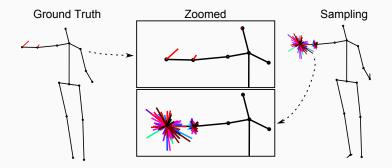
LIE ALGEBRA-BASED KINEMATIC PRIOR FOR 3D HUMAN POSE TRACKING

Edgar Simo-Serra, Carme Torras, Francesc Moreno-Noguer Tokyo. 21st of May, 2015

- \cdot Motivation
- \cdot Overview
- $\cdot\,$ Manifolds, Geodesics, and Tangent Spaces
- · Clustering on Tangent Spaces
- · Joint Pose and Kinematic Manifold
- · Kinematic Prior Model
- · Results
- $\cdot\,$ Conclusions and Future Work

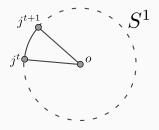
MOTIVATION

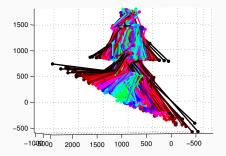
- Predict change in position (velocity) in subsequent frames given the current position
- \cdot Application to 3D pose tracking as a prior



MOTIVATION

- Predict change in position (velocity) in subsequent frames given the current position
- $\cdot\,$ Application to 3D pose tracking as a prior
- $\cdot\,$ Only generate feasible configurations constrained by the manifold





Prior	Complexity	Scales	Consistent
Gaussian diffusion	Low	Yes	No
GPLVM [1]	Low	No	No
GPDM [2]	Medium	No	No
hGPLVM [3]	Medium	No	No
CRBM [4]	High	Yes	No
GCMFA [5]	High	No	No
GFMM (Ours)	Low	Yes	Yes

¹N. D. Lawrence. Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models. JMLR, 6:1783–1816,

2005.

² J. Wang, D. Fleet, and A. Hertzmann. Gaussian process dynamical models. In NIPS, 2005.

³ M. Andriluka, S. Roth, and B. Schiele. Monocular 3D Pose Estimation and Tracking by Detection. In CVPR, 2010.

⁴ G. Taylor, L. Sigal, D. Fleet, and G. Hinton. Dynamical binary latent variable models for 3d human pose tracking. In CVPR, 2010.

⁵ R. Li, T.-P. Tian, S. Sclaroff, and M.-H. Yang. 3d human motion tracking with a coordinated mixture of factor analyzers. IJCV,

87(1-2):170-190, 2010.

1. Consider data to lay on a joint pose and kinematic manifold

 $(x,v)\in SO(3)/SO(2)\times\mathfrak{so}(3)/\mathfrak{so}(2)$

2. Learn joint probabilistic generative parametric model

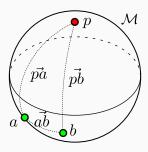
 $p(x, v|\theta)$

3. Infer kinematics from pose

 $p(v|x, \theta)$

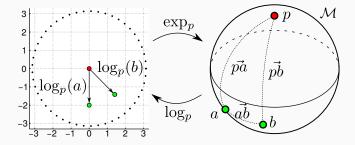
MANIFOLDS, GEODESICS, AND TANGENT SPACES

• Geodesic distance between two points on a manifold is the shortest distance along the manifold



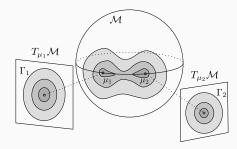
MANIFOLDS, GEODESICS, AND TANGENT SPACES

- Geodesic distance between two points on a manifold is the shortest distance along the manifold
- Tangent space is a local approximation of a manifold that is a Euclidean space
 - · logarithm and exponential map project to and from a tangent space respectively

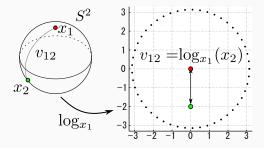


CLUSTERING ON TANGENT SPACES

- · Mean estimated on the manifold using the geodesic mean
- · Covariance estimated on the tangent space in closed form
- · Expectation-Maximization algorithm
 - Minimum Message Length used to determine number of clusters



- Pose modelled using SO(3)/SO(2) joints
- Quotient of Lie algebras so(3)/so(2) expresses velocity of a SO(3)/SO(2) joint
 - · Equivalent to tangent space
 - Velocities are geodesic lines
- · Joint pose and kinematic modelled as SO(3)/SO(2) $\times \mathfrak{so}(3)/\mathfrak{so}(2)$



KINEMATIC PRIOR MODEL

- · Learn joint distribution of poses and kinematics $p(x, v|\theta)$
 - \cdot θ are the mixture parameters
 - Number of clusters K determined automatically

$$p(\mathbf{x}, \mathbf{v}|\boldsymbol{\theta}) = \sum_{k=1}^{K} \alpha_k p(\mathbf{x}, \mathbf{v}|\boldsymbol{\theta}_k)$$

- · Compute conditional distribution $p(v|x, \theta)$
 - $\cdot\,$ Conditional distribution is a new mixture model
 - · Cluster weights re-estimated given x

$$p(\mathbf{v}|\mathbf{x}, \theta) = \frac{p(\mathbf{x}, \mathbf{v}|\theta)}{p(\mathbf{x}|\theta)} = \frac{\sum_{k=1}^{K} \alpha_k p(\mathbf{x}|\theta_k) p(\mathbf{v}|\mathbf{x}, \theta_k)}{\sum_{k=1}^{K} \alpha_k p(\mathbf{x}|\theta_k)} = \frac{1}{Z} \sum_{k=1}^{K} \pi_k p(\mathbf{v}|\mathbf{x}, \theta_k)$$

- \cdot Sampling is $\mathcal{O}(1)$, computing log-likelihood is $\mathcal{O}(K)$
 - \cdot 10⁵ samples in under a second

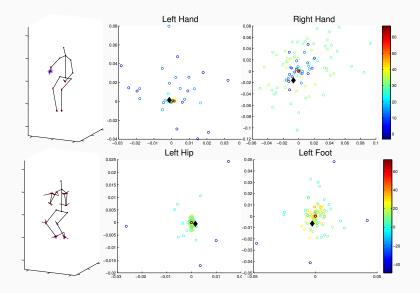
RESULTS

- Evaluation on Human3.6m dataset [1]
- \cdot 15 different actions with 2 subactions each
- · 6 actors for training, 1 actor for testing
- \cdot Model body with 15 joints
 - $\cdot\,$ 12 joints have 2 DoF, 2 joints have 1 DoF
 - $\cdot\,$ Learn block-diagonal covariance matrices with 92 parameters each
- \cdot Scale pose and kinematic components to be relatively similar
- \cdot Subsample heavily correlated input data when learning

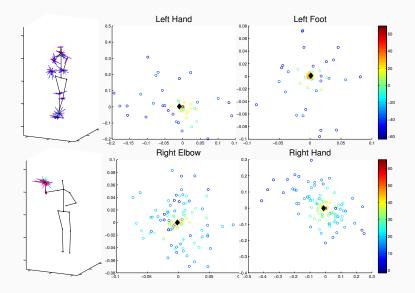
¹C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. PAMI, 36(7):1325-1339, 2014.

	Log-likelihood	
Method	Train	Test
Samples	465,325	62,064
Gaussian diffusion local Gaussian diffusion	5.4325 6.4193	5.4349 6.4206
Ours (30%, 211 clusters) Ours (15%, 147 clusters)	9.3382 8.9544	11.7874 1 1.8714

RESULTS



RESULTS



- · Robust kinematic prior
- $\cdot\,$ Demonstrated performance over widely used gaussian priors
- \cdot Code for the GFMM framework is available [1]

- · Robust kinematic prior
- $\cdot\,$ Demonstrated performance over widely used gaussian priors
- · Code for the GFMM framework is available [1]
- $\cdot\,$ Use in real world tracking framework
- · Extend to more conditionals $p(v_t|x_t, x_{t-1}, \theta)$

QUESTIONS?

HTTP://WWW.IRI.UPC.EDU/PEOPLE/ESIMO/