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HumanEva I Dataset 

PROBLEM:  

Retrieval of a 2D and 3D Human Pose from a single image 

STATE-OF-THE ART LIMITATIONS:  

Use of temporal information or background subtraction 

Unrealistic assumption of good 2D input 

CONTRIBUTIONS:  

Novel probabilistic generative model for 3D Human Motion 

Bayesian framework for joint inference of 2D and 3D pose 

Problem Definition  

GIVEN:  
 Input Image 

Camera Focal Length α 
 
WE WANT TO RETRIEVE:  

Both the 3D and 3D pose of the 
subject in the input image 

Bayesian Formulation 
 Image evidence given body configuration 

 

 

Consider 2D to be projection of true 3D model generated by 

smaller latent model 
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Image Evidence 

2D Pose 

3D Pose 

Latent Space 

 

Smooth response good for inference 

Scale estimated from depth with β: 

Discriminative 2D Part Detectors [29] 

Detector at scale 
space coordinates 

Relative weighting 

Latent Generative Model 
Learns compression function: 

 

 

3D Poses are discretized 

Directed Acyclic Graph allows 

efficient dynamic programming: 

3D Poses 
Latent 
Space 

Parameter Learning (ki, β) 
Parameters serve to combine detectors with latent model 

Human symmetry exploited to reduce needed parameters 

Optimized on randomly generated negatives 

Inference 
 
 

3D Pose consists of global transformation and local deformation 

Treated as global optimization problem (using CMA-ES [10]): 

 

 

 
Part scale 

Focal length 

Part depth 

Iter. 
1 

Iter. 
5 

Iter. 
50 

Iter. 
300 

S2  Jogging 

TUD Stadmitte 
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Weighted based on usefulness for 

3D pose estimation 

Score interpreted as log-likelihood 

Generative model reduces 

search space during inference 

 

Discriminative 2D detectors 

enforce consistency of the 3D 

pose with the image evidence 

 

Compression Function: 

Decompression Function: 

ki values 

Octave 
  6    11  16   21   26   31 
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