

PROBLEM:

Retrieval of a 3D Human Pose from a single image.

STATE-OF-THE ART LIMITATIONS:

- Use of temporal information or background subtraction
- •Unable to handle large amounts of 2D noise

CONTRIBUTIONS:

- Proposal of an approach to efficiently explore the space of possible 3D solutions given noisy 2D input
- Coarse to fine approach to constrain the solution space, until a single solution is obtained

Problem Definition



GIVEN:

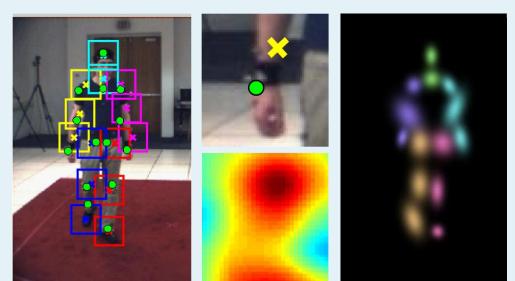
- 2D noisy detections of the parts as a set of Gaussians $\mathbf{u}_i \sim N(\mathbf{u}_i, \boldsymbol{\Sigma}_n)$
- Internal Calibration Matrix ${f A}$

WE WANT TO RETRIEVE:

The 3D pose of the input image

"Off-the-shelf" 2D Body Part Detector [1]

- Output modified to provide local Gaussian estimations
- Provides robust 2D detections at the cost of location noise



Projective Linear Deformation Model

2D-3D correspondences can be written as the rank-deficient linear system

$\mathbf{M}\mathbf{x} = \mathbf{0}$

Eigenvalues of MQ

Shape = Linear combination of deformation modes: Deformation Modes — Modal Weights $\mathbf{x} = \mathbf{Q}\boldsymbol{\alpha} + \mathbf{x}_{0}$

Mean Shape

The correspondence problem becomes:

 $MQ\alpha + Mx_0 = 0$

Still rank deficient, but much less.

Projective Linear Deformation Model

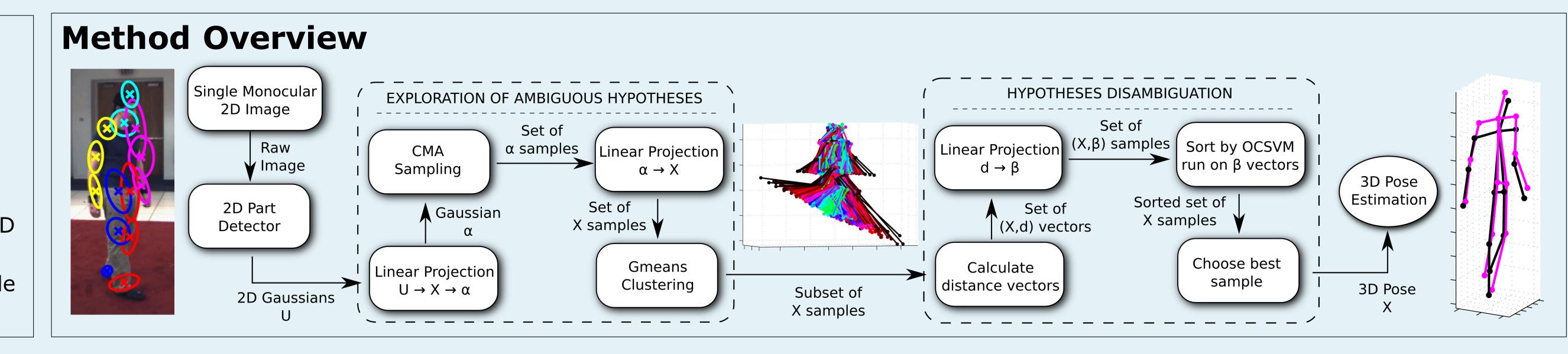
Mean:

 $\mu_{\alpha} = -(\mathbf{MQ})^{\dagger} \mathbf{Mx}_{0}$, where **M** function of **A**, \mathbf{u}_{i} $\Sigma_{\alpha} = \frac{\partial \alpha}{\partial \Sigma_{\mu}} \Sigma_{\mu} \left(\frac{\partial \alpha}{\partial \Sigma_{\mu}} \right)^{2}$

Single Image 3D Human Pose Estimation from Noisy Observations

E. Simo-Serra A. Ramisa

G. Alenyà C. Torras Institut de Robòtica i Informàtica Industrial, CSIC-UPC 08028 Barcelona, Spain

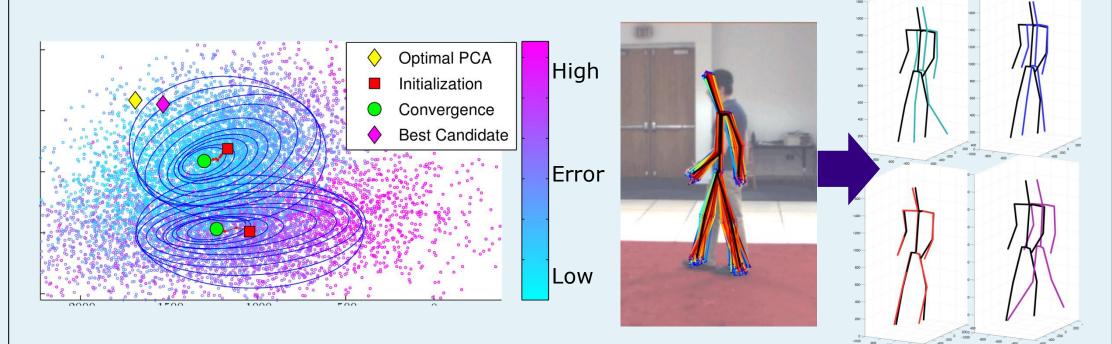


Exploration of Ambiguous Hypotheses Error metric based on reprojection and learnt limb length. train

$$\varepsilon_{lr} = \varepsilon_{l} \cdot \varepsilon_{r} \begin{bmatrix} \varepsilon_{l} = \sum_{i,j \in N} \| l_{ij} - l_{ij}^{\text{train}} \| \sigma_{ij}^{-1} & \leftarrow \text{Length Error} \\ \varepsilon_{i,j \in N} \\ \varepsilon_{r} = \sum_{i}^{n_{v}} \sqrt{(\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})^{T} \Sigma_{\mathbf{u}_{i}}^{-1} (\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})} & \leftarrow \text{Reprojection} \\ \varepsilon_{r} = \sum_{i}^{n_{v}} \sqrt{(\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})^{T} \Sigma_{\mathbf{u}_{i}}^{-1} (\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})} & \leftarrow \text{Reprojection} \\ \varepsilon_{r} = \sum_{i}^{n_{v}} \sqrt{(\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})^{T} \Sigma_{\mathbf{u}_{i}}^{-1} (\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})} & \leftarrow \text{Reprojection} \\ \varepsilon_{r} = \sum_{i}^{n_{v}} \sqrt{(\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})^{T} \Sigma_{\mathbf{u}_{i}}^{-1} (\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})} & \leftarrow \text{Reprojection} \\ \varepsilon_{r} = \varepsilon_{i}^{n_{v}} \sqrt{(\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})^{T} \Sigma_{\mathbf{u}_{i}}^{-1} (\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})} & \leftarrow \varepsilon_{r}^{n_{v}} \\ \varepsilon_{r} = \varepsilon_{i}^{n_{v}} \sqrt{(\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})^{T} \Sigma_{\mathbf{u}_{i}}^{-1} (\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})} & \leftarrow \varepsilon_{r}^{n_{v}} \\ \varepsilon_{r} = \varepsilon_{i}^{n_{v}} \sqrt{(\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})^{T} \Sigma_{\mathbf{u}_{i}}^{-1} (\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})} & \leftarrow \varepsilon_{r}^{n_{v}} \\ \varepsilon_{r} = \varepsilon_{i}^{n_{v}} \sqrt{(\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})^{T} \Sigma_{\mathbf{u}_{i}}^{-1} (\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})} & \leftarrow \varepsilon_{r}^{n_{v}} \\ \varepsilon_{r} = \varepsilon_{i}^{n_{v}} \sqrt{(\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})^{T} \Sigma_{\mathbf{u}_{i}}^{-1} (\widetilde{\mathbf{u}}_{i} - \mathbf{u}_{i})} & \leftarrow \varepsilon_{r}^{n_{v}} \\ \varepsilon_{r} = \varepsilon_{i}^{n_{v}} \nabla_{\mathbf{u}_{i}}^{-1} \\ \varepsilon_{r} = \varepsilon_{i}^{n_{v}} \\ \varepsilon$$

Sampling solution space using Covariance Matrix Adaptation [2] Ambiguity in orientation facing solved by proposing two

hypotheses for forward and backward poses



- Potential solutions (~10,000) are clustered to reduce their number (~300 clusters)
- Error function is not discriminative enough for a single solution

Hypotheses Disambiguation

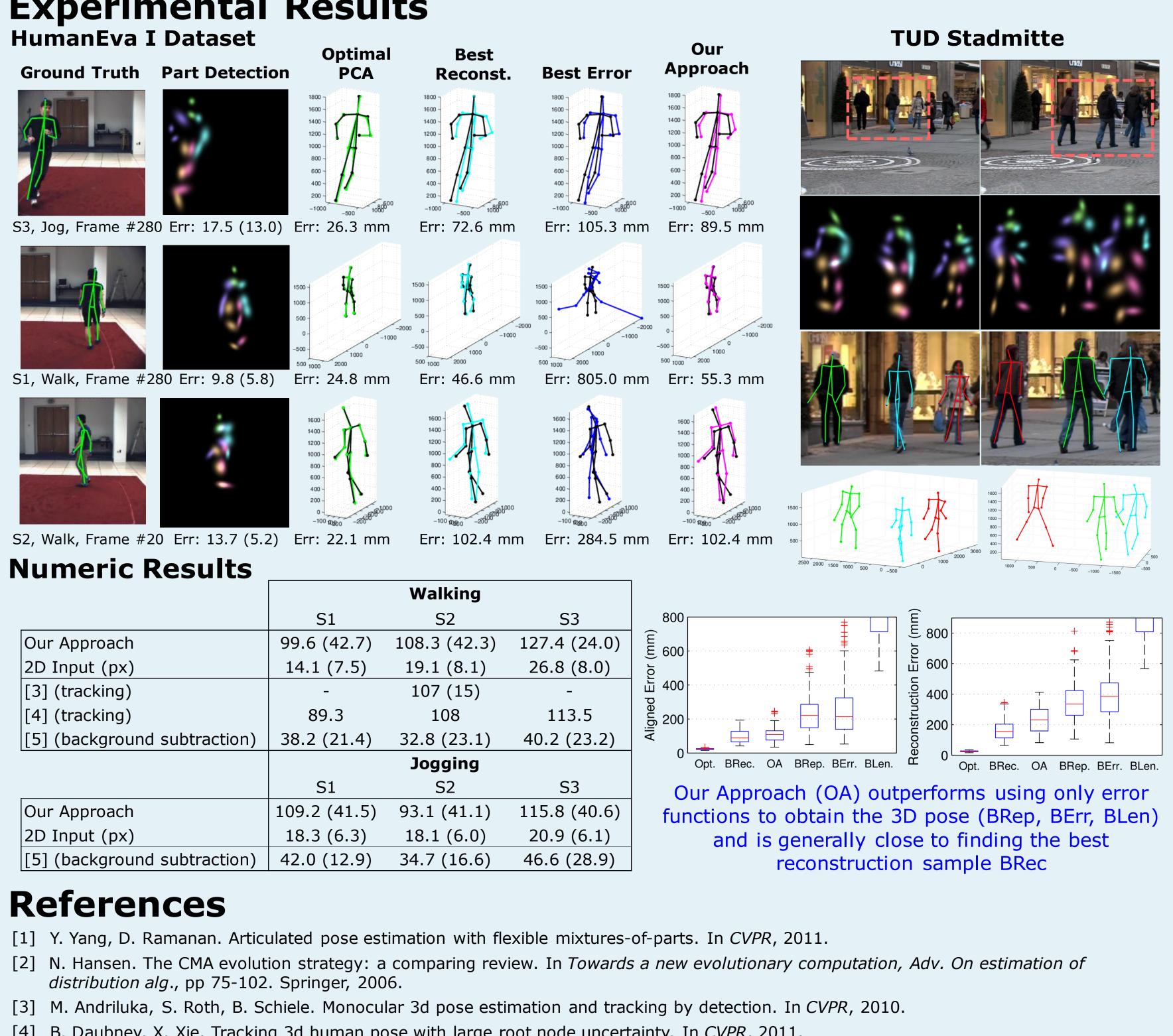
One-Class Support Vector Machine is used to obtain a value indicative of pose anthropomorphism from distance matrices

				Sample #1		Sample #2		
	Sample #1		Sample #2	Pose	Aligned	Ро	se	Aligned
Error Value (ε _{ιr})	6.883	~	6.885				THE STATE	
SVM Output	2.8e-04	>	-7.6e-03					
Reconst. Err. (mm)	199.9	≈	214.9					
Aligned Err. (mm)	56.4	<	167.7					
Robustness to noise is obtained by linear deformation model								
	ed Error	· · · · ·	10 12	14	6 18	20	synth from	ations to

Mean 2D Joint Detection Error (px)

F. Moreno-Noguer

Experimental Results



- [4] B. Daubney, X. Xie. Tracking 3d human pose with large root node uncertainty. In CVPR, 2011.
- [5] L. Bo, C. Sminchisescu. Twin Gaussian Processes for Structured Prediction. *IJCV*, 87(1-2): 28-52, 2010.