Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup

Edgar Simo-Serra^{*}, Satoshi Iizuka^{*}, Kazuma Sasaki, Hiroshi Ishikawa (*equal contribution) July 27th, 2016

Waseda University

Sketch Simplification

Sketch Simplification

Sketch Simplification

1. Sketch Simplification

- 1.1 Progressive Online Modification
- 1.2 Stroke Reduction
- 1.3 Stroke Grouping

- 1. Sketch Simplification
 - 1.1 Progressive Online Modification
 - 1.2 Stroke Reduction
 - 1.3 Stroke Grouping
 - 1.4 Vector input

- 1. Sketch Simplification
 - 1.1 Progressive Online Modification
 - 1.2 Stroke Reduction
 - 1.3 Stroke Grouping
 - 1.4 Vector input
- 2. Vectorization
 - 2.1 Model Fitting (Bezier, ...)
 - 2.2 Gradient-based approaches

Noris et al. 2013

- 1. Sketch Simplification
 - 1.1 Progressive Online Modification
 - 1.2 Stroke Reduction
 - 1.3 Stroke Grouping
 - 1.4 Vector input
- 2. Vectorization
 - 2.1 Model Fitting (Bezier, ...)
 - 2.2 Gradient-based approaches
 - 2.3 Require fairly clean input sketches

Noris et al. 2013

- 1. Sketch Simplification
 - 1.1 Progressive Online Modification
 - 1.2 Stroke Reduction
 - 1.3 Stroke Grouping
 - 1.4 Vector input
- 2. Vectorization
 - 2.1 Model Fitting (Bezier, ...)
 - 2.2 Gradient-based approaches
 - 2.3 Require fairly clean input sketches
- 3. Deep Learning
 - 3.1 Fully Convolutional Network

Long et al. 2015

Proposed Approach

Deep Learning

- Modern Neural Networks
 - Computational efficiency with GPU
 - Large scale datasets

Deep Learning

- Modern Neural Networks
 - Computational efficiency with GPU
 - Large scale datasets
- Learns input to output mapping
- Basic building block layer: $f(x) = \sigma(Wx)$

Deep Learning

- Modern Neural Networks
 - Computational efficiency with GPU
 - Large scale datasets
- Learns input to output mapping
- Basic building block layer: $f(x) = \sigma(Wx)$
- Parameters (W...) are learnt
- Hyper-parameters are set by hand

Fully Convolutional Network

- Uses only convolutional layers
- Each layer convolves many filters
- Layer hyperparameters: kernel, padding, and stride
 - Weights expressed with kernels
 - Padding conserves the image size
 - Stride can change the output resolution

Fully Convolutional Network

We create three building blocks by modifying the stride:

- 1. Flat-convolution
 - 1.1 $3\times 3px$ kernel, $1\times 1px$ padding, 1px stride
- 2. Down-convolution
 - 2.1 $3\times3px$ kernel, $1\times1px$ padding, 2px stride
- 3. Up-convolution

3.1 4 \times 4px kernel, 1 \times 1px padding, 1/2px stride

Down-convolution

Model

- 23 convolutional layers
- \cdot Output has the same resolution as the input
- Encoder-Decoder architecture
 - Reduces memory usage
 - Increases spatial resolution

Learning

- \cdot Trained from scratch
- \cdot Using 424 \times 424px patches
- Weighted Mean Square Error loss
- Batch Normalization [Ioffe and Szegedy 2015] is critical
- Optimized with ADADELTA [Zeiler 2012]

Vectorization and Simplification

- Vectorization with potrace
 - Open source software
 - High pass filter and binarization

Vectorization and Simplification

- \cdot Vectorization with potrace
 - Open source software
 - High pass filter and binarization
- Scaling input changes simplification degree

Sketch Dataset

Sketch dataset

- 68 pairs of rough and target sketches
- 5 illustrators

Inverse Dataset Creation

- \cdot Data quality is critical
- Creating target sketches from rough sketches has misalignments
- Creating rough sketches from target sketches properly aligns

Data Augmentation

- 68 pairs is insufficient
- Scaling training data
- Random cropping, flipping and rotation
- Additional augmentation: tone, slur, and noise

Results and Comparisons

- Intel Core i7-5960X CPU (3.00GHz)
- NVIDIA GeForce TITAN X GPU
- 3 weeks training time

Image Size	Pixels	CPU (s)	GPU (s)	Speedup
320 × 320	102,400	2.014	0.047	42.9×
640×640	409,600	7.533	0.159	$47.4 \times$
1024×1024	1,048,576	19.463	0.397	49.0×

Comparison

Comparison

15

User Study

- Comparison with 15 images
- 19 users participated (10 with illustration experience)
- Absolute rating (1 to 5 scale)
- \cdot Relative evaluation (best of two)

	Ours	Live Trace	Potrace
Score	4.53	2.94	2.80
vs Ours	-	2.5%	2.8%
vs Live Trace	97.5%	-	30.3%
vs Potrace	97.2%	69.7%	-

Comparison

Conclusions

- Automatic Sketch Simplification Approach
- Convolutional networks are suited to image processing
- Proper data is crucial for training

Conclusions

- Automatic Sketch Simplification Approach
- Convolutional networks are suited to image processing
- Proper data is crucial for training

Try Online: http://hi.cs.waseda.ac.jp:8081/

Model

type	kernel size	stride	output size
input	-	-	$\begin{array}{c} 1 \times H \times W \\ 48 \times H/2 \times W/2 \\ 128 \times H/2 \times W/2 \\ 128 \times H/2 \times W/2 \\ 128 \times H/2 \times W/2 \end{array}$
down-convolution	5 × 5	2 × 2	
flat-convolution	3 × 3	1 × 1	
flat-convolution	3 × 3	1 × 1	
down-convolution	3 × 3	$\begin{array}{c} 2 \times 2 \\ 1 \times 1 \\ 1 \times 1 \end{array}$	256 × H/4 × W/4
flat-convolution	3 × 3		256 × H/4 × W/4
flat-convolution	3 × 3		256 × H/4 × W/4
down-convolution flat-convolution flat-convolution flat-convolution flat-convolution flat-convolution flat-convolution	3 × 3 3 × 3	$ \begin{array}{c} 2 \times 2 \\ 1 \times 1 \end{array} $	$\begin{array}{c} 256 \times {\it H/8} \times {\it W/8} \\ 512 \times {\it H/8} \times {\it W/8} \\ 1024 \times {\it H/8} \times {\it W/8} \\ 512 \times {\it H/8} \times {\it W/8} \\ 256 \times {\it H/8} \times {\it W/8} \end{array}$
up-convolution flat-convolution flat-convolution	$\begin{array}{c} 4 \times 4 \\ 3 \times 3 \\ 3 \times 3 \end{array}$	$1/2 \times 1/2$ 1 × 1 1 × 1 1 × 1	256 × H/4 × W/4 256 × H/4 × W/4 128 × H/4 × W/4
up-convolution	$\begin{array}{c} 4 \times 4 \\ 3 \times 3 \\ 3 \times 3 \end{array}$	$\frac{1/2 \times 1/2}{1 \times 1}$	128 × H/2 × W/2
flat-convolution		1 × 1	128 × H/2 × W/2
flat-convolution		1 × 1	48 × H/2 × W/2
up-convolution	4×4	$\frac{1/2 \times 1/2}{1 \times 1}$	48 × H × W
flat-convolution	3×3	1 × 1	24 × H × W
flat-convolution	3×3	1 × 1	1 × H × W