
luadq: Tutorial on using Dual Quaternions in Lua

E. Simo-Serra

May 3, 2013

Abstract

This short tutorial attempts to explain the basics of using unit dual quaternions with
the Lua interface of libdq, known as luadq. Unit dual quaternions are widely used in
kinematics and can express spatial displacements in SE(3).

1 Introduction

This small tutorial is meant to teach potential users how to use luadq, the Lua front-end
of libdq [1] in the context of kinematics. It is not meant to be a in-depth review nor
explanation of the mathematics behind dual quaternions. For a more detailed guide on
mathematics in robotic kinematics please refer to [2].

Dual quaternions are an efficient representation of spatial displacements that are gen-
erally faster and more efficient to use that homogeneous matrices or quaternions with
translation vectors. Recently they have been seen widely used in kinematics [3, 4]. How-
ever, they also have usage on other fields like 3D graphics [5] or computer vision [6].
While the dual quaternions can be used in many contexts, this tutorial focuses on their
application in kinematics.

2 Theoretic Primer

For the purpose of this tutorial it is sufficient to say that dual quaternions are elements
of the Clifford even subalgebra C+

0,3,1. There are many notations for dual quaternions.
This library uses the basis used by McCarthy which is the same as Selig with minor
rearrangements,

{1, e23, e31, e12, e41, e42, e43, e1234} = {1, i, j, k, iǫ, jǫ, kǫ, ǫ} (1)

This allows us to write a dual quaternion as,

Q̂ = (q0 + q1i+ q2j + q3k) + ǫ(q7 + q4i+ q5j + q6k) = q̂ + ǫq̂0 (2)

Using vertical notation we would have the following,

Q̂ =

e23
e31
e12
1

+

e41
e42
e43
e1234

=

i

j

k

1

+ ǫ

i

j

k

1

(3)

1

In order for the dual quaternion to be able to represent spatial displacements it must
be a unit dual quaternion and thus comply with the following restrictions,

q̂q̂0 = 1 (4)

q̂ · q̂0 = 0 (5)

It is important to note that unit dual quaternions double cover the special Euclidean
group SE(3). This means that Q̂ and −Q̂ represent the same spatial displacement.

3 Set-up

Installation is straightforward on linux systems and consists of two steps: compilation
and installation. For installation of luadq the only dependency is lua1 and luarocks2.

On Ubuntu you can obtain the dependencies by running:

apt−get i n s t a l l l i b l u a 5 .1−0−dev luarock s

If you wish to additionally compile the Doxygen documentation (make docs), you will
also need to run:

apt−get i n s t a l l doxygen doxygen−l a t ex t e x l i v e graphv iz

3.1 Compilation

To compile execute from the root of the libdq directory:

make # Compiles l ibdq
make rock # Compiles luadq

3.2 Installation

Once compile it must be installed. The paths can be set by editing the Makefile. By
default it installs into system directories and needs root privileges. To install execute
from the root of the libdq directory:

make i n s t a l l # I n s t a l l s l ibdq
make rock− i n s t a l l # I n s t a l l s luadq

3.3 Verification

You can verify the installation is correct by checking if your Lua installation can find
luadq. This can be done by running the following in a Lua terminal:

Lua 5 . 1 . 4 Copyright (C) 1994−2008 Lua . org , PUC−Rio
> r equ i r e ’ luadq ’
> =luadq
t ab l e : 0x17fbd60

You should get similar output.

1http://www.lua.org/
2http://luarocks.org/

2

http://www.lua.org/
http://luarocks.org/

4 Getting Started

The API of luadq is the same as libdq’s API. However, the naming scheme is different.
Instead of being prepended by “dq ”, the functions are prepended by “luadq.”. For details
of these functions please refer to the libdq manual [1]. Some examples:

• dq rotation 7−→ luadq.rotation

• dq rotation plucker 7−→ luadq.rotation plucker

• dq rotation matrix 7−→ luadq.rotation matrix

• dq translation 7−→ luadq.translation

• dq translation vector 7−→ luadq.translation vector

• dq point 7−→ luadq.point

• dq line 7−→ luadq.line

• dq line plucker 7−→ luadq.line plucker

• dq homo 7−→ luadq.homo

• dq copy 7−→ luadq.copy

• dq inv 7−→ luadq.inv

• dq f1g 7−→ luadq.f1g

• dq f2g 7−→ luadq.f2g

• dq f3g 7−→ luadq.f3g

• dq f4g 7−→ luadq.f4g

The differences with the C types are not too large. For 3D vectors you must define
them in Lua as tables:

{ 1 , 2 , 3 } −− A vector with components x=1, y=2, z=3

For 3× 3 matrices you must use a multi-dimensional table:

{ { 1 , 2 , 3 } , −− F i r s t row
{ 4 , 5 , 6 } , −− Second row
{ 7 , 8 , 9 } } −− Last row

For homogeneous matrices, they are represented as a 3× 4 table:

{ { 1 , 2 , 3 , 4 } , −− F i r s t row
{ 5 , 6 , 7 , 8 } , −− Second row
{ 9 , 10 , 11 , 12 } } −− Last row

However, some Lua functions do not directly derive from libdq C equivalents. These
are:

• Q = luadq.raw(vec) – Takes a table with 8 components and sets the dual quaternion

• vec = luadq.get(Q) – Gets the raw 8 components of the dual quaternion

• rn, dn = luadq.norm2(Q) – Returns two numbers, the real and dual component of
the norm

• R,t = luadq.extract(Q) – Gets the rotation matrix and translation vector associated
to the dual quaternion

• b = luadq.unit(Q) – Checks to see if the dual quaternion is unitary

Also note that basic math operators +, − and ∗ and supported directly.

3

4.1 First steps

Now we will give some simple examples of using luadq. These are pure Lua programs.

r equ i r e ’ luadq ’
−− Create the o r i g i n
O = luadq . point ({ 0 , 0 , 0 })
−− Trans la t ion 5 un i t s in X d i r e c t i o n
T = luadq . t r a n s l a t i o n (5 , {1 , 0 , 0 })
−− Rotation around Z ax i s cen te r ed on o r i g i n
−− We are us ing Plucker c oo rd in a t e s to d e s c r i b e the
−− ax i s o f r o t a t i on
R = luadq . r o t a t i on p lu ck e r (math . pi , {0 , 0 , 1} , {0 , 0 , 0})
−− We compose d isp lacements , t r a n s l a t i o n i s app l i ed f i r s t
D = R ∗ T
−− We apply the C l i f f o r d con jugat ion f o r po in t s on the o r i g i n O
−− us ing the d isp lacement
P = D: f4g (O)
−− Disp lay the dual quatern ion
P: p r i n t (t rue)
−− As i t i s a point t ran s fo rmat ion the point i s s to r ed in the

imaginary component
Q = P: get ()
−− Disp lay the new coo rd in a t e s
p r i n t (s t r i n g . format (”x=%d , y=%d , z=%d” , Q[5] , Q[6] , Q[7]))

The example is fairly straight forward. We create a point, then we create a spatial
transformation composed of both a translation and a rotation, and we finally transform
the point and display the new point obtained (which should be (-5,0,0)). This small
application can give an idea of the power behind dual quaternions and the simplicity
of working with them. Next we’ll give an example on a more real forward kinematics
situation.

5 Example: Epson E2L Scara Robot

In this example we’ll consider the Epson E2L SCARA robot. The joints of this robot
have the following Plücker coordinates.

S1 = (0, 0, 1) + ǫ(0, 0, 0) (6)

S2 = (0, 0, 1) + ǫ(0,−300, 0) (7)

S3 = (0, 0, 1) + ǫ(0, 650, 0) (8)

S4 = (0, 0,−1) + ǫ(0, 650, 0) (9)

where S1, S2 and S3 are revolute joints while S4 is a prismatic joint.
We’ll also consider the end-effector or Tool Center Point (TCP) to be at,

tcp = (650, 0, 318) (10)

First we’ll write a small function that will perform the forward kinematics, that is,

Q̂(∆θ̂) =

(
n∏

i=1

e
∆θ̂i

2
Si

)
Qtcp =

(
n∏

i=1

(cos
∆θ̂i

2
+ sin

∆θ̂i

2
Si)

)
Qtcp (11)

where ∆θ̂ = θ̂ − θ̂ref with θ̂ref being the joint parameter in the reference configuration
and Qtcp the transformation from the origin to the TCP position.

4

Note that we have to consider the transformation from the origin to the TCP when
doing the forward kinematics. We can write the case of the Epson E2L Scara robot in
Lua as the following,

−− Relat iv e forward k inemat ics k inemat ics f o r the
−− Epson E2L Scara Robot
−− The va lue s o f the tas are r e l a t i v e to the r e f e r e n c e c on f i gu r a t i on
funct ion s c a r a r e l f k (theta1 , theta2 , theta3 , theta4)

−− Here we c r e a t e the th ree r o t a t i on quate rn ion s
−− Note that we are d i r e c t l y us ing the Plucker c oo rd in a t e s o f the
−− j o i n t axes . However , luadq . r o t a t i on would work f o r axes de f in ed
−− by an o r i e n t a t i o n and a point be longing to the l i n e
l o c a l S1 = luadq . r o t a t i on (theta1 , { 0 , 0 , 1 } , { 0 , 0 , 0 })
l o c a l S2 = luadq . r o t a t i on (theta2 , { 0 , 0 , 1 } , { 0 , −300, 0 })
l o c a l S3 = luadq . r o t a t i on (theta3 , { 0 , 0 , 1 } , { 0 , −650, 0 })
−− Fourth j o i n t i s t r a n s l a t i o n
l o c a l S4 = luadq . t r a n s l a t i o n (theta4 , { 0 , 0 , −1 })

−− The end e f f e c t o r p o s i t i o n f o r the r e f e r e n c e c on f i gu r a t i on
l o c a l TCP = luadq . t r a n s l a t i o n v e c t o r ({ 650 , 0 , 318 })

−− Here we combine the fou r d i sp lacement s in to a s i n g l e one and
−− r e tu rn i t . Not ice we a l s o append the end−e f f e c t o r at the
−− r e f e r e n c e c on f i gu r a t i on . The order o f app l i c a t i on o f the
−− t ran s fo rmat ion s i s r i gh t−most i s app l i ed f i r s t .
l o c a l S = S1 ∗ S2 ∗ S3 ∗ S4 ∗ TCP

−− Here we c r e a t e a point at the o r i g i n , we ’ l l t rans form th i s
−− point
l o c a l P = luadq . point ({ 0 , 0 , 0 })

−− Here we b a s i c a l l y use the ac t ion f4g (s p e c i f i e d in l ibdq ’ s
−− manual) to trans form the o r i g i n point . This w i l l g iv e us
−− the forward k inemat ics o f the robot .
r e tu rn S : f4g (P)

end

This code is straight forward and basically performs the relative transformation. We
can see it does indeed work quickly by checking the reference position,

−− This w i l l g iv e the o r i g i n a l TCP
TCP = s c a r a r e l f k (0 , 0 , 0 , 0)
p r i n t (”TCP: ”)
TCP: p r i n t (t rue) −− The parameter makes i t p r i n t v e r t i c a l l y
−− We can ex t r a c t the ac tua l point value by us ing : get ()
Q = TCP: get ()
p r i n t (s t r i n g . format (”x=%d , y=%d , z=%d” , Q[5] , Q[6] , Q[7]))

which as expected gives “x=650, y=0, z=318”.
Now we can move the 4th joint (prismatic) to lower it to the X-Y plane. This is simply

done by setting θ4 = 318,

−− We can only do t r an s l a t i o n to lower i t to the bottom plane
TCP = s c a r a r e l f k (0 , 0 , 0 , 318)
p r i n t (”\nLowering to X−Y plane : ”)
TCP: p r i n t (t rue)
Q = TCP: get ()
p r i n t (s t r i n g . format (”x=%d , y=%d , z=%d” , Q[5] , Q[6] , Q[7]))

5

which gives us “x=650, y=0, z=0”.
You can also move other joints like for example,

−− You can a l s o play around with r o t a t i o n s
TCP = s c a r a r e l f k (−math . p i /2 , math . p i /2 , math . p i /2 , 318)
p r i n t (”\nRotating : ”)
TCP: p r i n t (t rue)
Q = TCP: get ()
p r i n t (s t r i n g . format (”x=%d , y=%d , z=%d” , Q[5] , Q[6] , Q[7]))

which gives us “x=-350, y=-300, z=0”.
As you can see dual quaternions are a powerful and simple way of performing forward

kinematics. Note that in these examples we were ignoring the rotations, although inter-
nally they were taken into account. To see the rotation you can use the line transform
“luadq.f2g” and look at the real component of dual quaternion which will represent the
rotation using “luadq.extract“.

6 Conclusions

As shown in this tutorial, unit dual quaternions are a powerful way of expressing robot
kinematics. The luadq interface to libdq provides an efficient and simple way of being
able to manipulate dual quaternions to be able perform standard robotic kinematics like
forward kinematics.

The only reason dual quaternions are as widely used are because of the lack of famil-
iarity most people have with Clifford algebras. This tutorial attempts to dispel a bit of
the mystic behind the quaternions and show that they are not as difficult to use as they
may appear, especially with tools that simplify the entire process like the one presented.

References

[1] E. Simo-Serra, “libdq: Dual Quaternion Library.”
https://github.com/bobbens/libdq, 2011.

[2] J. M. Selig, Geometric Fundamentals of Robotics (Monographs in Computer Science).
SpringerVerlag, 2004.

[3] A. Perez and J. M. McCarthy, “Dual quaternion synthesis of constrained robotic
systems,” Journal of Mechanical Design, vol. 126, no. 3, pp. 425–435, 2004.

[4] A. Perez-Gracia and J. M. McCarthy, “Kinematic synthesis of spatial serial chains
using Clifford algebra exponentials,” Proc. of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science, vol. 220, no. 7, pp. 953–968, 2006.

[5] L. Kavan, S. Collins, J. Zara, and C. O’Sullivan, “Geometric skinning with approxi-
mate dual quaternion blending,” vol. 27, (New York, NY, USA), p. 105, ACM Press,
2008.

[6] A. Torsello, E. Rodolà, and A. Albarelli, “Multiview registration via graph diffusion
of dual quaternions,” in CVPR, pp. 2441–2448, IEEE, 2011.

6

https://github.com/bobbens/libdq

	Introduction
	Theoretic Primer
	Set-up
	Compilation
	Installation
	Verification

	Getting Started
	First steps

	Example: Epson E2L Scara Robot
	Conclusions

