct

the color information as γ̂. However, texture coordinates

are highly sensitive to small errors, and the texture maps of

objects can be very complex with severe discontinuity, caus-

ing the B to be unable to reconstruct the refracted texture.

Additionally, R-buffer often contains other information such

as geometry normal, but we will focus on the texture color

in this paper as it is the most challenging part to bake.

3.3. Screen-space R-Buffer Generation

To address the problem of baking refracted textures in tex-

ture coordinate form, we propose a precomputation method,

screen-space neural refraction baking (SSNRB), that directly

bakes refracted objects in world coordinates. First, we bake

the refracted objects coordinates in world space, then con-

vert the coordinates to screen-space coordinates. The re-

fracted areas are then mapped using these screen-space co-

ordinates, with framebuffers storing the texture information
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Figure 2. Overall structure of our method. We acquire the G-buffers and direct lighting from the rasterization renderer and pass them

into the neural renderer and the screen-space R-buffer generator. The screen-space R-buffer generator precomputes the refracted world

coordinates, which are then transformed into normalized device coordinates (NDC) and used to map the refracted texture color.

in the screen space. The overall structure of our rendering

pipeline is shown in Fig. 2.

Formally, we can summarize our method based on Eq. (4)

as follows:

R(p, ωo,n,m, c, Ld, γ̂) = R(·, T (c, c))

c = Projndc(B(·)world)
(5)

where · represents all parameters of R except for γ̂, c is

the refracted texture color obtained from the screen-space

texture c, and B(·)world represents the baked world coordi-

nates. The function T denotes texture mapping. The operator

Projndc is the transformation from world space to normal-

ized device coordinates (NDC). This operation is trivial to

access in a rasterization engine by multiplying the world-

to-view transformation (V ), the view-to-clip transformation

(P ), and then performing a perspective division:

Projndc(pworld) =
PV pworld

(PV pworld)w

P =











1

tan( fov

2
)·a

0 0 0

0 1

tan( fov

2
)

0 0

0 0 f
f−n

− fn
f−n

0 0 1 0











, V =

[

R t

0 1

]

(6)

where a is the aspect ratio, f and n are the far and near

plane, fov is the field of view, and R and t are the rotation

and translation of the camera. As NDC coordinates range

from [−1, 1], the texture mapping function T can use bilin-

ear interpolation based on the screen-space texture and the

transformed coordinates to reconstruct the refracted texture

color.

Our method uses B to precompute the world coordinates

instead of texture coordinates. Our method is more robust to

texture map discontinuity and can handle objects with com-

plex texture mapping as we do not precompute the texture

coordinates. For example, the mesh shown in Fig. 3 has a

complex texture mapping and discontinuity. However, in

world space, the mesh is continuous and smooth, which is

more friendly to neural networks.

Similar to CrystalNet [25], we use the total variation

loss [19] to smooth the baked world coordinates. The total

variation loss is defined as follows:



Ltv (c) =
∑

i,j

|ci+1,j − ci,j |+ |ci,j+1 − ci,j | (7)

By doing so, we encourage the neural network to predict

smooth world coordinates in order to further decrease the

sensitivity to small errors in the final screen-space texture

mapping.

3.4. Training

We choose the GlassNet architecture[26] as the structure of

R and B because it can handle multiple refractive objects

without the need for sorting. Following this architecture, the

R and B will accept the G-buffers of opaque objects and

transparent objects at the same time as shown in Fig. 2. The

R and B are trained separately. By doing so, we can train B
with a larger dataset as generating R-buffers ground truth is

much faster than generating the path tracing ground truth, as

R-buffers ground truth only requires ray tracing the refracted

rays.

We use Mitsuba 3 [13] to generate the path tracing ground

truths using a sample per pixel (SPP) of 4096. The path

tracing ground truth images are shown in Fig. 3. The training

dataset consists of 1,000 to 1,500 images per scene for the

neural renderer and 3,000 images per scene for the R-buffer

generator. All training images have a resolution of 256×256.

We uniformly sample the camera position and locations of

variable objects within pre-determined ranges in order to

support variable scenes.

One common limitation of screen-space methods is

that artifacts may occur when zooming into low-resolution

screen-space textures as they do not contain enough informa-

tion. We address this problem by rasterizing 1024 × 1024
screen-space textures and performing bilinear interpolation

on them to generate the R-buffers.

4. Experiments

4.1. Overall Setup

We compare our method with GlassNet [26] and Crystal-

Net [25] as they are the closest works to our methods. Our ex-

periments are under three different scenes: HEMISPHERE,

BUDDHA, and BUNNY. All scenes are modified from ex-

isting resources [2, 27] and assets in the public domain.

HEMISPHERE contains two light sources, two overlapping

refractive objects—one of which is movable—and one ro-

tating model (the ewer). BUDDHA and BUNNY are two

scenes within the Cornell Box setup, each containing differ-

ent objects with complex texture mapping, movable refrac-

tive objects, and a variable light source.

For evaluation metrics, we use L1 error, SSIM [15],

LPIPS [24], and DISTS [5] for the rendering result eval-

uation. We use L1 error for the R-buffer evaluation (R.L1)

Figure 3. Random selection from the dataset. We also demon-

strate the models with complex UV mapping we used in the dataset.

by comparing the R-buffer texture reconstructed using ray-

traced ground truth texture/world coordinates with the R-

buffer texture reconstructed from the neural network predic-

tion. Additionally, we also demonstrate the L1 error and

masked SSIM of the refraction area on the rendering results

indicated as T.L1 and T.SSIM. To better evaluate the high-

frequency texture reconstruction, we include the L2 error of

the amplitude spectrum on frequency domain (T.Amp.) [25]

on the refractive areas. The qualitative results are shown

Fig. 4 and the quantitative results are shown in Tab. 1.

4.2. Rendering Results

As shown in Fig. 4, the renderer supported by our screen-

space R-buffers performs much better than the baselines. We

show the UV map of the mainly used models in Fig. 3. The

UV maps of the models are complex, so that directly baking

them into the R-buffer generator would not be feasible.

HEMISPHERE contains a large, movable refractive hemi-

sphere that encloses a small glass egg. As the texture map-

ping is very complex, CrystalNet failed to reconstruct the

refracted texture, especially on the newer model, which is

behind multiple refractive objects. Our method, on the other

hand, was able to reconstruct the refracted texture accurately

and achieved better rendering quality.

In the scene, BUDDHA, there are two overlapping re-

fractive objects and two models of Buddha behind them.

Because of the complex texture mapping, CrystalNet was

not able to reconstruct the refracted texture accurately, lead-

ing to distortion in the rendered images. Our method, on

the other hand, was not sensitive to the complexity of the

texture mapping and was able to reconstruct the refracted

texture accurately. Furthermore, in the scene BUNNY, as

the checkerboard is much smaller than in the BUDDHA

scene, the CrystalNet completely failed to reconstruct the
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Figure 4. Qualitative comparison. Our method is able to render the refraction effects more accurately on meshes with complex texture

mappings.

Scene Method
Metrics

L1 ↓ LPIPS ↓ SSIM ↑ DISTS ↓ T.L1 ↓ T.SSIM ↑ T.Amp. ↓

HEMISPHERE
GlassNet 0.02975 0.14080 0.84491 0.19662 0.14132 0.72818 0.06292

CrystalNet 0.01567 0.03690 0.93126 0.09779 0.08054 0.87355 0.05091

Ours 0.01524 0.03665 0.93237 0.09000 0.07897 0.87569 0.05027

BUDDHA
GlassNet 0.04617 0.14220 0.79107 0.13377 0.20934 0.55210 0.07672

CrystalNet 0.03147 0.07762 0.85234 0.10585 0.15965 0.67129 0.06297

Ours 0.03008 0.06496 0.86268 0.09871 0.14998 0.70082 0.06191

BUNNY
GlassNet 0.04272 0.08258 0.89602 0.10249 0.35754 0.41793 0.02402

CrystalNet 0.02885 0.03526 0.92186 0.07637 0.28249 0.52467 0.02025

Ours 0.02775 0.03396 0.93149 0.06951 0.24549 0.59784 0.02004

Table 1. Quantitative comparison. Our method achieves better performance in all scenes, especially in transparent areas. Best result is

denoted in bold.



(a) Ground truth (b) Direct screen-space (c) W2S

Figure 5. R-buffer texture comparison between direct screen-

space and W2S (world-to-screen-space). The R-buffer texture

generated by screen-space coordinates directly from neural net-

works has more distortion, while W2S method is more accurate.

refracted texture. Those scenes demonstrate the advantage

of not using the UV map in the R-buffer generation process.

4.3. Ablation Study

We evaluate the quality of the generated R-buffer by com-

paring two approaches: directly predicting screen-space co-

ordinates and predicting world coordinates, which are then

converted to screen-space coordinates (W2S) using world-

to-NDC transformation. As shown in Fig. 5, predicting

the screen-space coordinates directly causes more distor-

tion to the refracted textures and thus has higher error than

the texture reconstructed by world coordinates. Quantita-

tively, the L1 reconstruction loss on BUNNY for the W2S

method is 0.01911, while that of the direct screen-space co-

ordinate method is 0.02392, demonstrating the advantage of

the world-coordinate-conversion method. In conclusion, we

consider predicting world coordinates and converting them

to screen-space coordinates to be a better approach.

As we use the same neural network architecture as Crys-

talNet, the computational cost of our method is compara-

ble to that of CrystalNet. The only additional step is the

world-to-NDC transformation. As discussed in Sec. 3.3,

terms related to this transformation already exist in the ras-

terization engine, and the transformation itself is simple to

perform. Therefore, this additional step introduces minimal

overhead in the rendering pipeline. In our experiments, our

method even slightly outperforms CrystalNet in terms of

computational cost. On RTX 4090, at a native resolution of

256 × 256 with a supersampler [1] performing 4× upsam-

pling to 1024× 1024, our method can render at around 34.0

FPS, whereas CrystalNet is at 33.1 FPS. This is expected,

as our method performs bilinear texture sampling on the

screen-space texture only once, while CrystalNet requires

multiple times on every refracted texture. Also, during the

inference, our method does not require predicting the object

indices, which is a computationally expensive operation in

CrystalNet.

5. Limitation and Future Work

Our method is based on screen-space coordinates and thus
is limited to the visible area of the screen when generating
refraction buffers. However, in most cases, off-screen re-
fraction happens on the edge of the refraction objects and
thus does not have a clear view; therefore, the neural ren-
derer itself can roughly predict the color information without
causing too many artifacts. It is also possible to extend
our method to handle refracted location off-screen by si-
multaneously predicting the world coordinates and texture
coordinates. This would allow us to maintain a similar per-
formance with CrystalNet on the off-screen refraction area
and improve the performance on the on-screen refraction
area.
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