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Fig. 1. We propose a fast and accurate vectorization method that can turn clean raster line drawings with complex topology (a) into high quality vector
graphics (c). Our results are sufficiently detailed for automatic downstream processing (e.g., [Yin et al. 2022] (d)). Neural networks predict dual contouring
inputs, key point locations, and under-sampled regions (b). The key points and under-sampled regions are used to automatically refine the initial vectorization
produced by dual contouring, correcting incorrect topology (b, top). Our method is also capable of handling high valence star-junctions. Girl image ©David

Revoy CC-BY-4.0.

We introduce an algorithm for sketch vectorization with state-of-the-art
accuracy and capable of handling complex sketches. We approach sketch vec-
torization as a surface extraction task from an unsigned distance field, which
is implemented using a two-stage neural network and a dual contouring
domain post processing algorithm. The first stage consists of extracting un-
signed distance fields from an input raster image. The second stage consists
of an improved neural dual contouring network more robust to noisy input
and more sensitive to line geometry. To address the issue of under-sampling
inherent in grid-based surface extraction approaches, we explicitly predict
undersampling and keypoint maps. These are used in our post-processing
algorithm to resolve sharp features and multi-way junctions. The keypoint
and undersampling maps are naturally controllable, which we demonstrate
in an interactive topology refinement interface. Our proposed approach
produces far more accurate vectorizations on complex input than previous
approaches with efficient running time.

CCS Concepts: « Computing methodologies — Image processing; Shape
analysis.
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1 INTRODUCTION

Vector graphics offer numerous advantages compared to raster im-
ages, including enhanced precision, scalability, and editability. Many
algorithms have been proposed for downstream processing of raw
vector sketchs, e.g., [Gryaditskaya et al. 2020; Kaplan and Cohen
2006; Liu et al. 2018; Shao et al. 2012; Whited et al. 2010; Yang et al.
2018; Yin et al. 2022]. However, the world’s sketches are often locked
away in raster formats [Yan et al. 2020]. They may be digitized from
the real world, drawn in a raster graphics program, or rasterized for
other reasons.

For line drawings such as sketches, general image vectorization
approaches are unsuitable. They output colorful regions rather than
paths for stroke centerlines [Dominici et al. 2020; Lai et al. 2009; Zhu
et al. 2022]. Vectorizing line drawings, particularly hand-drawn
ones with high image resolution and complex line topology, remains
a challenging task. Techniques for line drawing vectorization typi-
cally address this problem by breaking it down into optimization
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sub-tasks such as line extraction and topology refinement [Bess-
meltsev and Solomon 2019; Favreau et al. 2016; Gutan et al. 2023;
Noris et al. 2013; Puhachov et al. 2021]. However, these methods are
computationally complex, and their processing time increases sig-
nificantly when applied to line drawings encountered in real-world
scenarios [Yan et al. 2020]. Several recent deep learning techniques
have been proposed to convert raster input into centerlines for indi-
vidual sketch strokes [Carlier et al. 2020; Das et al. 2021; Egiazarian
etal. 2020; Ha and Eck 2017; Liu et al. 2022; Lopes et al. 2019; Mo et al.
2021]. However, these methods typically adopt a fully end-to-end
approach, where the network learns to extract lines and fit vector
parameters. These approaches don’t scale to complex inputs, often
omitting lines.

We propose an approach to sketch vectorization that generates
far more accurate output, from more complex sketches. Our key
insight is treating centerline extraction as the problem of implicit
surface extraction from unsigned distance fields, allowing us to
take advantage of and improve upon recent work on Neural Dual
Contouring [Chen et al. 2022]. For topology reconstruction, we also
predict an undersampling map, which identifies where the neural
network’s raster sampling rate is unable to capture stroke detail. Mo-
tivated by the observation that topology is typically local, we extend
the fully convolutional neural network of Puhachov et al. [2021]
for predicting key points such as end points, sharp turns, T or Y
junctions, etc. Together, this information leads to a post-processing
algorithm that overcomes the accuracy and resolution limits of dual
contouring approaches alone. Furthermore, the architecture of our
approach, which predicts an undersampling map (indicating regions
with a sampling rate too low to recover accurate geometry) and
keypoint locations, lends itself to interactive topology editing (Sec-
tion 8.4). Other than Section 8.4, all results shown were generated
automatically with no user interaction.

Sketch consolidation and cleanup are outside the scope of our
research. Our work aims to faithfully vectorize all strokes in clean
or messy raster line drawings, including physical artifacts like paper
texture and lighting variation. Numerous techniques could be used
for pre-processing (e.g. [Simo-Serra et al. 2018]) or post-processing
(e.g. [Liu et al. 2018]).

2 RELATED WORK

Converting raster images to vector graphics representations has
been extensively studied for decades. These studies can be broadly
categorized into two groups: extraction of vector regions (bounded
by closed curves) and strokes (typically open).

Region vectorization. Many approaches are based on outputting
vector graphics representations of colorful regions bounded by
closed curves (e.g. photographs or clip art). Output formats in-
clude regions filled with opaque linear or radial gradients [Dominici
et al. 2020; Lecot and Levy 2006], translucent layers [Du et al. 2023;
Favreau et al. 2017; Reddy et al. 2021], gradient meshes [Lai et al.
2009; Zhu et al. 2022], and diffusion curves [Orzan et al. 2008; Zhao
et al. 2018]. These methods are unsuitable for vectorizing line draw-
ings, which are collections of (often open) curves. At best, they
produce long, thin regions conforming to the outlines of strokes.
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Sketch vectorization. Other approaches, like, ours, aim to output
a set of open or closed curves in the plane that correspond to the
centerlines of strokes in a raster image. (Sketch vectorization is also
related to simplifying or consolidating a rough sketch given in raster
or vector format. See Yan et al. [2020] for an overview and recent
benchmark.) Early approaches employed techniques such as thresh-
olding (binarization) and thinning to extract a 1-pixel width center
line [Hilaire and Tombre 2006]. However, these methods often pro-
duce inaccurate or messy vector strokes, particularly for complex,
noisy, or anti-aliased drawings. Donati et al. [2018] showed that
adaptive thresholding and skeletonization can heuristically reduce
these artifacts. Parakkat et al. [2018] relied on simple thresholding
but insights related to the shape of triangles in a Delaunay Tri-
angulation of the shape to obtain higher quality skeletons. Zhang
et al. [2022] introduced an algorithm for replacing unreliable skele-
tonizations of thick strokes with information obtained from the
stroke boundaries. Noris et al. [2013] proposed to use image gradi-
ents to determine stroke topology and centerlines. However, this
method still produces unreliable vector strokes due to insufficient
local information provided by the gradient field alone. In contrast,
we use a convolutional neural network (CNN) to accurately predict
stroke centerlines and auxiliary information as distance fields for
topological reconstruction.

Favreau et al. [2016] used a simple approach to find 1-pixel skele-
tons by thresholding (for open strokes) and computing boundary
pixels of trapped-ball regions (closed strokes). The focus of their
work was on finding a simple curve network with accurate junctions.
Bessmeltsev and Solomon [2019] proposed to treat the problem of
curve smoothness and junction topology as one of finding a smooth
polyvector field. This approach, and the numerous follow-up works
[Bessmeltsev and Solomon 2019; Gutan et al. 2023; Puhachov et al.
2021; Stanko et al. 2020] produce high quality curve and junction
shapes, but have two primary drawbacks: (1) they rely on threshold-
ing to identify the narrow region around strokes, and (2) they are
slow. Of particular relevance to our work, Puhachov et al. [2021]
trained a CNN to predict the location and type of key points; we
base our distance field prediction network on theirs (Section 5). Bao
and Fu [2023] combined tangent fields and gradient fields to achieve
good results on clean sketches. In contrast to these approaches, we
treat the stroke geometry extraction problem as one of extracting
the zero level set of an unsigned distance field. We recover junctions
by predicting the undersampling area around junctions, and gluing
appropriate topology based on the junction’s boundary.

Other techniques for line drawing vectorization have approached
it as a sequence generation problem and used recurrent neural net-
works (RNN) [Carlier et al. 2020; Das et al. 2021; Ha and Eck 2017;
Liu et al. 2022; Lopes et al. 2019; Mo et al. 2021]. These approaches
typically project the raster sketch into a latent space and then use a
generative decoder to produce a sequence of vector graphics primi-
tives such as points or Bezier curve parameters. As revealed in our
evaluation, they fail to capture details in complex input. Guo et al.
[2019] introduced a CNN-based approach to output an image with
all stroke centerlines and an image with all junctions. The junction
information is used to separate individual strokes with the help of a
second network. This is reminiscent of our distance field network’s
output. However, by outputting in the distance field domain, we can



Raster Sketch

Key Points ~ Under-Sampling ~ Center Line
Map

Distance
Field [

Prediction

Threshold
Local

Initial Vectorization
Incorrectly Predicted Topology
X )/

Deep Sketch Vectorization via Implicit Surface Extraction « 37:3

Refined Vectorization Final Vectorization

J Dual Contouring Down-sampling & Line grouping

Auto Topology Manual Label
Error Detection - Topology Errors -
Step 1 Step 2 (optional)

Maximum

Fig. 2. The overall pipeline of our sketch vectorization approach. First, a Distance Field Prediction network outputs implicit stroke centerlines, key point
locations, and regions likely undersampled. Next, a Line Reconstruction network produces an initial vectorization. The undersampled regions and keypoints
are used to refine the vectorization. Finally, we extract long, connected chains of edges. Balloon image ©David Revoy CC-BY-4.0.

directly obtain vector strokes via dual contouring, which allows our
approach to scale to more complex input.

Dual contouring isosurface extraction. Dual contouring (DC) [Ju
et al. 2002] is an elegant approach for isosurface/isocurve extraction
from signed distance fields. In dual contouring, a grid is overlaid on
the domain. All grid edges identified as intersecting the isosurface
(via a sign change at either end), and all grid cells incident to inter-
secting edges, produce a geometric dual in the output. Grid cells
produce dual vertices in the output and grid edges produce dual
edges (in 2D) or faces (in 3D) connecting those vertices. Dual vertex
positions are chosen as the minimizer of an objective function using
distance field gradients. Recently, Chen et al. [2022] proposed Neural
Dual Contouring, in which a neural network outputs edge flags and
vertex positions for a given distance field. Importantly, Neural Dual
Contouring enables dual contouring on unsigned distance fields for
the first time, which are needed for stroke centerline distance maps.

3 OVERVIEW

Figure 2 summarizes the architecture of our method. Our architec-
ture consists of two sub-networks (Distance Field Prediction and
Line Reconstruction), followed by post-processing algorithms
tailored for the dual contouring domain.

The first sub-network performs Distance Field Prediction given
an input raster sketch (Section 5). This network is a combination
of image-to-image translation and super-resolution. The network
outputs a set of Unsigned Distance Fields (UDF) with double the in-
put resolution. One of the distance fields encodes stroke centerlines.
Super-resolution greatly reduces vectorization errors and limits
them to multi-way junctions and sharp corners. The other distance
fields encode such likely under-sampled regions and keypoint loca-
tions. This allows our post-processing to recover precise geometry
and connectivity.

The centerline UDF is then passed to the Line Reconstruction
network (Section 6). This network is based on Neural Dual Contour-
ing [Chen et al. 2022] for zero isocurve extraction. The output takes
the form of three maps: two with flags for horizontal and vertical
grid edge crossings, and one with the grid cell dual positions. (See
Section 2 for a brief summary of dual contouring.)

The raw network outputs are combined and post-processed with
methods tailored to the dual contouring domain (Section 7). These
methods can automatically refine the topology at sharp turn and
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Fig. 3. Example of brush augmentations. We augment each sketch with 7
different brush styles, and we randomly set the every stroke width during
each augmentation.

multi-way junctions, remove redundant lines, connect broken strokes,
and output long, continuous strokes.

Details about an additional layer in each sub-network to address
the conversion of data between the raster and UDF domain can be
found in the supplementary materials.

4 TRAINING DATASET

We used a similar methodology to Puhachov et al. [2021] to construct
our training dataset. We did not use Puhachov et al. [2021]’s dataset
directly, since it primarily focuses on key point detection, resulting
in certain brush styles being too thick for vectorization. Instead, we
created a dataset with synthetic brushes more akin to hand-drawn
sketches encountered in the wild. We sampled 10,000 and 53,000
vector sketches from the Quick Draw!! and Creative Sketch [Ge
et al. 2021] datasets, respectively.

Raster input. Each sketch was rasterized using 7 different brush
styles, with randomly varying stroke widths (Figure 3). This resulted
in a total of 441,000 raster sketches for our training input. During
training, each raster sketch was also composited onto a randomly
generated paper texture, as shown in Figure 1 (a). The testing set,
discussed in Section 8, consists of a disjoint set of 369 professionally
cleaned vector sketches from Yan et al. [2020]’s sketch cleanup
benchmark.

UDF & Dual Contouring Ground Truth. We extract several com-
ponents to serve as targets for network training: (a) keypoint, (b)
center line, (c) edge flags, (d) vertex map, and (e) under sam-
pling map. Components (a), (b), and (e) are encoded as Unsigned
Distance Fields (UDF) and function as the ground truth for our Dis-
tance Field Prediction network, while components (c) and (d) form
the basis of the ground truth for our Line Reconstruction network.
Details are provided in Sections 5 and 6, respectively.

Lhttps://github.com/googlecreativelab/quickdraw- dataset
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5 DISTANCE FIELD PREDICTION

For a given raster input sketch, the Distance Field Prediction net-
work encodes centerline and keypoint information using six UDFs:
Uventerline €ncodes the distance to strokes’ centerlines; Uysys encodes
the Under Sampling Map (USM), or distance from under-sampled
grid points in the dual contouring domain; and, similar to Puha-
chov et al. [2021], Ueng sharp,junc encode the distance to keypoints
(endpoints, sharp corners, and junctions, respectively) and U, re-
dundantly encodes the distance to all three types of keypoints.

Ground truth UDFs creation. Rather than pre-computing ground
truth UDFs (Unsigned Distance Fields), we generate them dynami-
cally. This is because augmentation methods such as random crop-
ping and rotation do not commute with distance field creation.
(Consider that cropping a vector sketch could eliminate the closest
stroke to many pixels in the rasterized UDF. Rotating the rasterized
UDF would introduce sampling artifacts.) Therefore, in order to ob-
tain a precise UDF, we apply the random augmentation to the vector
sketch and generate the UDF on the fly. To avoid a performance
bottleneck, we use a spatial acceleration data structure to quickly
find the closest point on the cropped vector paths to each pixel. Each
line segment’s axis-aligned bounding box (AABB) provides a lower
bound on the point-to-line segment distance. In our experiments,
a simple linear sweep across AABBs was as fast as building and
querying an AABB tree.

Network Training and Objective Function. We modified the net-
work architecture used by Puhachov et al. [2021] to improve its
performance and add more prediction branches for the Ugeptertine
and Uysys outputs. We increased the network’s inner channel from
128 to 256 and also increased the cardinality of the ResNext module
from 3 to 8 with gradually increasing dilation steps for a larger
receptive field. We train our Center Line Extraction network C by
minimizing:

0* = argmin E [2%_ L};,,. (UDF;, Ci(I;0)) (1)
6

where 6 are the model parameters, C; is the i-th prediction branch,
UDF; € R(W+1)x(2H+1) i the j-th UDF channel, and I € RW>*H ig
the input raster sketch.

Because pixels representing strokes are typically sparser than the
background, our loss function Lj;,, uses the masked /; distance:

Liine(UDF;,UDF;) = average(lUDF; — UDF;| © M;) (2)

where the mask M; € RGW+DX@H*1) comes from the ground
truth UDF; binarized with distance threshold 4.5 pixel units and
UDF; = Ci(I; 0). The rationale for setting the threshold at 4.5 is to
ensure that all branches within the subsequent Line Reconstruc-
tion network, which have a maximum receptive field of size 7X 7 in
their convolutional kernels, receive enough valid information. This
setting aims to minimize the area that the NDC network needs to
focus on, while still ensuring sufficient information acquisition.

The network training converged after approximately 72 GPU
hours on a single Nvidia A100 GPU.
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Fig. 4. The process of creating ground truth for the 2D Neural Dual Con-
touring network, and the process of reconstruction and refinement based
on the key point and under sampling map. (a) Given a target vector graphic,
we sample it with a fixed size grid. (b) We detect and count crossings of each
grid edge and sample one vertex within each grid cell to extract edges flags,
the vertex map, and the under-sampling map. (c) The edge flags and vertices
alone are insufficient to correctly reconstruct junctions when a grid edge
is crossed multiple times. (d) Simple surgery based on the under-sampling
map can still recover the correct topology in many cases.

6 LINE RECONSTRUCTION

After obtaining the centerline UDF from the Distance Field Predic-
tion network, we obtain our raw vectorization by extracting the
zero isocurves via an improved Neural Dual Contouring network
[Chen et al. 2022].

Ground truth Creation. For each vector sketch, we follow Chen
et al. [2022] to define its vertex map V € R(W*HX2) and edge
flag map E € R(WXHX2) We further introduce the concept of
an Under-Sampling Map (USM) U € R(WxH ). We first define a
grid by picking a sampling rate (0.5-pixel in our case). For each cell
containing a vector path, V( , stores the point on the vector path
(black dots in Figure 4a and b) closest to the grid center (gray dots in
Figure 4a). Then, we find intersections between the vector paths and
grid edges (Figure 4a). If an intersection is found with the grid edge
of a cell at location (x, y), we label the corresponding position in the
edge flag map E(, ;) (green and blue edges in Figure 4a and blocks
in Figure 4b). If two or more intersections are detected with the
same edge (red edge in Figure 4a), this indicates an under-sampling
issue. Dual contouring reconstruction only allows for one vertex per
grid cell and one crossing per edge. The signal cannot be correctly
reconstructed (Figure 4c) in the under-sampled region (purple dotted
line in Figure 4a). In this case, we assign labels to the cells on both
sides of this edge in our USM Uy, ), U(x—1,y) for a vertical edge or
U(x,y)» Ux,y—1) for a horizontal edge (purple cells in Figure 4b and
Figure 4d).

Network Training and Objective Function. Our Line Reconstruc-
tion network is built on the Neural Dual Contouring (NDC) network
introduced in [Chen et al. 2022] adapted to 2D. However, when
applying the original NDC network to sketch vectorization, we en-
countered certain limitations. The original NDC network is sensitive
to noisy signals due to the predicted UDF inherently containing
noise. This sensitivity made it difficult to find clean and contiguous
centerlines when strokes had varying thickness. Additionally, accu-
rately reconstructing junction regions was challenging due to the
undersampling issue, even when the edge flag map was accurately
predicted.

We therefore proposed two improvements in our Line Reconstruc-
tion network. We first introduce multi-resolution convolution



branches comprising three consecutive residual convolution layers.
This choice corresponds to employing 3 X 3, 5 X 5, and 7 X 7 grid
sizes during Dual Contouring inference. Each branch follows the
same design, with the only difference being the dilation size of the
convolution kernel, which is set to 1, 2, and 3, respectively. Then
we ask the network to predict an addition channel which encodes
the 1-pixel width sketch skeleton. Together with our proposed
skeleton loss function, these changes encourage the network to use
context from a larger receptive field through the multi-resolution
convolution branches and generate line segments more likely to be
connected.

We formulate our Line Reconstruction network N prediction as
a pixel-wise classification task, which we express as:

0" = arg min E [Lgec(N (Ucentertine: 0), E, V, S)] (3

where Ugepnsertine = UDFi is the input Unsigned Distance Field and
E, V, and S are the ground truth edge flag map, vertex map, and
skeleton map, respectively. We optimize for the network’s parame-
ters via a loss function Lgec. The Lgec function contains 3 different
loss terms, which are edge map loss, vertex loss, and skeleton loss,
respectively. We formulate it as:

LRec = Ledge(E E)+05- Lvertex(‘?, V) +0.01- Lskeleton(gs S) @

where E = Ng(Ucenterline) V = Nv (Ucentertine)s S = Ns(Ucentertine)s
E € RWXHX4 'y ¢ RWXHX2 and § ¢ RWXH N, Ny, and Ng
represent the branches predicting the edge map, vertex map and
skeleton map in our Line Reconstruction network, respectively.

Ledge is a masked cross entropy loss similar to Ly, (EQ. 2), Lyertex
is an Ly loss, and Lgg,jeton is a binary cross entropy loss. Specifically,
we define the edge flag prediction as a 4-channel output, with each
channel representing the None flag, X-axis flag, Y-axis flag, and
both-axis flag, respectively. We then convert the ground truth edge
flag map into a 4-channel one-hot vector map.

The convergence of the network required approximately 24 GPU
hours on a single Nvidia A100 GPU.

End-to-End training. After the two sub-networks have been prop-
erly trained, we continue fine-tuning the end-to-end pipeline with
an additional 24 GPU hours. The joint training pipeline can be
expressed as:

0%, 05 = argmin E [Lreo(N(C(I; 00); ), E, V. S)
+ 39, Line (UDF;, Ci(I;60)) | (5)

7 POST-PROCESSING

The raw output of our vectorization pipeline contains several types
of artifacts: incorrect reconstructions due to under-sampling (Fig-
ure 4); and parallel edges (Figure 5a), gaps (Figure 6), and jagged
lines (Figure 10 (a3)) due to redundant or missing edge flags. We
propose post-processing algorithms to resolve them. (Chen et al.
[2022] proposed a different, 3D post-process to address gaps in their
output.)

Edge flag refinement. A raw prediction may contain redundant
edge flags (Figure 5a) or broken lines (Figure 6). We propose two
simple morphological image operations to address this. To address
redundant edges, we first obtain the occupancy map as a bit-wise

Deep Sketch Vectorization via Implicit Surface Extraction « 37:5

Occupancy map | |

X

(a) Raw and messy edge flags (d) Refined edge flags

(c) Skeleton mask

Fig. 5. Edge flag refinement. The raw edge flags from our Line Reconstruc-
tion network may contain parallel repetitive messy lines (a). The combined
X-axis and Y-axis edge flags could be interpreted as a “imperfect” skeleton
(b) because the ideal skeleton map of a sketch should always be 1 pixel
width (c). We therefore could apply a skeletonize algorithm to remove this
type of redundant edge flags(d).
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Fig. 6. Example of (a) horizontal and (b) vertical broken lines in the edge flag
map. The convolution kernels which defined by the edge flag position (green
or blue edge flag on the edges) detect broken edges (red flag on the edges)
that should be flagged. X’s represents ignored values in the convolution
kernel.

logical OR operation of the X-axis and Y-axis edge flags (Figure 5b).
We then skeletonize it [Zhang and Suen 1984] to obtain a 1-pixel
width skeleton mask (Figure 5c) and eliminate all edge flags outside
of the mask (Figure 5d).

We observed four common broken line patterns in the edge flag
maps (Figure 6). To address them, we designed four 3 X3 convolution
kernels to locate positions that need to restore missing edge flags.
This operation is efficient and can also be easily extended to refine
other types of topology errors in the future.

Topology refinement. We propose a topological surgery algorithm
based on the under-sampling map and key point locations. Our
observation is that we can recover precise topology by removing
all edge flags within the under-sampling map (Figure 7b) and re-
connecting the truncated edges at the boundary (Figure 7c). The
valence can be determined by counting the number of truncated
edges. If the valence of the under-sampling map is 4 and no key
points are present, pairs of truncated edges are connected to each
other based on matching tangent directions (Figure 7c). Otherwise,
if a keypoint is present within the under-sampling map, all trun-
cated edges are directly connected to it. If no keypoint is present,
the edges are connected to the average position of the removed grid

ACM Trans. Graph., Vol. 43, No. 4, Article 37. Publication date: July 2024.
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(a) Wrong topology due to (b) Discard edge flags inside  (c) Recover the topology
under-sampling the under-sampling region from the truncation
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Fig. 7. The general methodology for topology recovery in an under-sampling
map. An under-sampling map can arise in two scenarios: junctions or parallel
lines that are in close proximity to each other (row | and I, respectively).
When the grid edge intersects multiple vector paths (l.(a)), or when all four
edges of a grid exhibit intersection points (Il.(a)), we classify that particular
grid cell as under-sampled (purple cells), as seen in (b). To refine the topology
within this region, we first extract each individual under-sampling map and
compute its valence by counting the number of truncated edges (the purple
edge in (b)), as demonstrated in (c). We then proceed to select and remove
all edge labels and center points contained within this region, as shown
in (b). Subsequently, we retrieve all key points located within this region
and perform reconstruction based on the retrieval results. If a key point is
found within this region, we reconstruct the junction by reconnecting all
the truncated points to this key point (1.(c)). Alternatively, if no key point is
detected and the region’s valence is 4, we reconstruct the parallel line by
connecting the pairs of truncated points that possess the closest tangent
direction (I1.(c)).

(a) Accurate USM  (b) Rough USM  (c) Refined result

Fig. 8. Refinement based on under-sampling maps with varying accuracy.
Both (a) accurate and easier-to-generate (b) approximate under-sampling
maps produce virtually the same refined result (c).

vertices. Our topology refinement method is capable of reconstruct-
ing intricate topology when provided with reasonably accurate key
points and an USM (Figure 8). Our approach successfully recovers
star-junction topology, which has historically posed challenges for
previous methods (Figure 9).

Dual contouring downsampling. Our 2X super-resolution recon-
struction is beneficial for complex structures, such as sharp turns
or multi-way junction regions, where a dense sampling rate is nec-
essary. However, it is wasteful to use so many line segments for
simple curves. We propose a dual-contouring domain downsampling
algorithm to simplify undesirable complexity.

Without loss of generality, we describe our approach for 3x down-
sampling. We first group each 3 X 3 block of grid cells into a coarser
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(a) Input (b) [Mo et al. 2021]  (c) [Bessmeltsev et al. 2019]
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(d) [Puhachov et al. 2021] (e) Our Result

(f) USM & Key point

Fig. 9. Resolving a star junction in a raster line drawing. (a) Input image.
(b), (c), (d) Comparison results obtained from other methods, with zoom in
of the line structure at bottom left. (e) Our output. (f) Detected key point,
under-sampling map and zoom in reconstructed topology.
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(a) Raw reconstruction (b) Reconstruction after 3 x 3 Dual Contouring
down sampling with under-sampling

Fig. 10. An example of 3 x 3 Dual Contouring edge flag down-sampling
with the under-sampling map. Our down-sampling algorithm labels a 3 x 3
block as under-sampled if it contains predicted under-sampling (a5) or its
edges contain multiple crossings (a2). Then, only the geometry in un-labeled
blocks (b1, b3, b4, b6) is down-sampled. This process naturally connects
broken lines (b1), smooths jagged lines (b3), and removes noisy stray lines
(b4).

grid (Figure 10a). Then we detect crossings of coarse grid edges
to create coarse edge flags. If the coarse grid cell contains exactly
one open endpoint, the endpoint is used as the coarse cell’s ver-
tex (Figure 10 (b3, b6)). Otherwise, the average of grid vertices on
the finer path inside is used (Figure 10 (b1, b4)). If multiple cross-
ings are detected across a single coarse edge (Figure 10 (a2)) or one
3 % 3 block contains predicted under-sampling map (Figure 10 (a5)),
we label the coarse grid cell and its neighbor across the edge as
under-sampled. In this case, we simply preserve the finer geometry
inside the under-sampled region, which is equivalent to keeping the
sampling rate unchanged (Figure 10 (a) compared to (b)).

In this way, the algorithm adaptively selects the appropriate grid
size to reduce the overall sampling rate and number of line segments
while maintaining the same vector path quality, See Figure 11) for
an 8% dual contouring downsampling example.



Fig. 11. 8x dual contouring downsampling with and without the under-
sampling map. In the top close-up, down-sampling preserves edges inside
the red boxes via the under-sampling map. In the bottom close-up, down-
sampling loses the structure information due to the lower sampling rate.
Image ©VFS Digital Design CC-BY-2.0.

Fig. 12. Comparison of results using different line smoothing techniques.
The bottom row contains a close-up view of the green boxes. The input
raster sketch (a) produces jagged line artifacts when vectorized with our
technique (b). Ramer-Douglas-Peucker (RDP) line simplification (c) and
Schneider [1990]’s Bézier curve fitting (b) both effectively mitigate the issue.
However, this simple Bézier curve fitting approach smooths sharp corners
(red circle). Image©Krenz Cushart CC-BY-NC-4.0.

Line grouping & smoothing. Finally, we use a straightforward al-
gorithm for grouping lines. We compute all-pairs’ shortest paths
on the entire graph of lines, select the longest shortest path, re-
move it from the graph, and repeat until no paths are left. After
line grouping, jaggy artifacts may still exist due to incorrect edge
flag or vertex predictions (Figure 12a). To resolve this, we experi-
mented with Ramer-Douglas-Peucker (RDP) line simplification and
Schneider [1990]’s Bezier curve fitting to simplify the output paths.
They simplify and smooth the paths (Figure 12), respectively, with
negligible performance overhead.

8 RESULTS

To evaluate the effectiveness of our method, we conducted a compar-
ative analysis against 3 state-of-the-art line drawing vectorization
methods [Bessmeltsev and Solomon 2019; Mo et al. 2021; Puhachov
et al. 2021].
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8.1 Benchmark

Dataset. We curated a cleaned test dataset consisting of 369
professionally cleaned vector sketches from the rough sketch bench-
mark dataset [Yan et al. 2020]. To simplify our metrics, we selected
sketches from the benchmark dataset containing only curves (poly-
lines, quadratic, or cubic). No instances from the training set were
included in the testing set.

The cleaned vector sketches were rasterized at five resolutions
based on the long-edge of the canvas: 256, 384, 512, 768, and 1024
pixels. Each of these five sets were generated using the same method-
ology as the training set (Section 4): random brush styles and widths
and a random background texture.

Additionally, we curated a rough test dataset with 112 rough
raster sketches. We could not run our evaluation metrics on these
sketches, since we lack precisely corresponded vector ground truth
data. All testing sketches can be seen in the supplemental materials.

Evaluation metrics. As in Yan et al. [2020]’s benchmark, we use
the Chamfer distance between a vectorized drawing and the ground
truth vector drawing to measure the overall quality. Unlike Yan et al.
[2020]’s benchmark, we measure the Chamfer distance directly in
the vector domain. (Yan et al. [2020] evaluated cleanup methods
that operated entirely in the raster domain.) We also measure the
absolute total stroke length difference |Ajengrh — Blengtn| between
a vectorization A and ground truth B. This is necessary because
foldovers or repeated strokes in a vectorization do not contribute to
the Chamfer distance.

8.2 Comparison

We compared our vectorization results with three state-of-the-art
techniques [Bessmeltsev and Solomon 2018; Mo et al. 2021; Puha-
chov et al. 2021]. We evaluated each technique on the cleaned test
dataset and metrics described above. Example results can be seen in
Figures 1 and 17.

Our code was implemented in Python with PyTorch. The post-
processing algorithms are particularly unoptimized. We measured
execution time on 3 different computer systems. Computer A is a
2019 laptop equipped with a 3.4GHz Intel(R) Core(TM) i7-7700HQ
4-core CPU, 32GB system RAM, and an Nvidia GTX555 GPU with
4GB VRAM. Computer B is a cluster node with a 2.8GHz AMD
EPYC 7543 32-Core CPU (only 4-cores usable), 32GB system RAM,
and an Nvidia A100 GPU with 40GB VRAM. Computer C is a 2021
MacBook Pro with an M1 Pro and 16GB RAM.

The complete set of input and output images are in the supplemen-
tal materials. We evaluated two variants of our model, a full-sized
one that need larger VRAM and is compatible with Computer B
and C, a reduced-size (basic) variant which shrinks the Distance
Field Prediction network? to reduce GPU RAM making it feasible
to execute on Computer A.

Both models produce similar quality results. All figures were
created using the full size model. An overview of the comparative
metrics at testing resolution 512 is presented in Tables 1 and 2.
The distribution of stroke length difference, Chamfer Distance, and
computational runtime are illustrated in Figures 13, 14, and 15,

2The basic model reduces 256 channels to 128 for its ResNet module, and 256 channels
to 96 for its ResNext modules.
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Table 1. Benchmark comparison with clean backgrounds and an unstylized
stroke style at 512-pixel resolution. Lower (]) is better for all metrics).

Mo [2021]  Bessmeltsev [2019]  Puhachov [2021]  Ours (basic)  Ours (full)

Chamfer Distance 37,760.01 126,873.6 28,180.47  15,820.81  15,413.22
Stroke Length Diff 658.32 709.42 410.84 256.75 231.30
Success Rate 100% 99% 98% 100% 100%

Table 2. Benchmark comparison with paper texture and stylized strokes at
512-pixel resolution. Lower (]) is better for all metrics).

Mo [2021]  Bessmeltsev [2019]  Puhachov [2021] ~ Ours (basic)  Ours (full)

Chamfer Distance 243,620.07 186,946.52 66,310.09 26,505.48 19,278.82
Stroke Length Diff 1102.81 909.69 901.61 406.23 267.57
Success Rate 100% 99% 98% 100% 100%
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Fig. 13. The distribution of stroke length difference (lower is better) among
different methods and image resolutions.

respectively. Note that we use a logarithmically scaled Y-axis. No
outliers were removed for the upper and lower extremes.

Our models reduce Chamfer error by a factor of ~2-10 over com-
peting approaches. Particularly for complex examples, our approach
preserves far more details (Figure 17). Figure 1 shows an exam-
ple of automatically processing our output with Yin et al. [2022]’s
algorithm for finding closed regions in vector sketches.

Our method produced high-quality output for the rough test
sketches, which often contain repetitive, messy strokes such as
hatching and scaffold lines (Figure 20). Other methods either failed
to capture the same level of detail (Figure 18) or failed to vectorize
more than 50% of the examples (Table 4). See the supplemental ma-
terials for more rough sketch vectorization results. This suggests a
promising direction for future research. If we can precisely vectorize
every stroke in a sketch, it may be easier to clean messy strokes in
the vector domain.

Our algorithm is typically more efficient than competing ap-
proaches (Figure 15). In particular, our algorithm contains no lengthy
optimization. 61-67% of the total runtime was spent on neural net-
work inference (basic vs. full). For 512-pixel images, our algorithm
required, on average, 17, 5, and 10 seconds for processing on Com-
puter A, Computer B, and Computer C, respectively.
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Fig. 15. The distribution of running time in seconds on Computer B. Lower
is better.

Table 3. In our ablation study, we compared the performance on the
benchmark dataset between our full model and our model without Multi-
Resolution (MR), Sketch Skeleton (SS), Sub-Pixel Sampling (SPS), and Post
Processing (PP). Lower (]) is better for all metrics).

w/o MR w/o SS w/o SPS w/o PP Full model
Chamfer Distance ~ 26,388.66  23,770.21  24,115.89  16,657.89  19,278.82
Stroke Length Diff 396.54 348.47 404.77 281.7 267.57

Table 4. Speed and success rate on our rough test dataset. This dataset
lacks ground truth for quality evaluation.

Mo [2021] Bessmeltsev [2019] Puhachov [2021] Ours (full)
Speed (seconds/image) 57.6 182.2 306.5 72.8
Success rate 100% 44.6% 17.9% 100%

8.3 Ablation study

To evaluate the degree of improvement due to different compo-
nents of our approach, we re-trained our model under 4 different
configurations: without the Line Reconstruction network’s multi-
resolution convolution branches, without its skeleton skeleton loss,
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Full Raster Sketch
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Fig. 16. Ablation study results. Without multi-resolution and the sketch
skeleton loss, our network struggles to correctly extract clean centerlines
and output numerous messy parallel lines. Without sub-pixel sampling, our
network performs poorly at dual contouring vertex prediction. In our full
model, although most of the predicted lines are near the ground truth cen-
terlines, there are still messy predictions (upper red boxes). Our refinement
post-processing correctly removes redundant lines and connect broken lines
based on the network output. Image ©VFS Digital Design CC-BY-2.0.

without super-resolution prediction, and without post-processing.
We evaluated those models’ performance on our benchmark dataset.
Metrics can be seen in Table 3. Figure 16 shows a visual comparison.
Configurations without post-processing often have better (lower)
Chamfer Distance and worse (higher) stroke length difference. This
is because post-processing eliminates superfluous lines and bridges
gaps in the output, which contribute to a reduction in the Chamfer
Distance.

8.4 Interactive topology editing

We created a GUI for users to interactively refine the output topology.
Our algorithm provides natural handles in the form of the under-
sampling map and keypoint positions. This data is output from our
networks and used by our light-weight post-processing algorithms.
Our interface allows users to update the under-sampling map with
lasso and pencil tools and create, move, and delete keypoints. Our
interface also displays suggested locations for under-sampled re-
gions. When under the interactive mode, our under-sampling map
refinement will process a USM region only if: a) the USM contains
keypoints detected by our network, and b) the keypoint type match
the truncation number of current USM (e.g, a USM contains 2 trun-
cation and a sharp turn keypoint). Otherwise current refinement
process will be skipped and this USM region will be shown as sug-
gested locations waiting user’s confirmation. See the supplemental
materials for a video demonstration.

9 CONCLUSION

We presented an implicit approach for vectorizing raster line draw-
ings. Our approach leverages and improves upon recent results
in image-to-image translation (for distance field prediction) and
neural dual contouring. Our network scales to any resolution due
to its use of Fully Convolutional Neural Networks (FCN). We ad-
dress under-sampling with additional predictions and simple yet
effective post-processing that supports automatic and interactive
topology refinement. Experimental results demonstrate that our
method outperforms state-of-the-art techniques in terms of fidelity,
allowing far more complex inputs to be faithfully vectorized. Our
line reconstruction network’s improvements may be beneficial for
other neural dual contouring applications.
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Limitations and Future Work. In the presence of very thick or
noisy lines, or regions with complex topology, our method may fail
to resolve individual lines and instead output multiple hatching lines
(Figure 19). We believe this is caused by highly ambiguous sketches,
as discussed in [Yan et al. 2020]. This means that there are several
ideal vectorizations instead of only one correct solution. However,
this contracts our paired training strategy. To address this limitation,
our GUI supports running a line normalization preprocessing step
[Simo-Serra et al. 2018] or a line extraction step [Xiang et al. 2022] to
reduce ambiguity. Reducing the input resolution also helps to reduce
such ambiguity. However, this may introduce slight distortions in
regions with complex topology.

In the future, we believe our approach has great potential for
improvement. One straightforward direction could be introducing
generative networks into the 0-level curve extraction step to train
the vectorization under a one-to-many mapping task, perhaps caus-
ing the network to generalize better on highly ambiguous sketches.
We can also apply other networks (e.g., [Miiller et al. 2022]) which
naturally support different sampling rates when representing the
unsigned distance field. This could further increase the vectorization
accuracy. Additionally, we would like to “vectorize” additional prop-
erties such as line thickness and stroke color. We can also consider
the stroke tangents and curvature on the boundary of the under-
sampled regions to create appropriate curve continuity at junctions.
We would also like to explore a hybrid approach that can vectorize
solid or shaded regions.
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A LINE RECONSTRUCTION NETWORK DETAILS

A diagram of our line reconstruction network architecture can be
seen in Figure 22. The Neural Dual Contouring method [Chen et al.
2022] works in 3D. Its training data is generated from 3D meshes
which may be skewed towards watertight surfaces. Complex (non-
manifold) structures common in 2D line drawing graphics, such
as junctions, open curves, etc., may be under-represented. We re-
created the 3D mesh training set from our 2D sketch data set for a
fair comparison, shown in Figure 21.

B DUAL DOMAIN COORDINATE SHIFT

We have identified a problem related to the conversion of data
between the raster and UDF domains. When working with a raster
image of size H X W, the corresponding size of the underlying UDF
should be (H+1) X (W +1). Typically, we align the vector paths with
the “pixel grid” in the raster domain, as illustrated in Figure 23(a).
However, in the UDF domain, there is no sample point that precisely
matches the position of each pixel due to a domain shift, as depicted
in Figure 23(b). This shift causes a misalignment of coordinates
when converting raster pixels to sampled points with distance value
in UDF domain, ultimately resulting in sub-optimal vectorization
performance.

To address this issue, a special convolutional layer is inserted into
the Center Line Prediction network and the following Line Recon-
struction network. This layer expands each pixel (raster domain)
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Table 5. Comparing our method’s precision/recall rate and valence loss with
Neural Dual Contouring on clean UDFs (top) and noisy UDFs (bottom). The
numbers in parentheses for “Valence” are the (min - max) loss values (lower
is better).

Clean
Ours [Chen et al. 2022]
Precision 97.7% 96.8%
Recall 95.5% 93.7%

Valence error 950 (257 - 3808) 989 (263 - 3885)

Noisy
Ours [Chen et al. 2022]
Precision 95.1% 81.5%
Recall 90.3% 63.1%

Valence error 1069 (279 - 4246) 1140 (251 - 3781)

into a grid with four corners, where each corner represents one
sampled distance value (UDF domain), or merges every four dis-
tance values in one grid into one edge flag. This convolutional layer
is designed with a kernel size of 2 and performs the expanding or
merging operation as described above by setting the padding size to
1 or using zero padding, respectively. These modifications calibrate
the domains, as shown in Figure 23, ensuring accurate preservation
of the coordinate information in the final vector paths.

C DUAL CONTOURING COMPARISON

We trained our line reconstruction (2D NDC) network and the origi-
nal 3D NDC network using the same training set, we created the 2D
and 3D training data based on the same vector sketch, respectively.
Subsequently, we evaluated the trained models on the rough sketch
benchmark test set, which was distinct from the training set.

The evaluation metrics employed were average edge flag pre-
cision/recall and valence loss, as depicted in the presented table.
Notably, when provided with precise UDFs, both the 2D and 3D
NDC networks exhibited exceptional accuracy in reconstructing
line segments. Furthermore, the visual similarity between the recon-
structed segments was remarkable. In order to capture the quality
of topology reconstruction more comprehensively, we also com-
puted the valence loss, which could be also used to evaluate the
reconstructed topology quality. The results (Table 5) demonstrated
that our method consistently outperforms the 3D NDC approach in
terms of both precision/recall rates and valence loss.

While the performance of the 3D NDC network closely matches
that of our 2D NDC network on clean UDF input, our method is
significantly better at dealing with noise. We introduced Gaussian
noise with a mean of zero and a standard deviation of 1% of the
current UDF’s standard deviation. Table 5 clearly demonstrates the
superiority of our approach over the 3D NDC network in handling
noisy input. This robustness to noise is crucial in our task, given
that the imperfect nature of the UDFs predicted by our distance field
extraction network.

Deep Sketch Vectorization via Implicit Surface Extraction « 37:11

ACM Trans. Graph., Vol. 43, No. 4, Article 37. Publication date: July 2024.



37:12 « Chuan Yan, Yong Li, Deepali Aneja, Matthew Fisher, Edgar Simo-Serra, and Yotam Gingold

Raster Input (a) [Puhachov et al. (b) [Bessmeltsev (c) [Mo et al. 2021]

Fig. 17. A comparison of vectorization results on complex examples from Yan et al. [2020]. Please zoom in to inspect the visual differences between methods.
Outputs for the entire benchmark can be seen in the supplemental materials. From top row to bottom: air ship ©David Revoy, CC-BY-4.0; boy&dog and duck
images ©Preston Blair, explicit permission; girl ©Maria Fiddler, CC-BY-NC-SA-4.0; building ©Tinyhouse University, CC-BY-SA.

Raster Input (a) [Puhachov et al. (b) [Bessmeltsev (c) [Mo et al. 2021]
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Fig. 18. A comparison of vectorization results on rough sketches from Yan et al. [2020]. Please zoom in to inspect the visual differences between methods.
Outputs for the entire benchmark can be seen in the supplemental materials. Image ©AP, CC-BY-SA-3.0.
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Fig. 19. A failure case. Our network will fail on thick strokes or densely
repeated strokes, shown in the green and blue boxes. Those regions usually
have high ambiguity and it is difficult to find the only correct centerline
position. Although this issue could be alleviated to a certain extent by
downscale the input sketch, or applying line extraction pre-processing as
[Xiang et al. 2022], we believe the pairwise training strategy (one sketch
mapping to only one version of correct vector lines) is the fundamental
limitation of our network. Dog image ©lvan Huska.
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Fig. 20. More rough sketch vectorization examples. Left image ©Krenz
Cushart, CC-BY-NC-4.0. Right image ©Jinho Jung, CC-BY-SA-2.0.

(a) 2D sketch

(b) Tiled 3D mesh

Fig. 21. Example of the training data used for [Chen et al. 2022] training.
We tiled the 2D vector sketch (a) along its Z-axis and generate a 3D mesh
(b) then generate UDFs from them as input.
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Fig. 22. Line Reconstruction Network Structure
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Fig. 23. The coordinate shift between the raster and vector domain. We designed our
UDF network to output data in the dual domain, so that the second network, dual
contouring, would output data back in the primary domain. The input raster data (a)
has values in the center of each square visualized square, which is our primary domain.
The UDF network (lower blue arrow) outputs distance values in the dual domain (b),
at the corners of each square. The NDC network (upper green arrow) outputs points in
the primary domain (squares). It takes the UDF network’s dual domain data as input
and outputs in the dual of the dual domain, which is the primary domain.
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