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The contents can be summarized by the following:

• Results for multiple architectures, including different numbers of convolutional layers, fully connected

layers, different rectifiers, etc. We studied a large number of strategies exhaustively, and settled on the

solution used throghout the submission: fully convolutional models with three layers, i.e. CNN3 (see

Sec. 3.1 for details). These experiments were not included in the paper due to space constraints.

• Results for multiple metrics. As we argue in Sec. 4, Precision-Recall (PR) curves are the most appro-

priate metric for this problem; however, we also consider Receiving Operator Characteristics (ROC)

and Cumulative Match Curves (CMC). For the experiments of Sec. 4.2 we also include the numeri-

cal results for each test fold separately (see Sec. F). Please note that these results do not include every

baseline considered in the final version of the paper.

A. Metrics

As we argue in Sec. 4, PR curves are the most appropriate metric for this problem. We also consider ROC

and CMC curves. ROC curves are created by plotting the true positive rate TPR as a function of the true

negative rate TNR, where:

TPR =
TP

P
TNR = 1−

FP

N
(1)

Alternatively, the CMC curve is created by plotting the Rank against the Ratio of correct matches. That

is, CMC(k) is the fraction of correct matches that have rank≤k. In particular CMC(1) is the percentage of

examples in which the ground truth match is retrieved in the first position.

We report these results for either metric in terms of the curves (plots) and their AUC (tables), for the best-

performing iteration.

B. Depth and Fully Convolutional Architectures

The network depth is constrained by the size of the patch. We consider only up to 3 convolutional layers

(CNN{1-3}). Additionally, we consider adding a single fully-connected layer at the end (NN1). Fully-

connected layers increase the number of parameters by a large factor, which increases the difficulty of learning

and can lead to overfitting.

An overview of the architectures we consider is given in Table 1. We choose a set of six networks, from

2 up to 4 layers. Deeper networks outperform shallower ones, and architectures with a fully-connected layer

at the end do worse than fully convolutional architectures. We settled on CNN3 and used it for the rest of

experiments in this supplemental material, as well as the experiments reported in the submission.

Table 2 lists the results, and Figs. 1, 2 and 3 show the PR, ROC and CMC curves respectively.
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Name Layer 1 Layer 2 Layer 3 Layer 4

CNN3 NN1
32x7x7 64x6x6 128x5x5 128

x2 pool x3 pool x4 pool -

CNN3
32x7x7 64x6x6 128x5x5 -

x2 pool x3 pool x4 pool -

CNN2a NN1
32x5x5 64x5x5 128 -

x3 pool x4 pool - -

CNN2b NN1
32x9x9 64x5x5 128 -

x4 pool x5 pool - -

CNN2
64x5x5 128x5x5 - -

x4 pool x11 pool - -

CNN1 NN1
32x9x9 128 - -

x14 pool - - -

Table 1: Various convolutional neural network architectures.

Architecture Parameters PR AUC ROC AUC CMC AUC

SIFT — .361 .944 .953

CNN1 NN1 68,352 .032 .929 .929

CNN2 27,776 .379 .971 .975

CNN2a NN1 145,088 .370 .987 .988

CNN2b NN1 48,576 .439 .985 .986

CNN3 NN1 62,784 .289 .980 .982

CNN3 46,272 .558 .986 .987

Table 2: Experiments on depth and fully convolutional architectures.
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Figure 1: PR curves for the experiments on depth and architectures.
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Figure 2: ROC curves for the experiments on depth and architectures.
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Figure 3: CMC curves for the experiments on depth and architectures.
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C. Hidden Units Mapping, Normalization, and Pooling

It is generally accepted that Rectified Linear Units (ReLU) perform better in classification tasks (see

Krizhevsky et al., NIPS 2012) than other non-linear functions. We consider both the standard Tanh and

ReLU. For the ReLU case we still use Tanh for the last layer. We also consider not using the normalization

sublayer for each of the convolutional layers. Finally, we consider using max pooling rather than L2 pooling.

We show results for the fully-convolutional CNN3 architecture in Table 3 and Figs. 4, 5 and 6. The best results

are obtained with Tanh, normalization and L2 pooling (‘CNN3’ in the table/plot). This was the configuration

used for the experiments in the paper, unless specified otherwise.

Architecture PR AUC ROC AUC CMC AUC

SIFT .361 .944 .953

CNN3 .558 .986 .987

CNN3 ReLU .442 .973 .976

CNN3 No Norm .511 .980 .982

CNN3 MaxPool .420 .973 .975

Table 3: Experiments on hidden units, normalization, pooling.

4



Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PR curve, validation set

SIFT
CNN3
CNN3_ReLU
CNN3_NoNorm
CNN3_MaxPool

Figure 4: PR curves for the experiments on hidden units, normalization, pooling.
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Figure 5: ROC curves for the experiments on hidden units, normalization, pooling.
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Figure 6: CMC curves for the experiments on hidden units, normalization, pooling.
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D. Mining ‘hard’ positives and negatives

Here we extend the results of Sec. 4.1, including all the metrics, which are summarized in Table 4. Figs. 7,

8 and 9 show the PR, ROC and CMC curves respectively.

BP

B
M

P

BN

B
M

N

PR AUC ROC AUC CMC AUC

1 1 .366 .977 .979

1 2 .558 .986 .987

2 2 .596 .988 .989

4 4 .703 .993 .993

8 8 .746 .994 .994

16 16 .538 .983 .986

Table 4: Extended table for the experiments of Sec. 4.1.
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Figure 7: PR curves for the experiments of Sec. 4.1 (equivalent to Fig. 6 in the paper).
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Figure 8: ROC curves for the experiments of Sec. 4.1.
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Figure 9: CMC curves for the experiments of Sec. 4.1.
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E. Number of filters and descriptor dimension

We analyze increasing the number of filters in the CNN3 model, and adding a fully-connected layer that

can be used to decrease the dimensionality of the descriptor. We consider increasing the number of filters

in layers 1 and 2 from 32 and 64 to 64 and 96, respectively. Additionally, we double the number of internal

connections between layers. This more than doubles the number of parameters in this network. To analyze

descriptor dimensions we consider the CNN3 NN1 model and change the number of outputs in the last fully-

connected layer from 128 to 32. In this case we consider positive mining with BP = 256 (i.e. 2/2).

Numerical results are given in Table 5, and Figs. 10, 11 and 12 show the PR, ROC and CMC curves

repectively. The best results are obtained with smaller filters and fully-convolutional networks.

Architecture Output Parameters PR AUC ROC AUC CMC AUC

SIFT 128D — .361 .944 .953

CNN3 128D 46,272 .596 .988 .989

CNN3 Wide 128D 110,496 .552 .987 .988

CNN3 NN1 128D 62,784 .456 .988 .988

CNN3 NN1 32D 50,400 .389 .986 .987

Table 5: AUC results for the experiments on number of filters and descriptor dimension.
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Figure 10: PR curves for the experiments on number of filters and descriptor dimension.
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Figure 11: ROC curves for the experiments on number of filters and descriptor dimension.
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Figure 12: CMC curves for the experiments on number of filters and descriptor dimension.

9



F. Generalization & Comparisons with the state of the art

In this section we extend the results of Sec. 4.2. We summarize the results over three different dataset

splits, each with ten test folds of 10,000 randomly sampled positives and 1,000 randomly sampled negatives.

We show the PR results in Tables 6-8, and Figs. 13-15, the ROC results in Tables 9-11, and Figs. 16-18, and

the CMC results in Tables 12-14, and Figs. 19-21.

Precision-Recall AUC, Train: LY+YOS, Test: ND (10 folds)

Model F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Avg.

SIFT .364 .352 .345 .343 .349 .350 .350 .351 .341 .348 .349

BGM .490 .490 .487 .487 .496 .481 .490 .488 .483 .480 .487

LBGM .498 .499 .489 .492 .505 .489 .501 .498 .490 .490 .495

BinBoost-64 .273 .261 .267 .266 .276 .270 .265 .262 .266 .260 .267

BinBoost-128 .456 .449 .447 .447 .465 .449 .452 .452 .451 .445 .451

BinBoost-256 .549 .548 .546 .544 .560 .551 .551 .552 .548 .542 .549

CNN3, mine 8/8 .667 .658 .669 .667 .678 .659 .672 .667 .662 .666 .667

Table 6: Generalized results in Precision-Recall. Models trained over LY+YOS and tested on ND.

Precision-Recall AUC, Train: LY+ND, Test: YOS (10 folds)

Model F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Avg.

SIFT .428 .419 .413 .416 .414 .427 .429 .442 .432 .430 .425

BGM .498 .495 .481 .492 .475 .497 .508 .511 .497 .492 .495

LBGM .521 .519 .504 .512 .499 .524 .530 .530 .511 .519 .517

BinBoost-64 .286 .286 .274 .280 .273 .288 .291 .285 .280 .288 .283

BinBoost-128 .459 .463 .447 .457 .436 .463 .468 .467 .451 .456 .457

BinBoost-256 .537 .538 .519 .535 .514 .543 .545 .545 .529 .530 .533

CNN3, mine-8/8 .547 .547 .528 .551 .528 .559 .556 .561 .546 .530 .545

Table 7: Generalized results in Precision-Recall. Models trained over LY+ND and tested on YOS.

Precision-Recall AUC, Train: YOS+ND, Test: LY (10 folds)

Model F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Avg.

SIFT .223 .226 .229 .228 .226 .222 .233 .235 .219 .223 .226

BGM .269 .265 .280 .255 .272 .261 .281 .267 .272 .258 .268

LBGM .353 .354 .364 .343 .360 .352 .361 .352 .361 .352 .355

BinBoost-64 .201 .198 .211 .194 .205 .201 .208 .201 .204 .200 .202

BinBoost-128 .351 .338 .351 .335 .348 .345 .353 .349 .351 .346 .346

Binboost-256 .411 .405 .416 .399 .411 .407 .411 .418 .410 .409 .410

CNN3, mine-8/8 .607 .611 .610 .604 .603 .604 .606 .615 .612 .608 .608

Table 8: Generalized results in Precision-Recall. Models trained over YOS+ND and tested on LY.
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ROC AUC, Train: LY+YOS, Test: ND (10 folds)

Model F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Avg.

SIFT .956 .954 .955 .958 .957 .955 .955 .955 .956 .955 .956

BGM .973 .972 .973 .976 .974 .972 .974 .973 .974 .973 .973

LBGM .969 .968 .970 .972 .971 .969 .971 .969 .970 .969 .970

BinBoost-64 .948 .950 .951 .954 .951 .950 .952 .949 .951 .951 .951

BinBoost-128 .965 .966 .966 .969 .968 .966 .968 .965 .967 .967 .967

BinBoost-256 .970 .971 .971 .974 .972 .971 .973 .970 .971 .971 .971

CNN3, mine-8/8 .986 .985 .986 .988 .987 .986 .989 .986 .986 .986 .987

Table 9: Generalized results in ROC. Models trained over LY+YOS and tested on ND.

ROC AUC, Train: LY+ND, Test: YOS (10 folds)

Model F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Avg.

SIFT .949 .947 .948 .949 .949 .950 .949 .950 .950 .950 .949

BGM .970 .970 .972 .970 .972 .972 .971 .971 .972 .972 .971

LBGM .966 .966 .967 .966 .969 .969 .967 .968 .969 .969 .968

BinBoost-64 .944 .943 .943 .944 .946 .943 .944 .943 .943 .944 .944

BinBoost-128 .961 .960 .961 .961 .963 .962 .963 .962 .962 .962 .962

BinBoost-256 .967 .966 .968 .967 .969 .968 .968 .968 .968 .968 .968

CNN3, mine-8/8 .974 .972 .975 .974 .976 .975 .975 .975 .976 .974 .975

Table 10: Generalized results in ROC. Models trained over LY+ND and tested on YOS.

ROC AUC, Train: YOS+ND, Test: LY (10 folds)

Model F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Avg.

SIFT .938 .939 .936 .938 .933 .935 .936 .938 .937 .936 .937

BGM .962 .962 .963 .961 .960 .961 .961 .962 .963 .962 .962

LBGM .961 .961 .961 .960 .960 .960 .960 .960 .962 .961 .961

BinBoost-64 .951 .948 .950 .949 .949 .948 .948 .950 .949 .949 .949

BinBoost-128 .962 .962 .961 .961 .961 .960 .960 .963 .962 .962 .961

BinBoost-256 .965 .965 .965 .965 .964 .964 .964 .966 .966 .965 .965

CNN3, mine-8/8 .983 .983 .983 .981 .983 .982 .982 .984 .983 .982 .982

Table 11: Generalized results in ROC. Models trained over YOS+ND and tested on LY.

11



CMC AUC, Train: LY+YOS, Test: ND (10 folds)

Model F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Avg.

SIFT .964 .962 .963 .966 .965 .963 .964 .963 .964 .962 .963

BGM .974 .973 .974 .977 .976 .974 .976 .974 .975 .975 .975

LBGM .972 .971 .972 .975 .974 .971 .974 .972 .973 .972 .973

BinBoost-64 .956 .956 .958 .961 .958 .957 .960 .957 .958 .958 .958

BinBoost-128 .969 .968 .969 .971 .971 .969 .971 .968 .970 .970 .970

BinBoost-256 .972 .972 .973 .975 .974 .973 .975 .972 .973 .973 .973

CNN3, mine-8/8 .988 .988 .988 .990 .989 .988 .990 .989 .989 .989 .989

Table 12: Generalized results in CMC. Models trained over LY+YOS and tested on ND.

CMC AUC, Train: LY+ND, Test: YOS (10 folds)

Model F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Avg.

SIFT .956 .955 .956 .956 .956 .958 .956 .957 .956 .958 .956

BGM .971 .971 .973 .972 .973 .973 .972 .973 .973 .974 .972

LBGM .969 .969 .970 .969 .970 .971 .969 .971 .971 .971 .970

BinBoost-64 .952 .952 .952 .953 .954 .952 .953 .953 .952 .954 .953

BinBoost-128 .965 .965 .966 .966 .967 .966 .967 .967 .966 .967 .966

BinBoost-256 .969 .968 .971 .970 .971 .971 .971 .971 .971 .970 .970

CNN3, mine-8/8 .980 .979 .981 .981 .982 .982 .980 .982 .982 .982 .981

Table 13: Generalized results in CMC. Models trained over LY+ND and tested on YOS.

CMC AUC, Train: YOS+ND, Test: LY (10 folds)

Model F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Avg.

SIFT .948 .949 .947 .948 .945 .945 .948 .949 .948 .947 .948

BGM .967 .967 .967 .966 .966 .966 .967 .967 .968 .967 .967

LBGM .965 .965 .965 .964 .965 .964 .965 .965 .966 .965 .965

BinBoost-64 .954 .952 .954 .953 .952 .952 .952 .954 .952 .952 .953

BinBoost-128 .965 .964 .964 .964 .963 .963 .963 .965 .964 .964 .964

BinBoost-256 .968 .968 .968 .967 .967 .967 .967 .969 .969 .968 .968

CNN3, mine-8/8 .985 .985 .985 .984 .985 .984 .985 .986 .986 .985 .985

Table 14: Generalized results in CMC. Models trained over YOS+ND and tested on LY.
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Figure 13: Generalized results in PR, first split.
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Figure 14: Generalized results in PR, second split.
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Figure 15: Generalized results in PR, third split.
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Figure 16: Generalized results in ROC, first split.
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Figure 17: Generalized results in ROC, second split.
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Figure 18: Generalized results in ROC, third split.
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Figure 19: Generalized results in CMC, first split.
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Figure 20: Generalized results in CMC, second split.
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Figure 21: Generalized results in CMC, third split.
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