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ABSTRACT

Generating high-quality motion sequences from textual de-
scriptions has become a prominent research area in motion
synthesis. For end applications, generated motions need to
be diverse, natural, and conform to the textual description.
Furthermore, motions include factors such as style and tra-
jectory, which are hard to control. Finding effective ways to
manage these factors is crucial for achieving realistic motion
generation. To address these challenges, we first propose a
multi-condition motion latent diffusion model that integrates
style and trajectory information into text-driven generation,
enabling diverse stylized motions and precise control with ar-
bitrary trajectories. To preserve text controllability, we apply
an adapter that refines a pretrained text-to-motion model by
transforming the style and trajectory conditions while fully
utilizing the pretrained knowledge. Finally, during inference,
we apply explicit trajectory guidance within our classifier-free
multi-guidance, ensuring that the produced trajectories follow
the intended input path. Our experimental results shows the
effectiveness of the proposed approach, achieving state-of-
the-art performance in text-to-motion generation and exhibit-
ing high flexibility in stylized motion synthesis. Our work
unifies text-driven motion synthesis, style transfer, and trajec-
tory control within a single framework, paving the way for
more versatile applications in animation, human interaction,
and virtual reality.

Index Terms— motion synthesis, diffusion model, styl-
ized motion, text-to-motion

1. INTRODUCTION

The creation of high-quality motion sequences from textual
descriptions has become a significant area of research in mo-
tion synthesis. Researchers strive to generate motions that
are not only diverse and natural but also accurately reflect the
specific details mentioned in the text. This task is complex
due to the challenges of controlling various elements of the
motion, such as style—how the movement looks—and tra-
jectory—the path that the movement follows. Each of these
challenges must be carefully addressed to produce compelling
and accurate representations of motion. Existing approaches
suffer from limitations when it comes to generating motions

due to the complexity and unpredictability of the problem.
(1) Text-to-motion challenge: Text-to-motion models [1} [2}
3| 14, [5]] directly generate motion from text but struggle with
ambiguity and diversity. For example, the word “kick” can
refer to very different motions, and a single motion can be
described in many ways, making learning difficult. (2) Style
transfer limitation: Style transfer methods [6 [7, 8] can gen-
erate style-based, and content-based motions by combining
input motions, but it cannot generate motions from textual de-
scription. While content-style alignment has succeeded with
motion data alone, it fails to adapt styled motions to tex-
tual content descriptions. (3) Stylized text-to-motion chal-
lenge: Stylized text-to-motion approaches [9} [10] aim to gen-
erate motion from text descriptions and refine the outputs us-
ing additional modality data, such as stylized motion, audio,
and more. However, these methods still fall short in achiev-
ing high controllability and generation accuracy. (4) Trajec-
tory control issue: Trajectory-aware methods [[11} 12} [13] still
struggle to achieve effective trajectory control and often suf-
fer from artifacts such as unnatural motion paths, revealing
limited spatial control.

We propose a unified text-to-motion generation frame-
work that controls motion based on textual descriptions while
incorporating style and trajectory information in the latent dif-
fusion space. Our method introduces a latent-space integra-
tion mechanism that jointly integrates style motions and tra-
jectory coordinates with text embeddings. During training,
because jointly controlling both style and trajectory is highly
challenging, we retain the pretrained MLD [3] and introduce
a lightweight adapter for fine-tuning. Rather than training a
new model from scratch, this adapter enables diverse styl-
ized motion generation, preserves content integrity, and sup-
ports multimodal conditioning without overwriting the orig-
inal text semantics. During inference, we apply trajectory
guidance through our classifier-free multi-guidance mecha-
nism, enabling simultaneous control of style and trajectory
and yielding more realistic and faithful motion generation.

In summary, our main contributions are:

* We first fuse multimodal motion styles and trajectories with
textual input in the latent space, achieving a unified text-to-
motion generation process with multi-factor controllability.

* We apply an adapter that injects multi-conditions into the
model without breaking text controllability, thereby achiev-



ing superior performance in stylized text-to-motion gener-
ation by striking a more effective balance between content
fidelity and style accuracy.

* We incorporate an explicit trajectory guidance mechanism
in our proposed classifier-free multi-guidance, allowing the
model to generate trajectories that faithfully follow the in-
tended input path.

2. RELATED WORK

Human motion generation includes various methods: text-to-
motion generation refers to producing motion sequences di-
rectly from textual descriptions; motion style transfer focuses
on applying a specific style to existing motions; controllable
text-to-motion generation allows for controlling the motion
based on additional conditions.

Text-to-Motion Generation. Recent progress in human
motion generation has been driven by transformer-based
models [2, 4] and diffusion models [1}[3}5]. Momask [4] im-
proves motion synthesis using a residual VQ-VAE with mul-
tiple codebooks, while Guo et al. [2] introduce a VAE-based
approach together with the large-scale HumanML3D dataset.
MDM [1]] establishes a strong transformer-based diffusion
baseline for text-to-motion generation, and MLD [J5] further
improves efficiency by performing diffusion in the latent
space. However, these methods often generate motions that
deviate from the input text and lack mechanisms to incorpo-
rate external controls such as style or trajectory.

Motion Style Transfer. Motion style transfer is a widely used
technique for creating stylized movements by transferring the
style from a reference motion to a source motion. Aberman
et al. [[6] propose a generative adversarial network designed
to separate motion style from content, allowing for their re-
combination without needing paired data. Motion Puzzle [7]]
presents a generative framework that enables control over the
style of individual body parts. Additionally, MCMLDM (8]
introduces a diffusion-based approach that incorporates tra-
jectory awareness and achieves style transfer through Adap-
tive Instance Normalization (AdaIN). These methods require
two separate motion inputs, which sets a high demand on data
and usage. They cannot directly convert text inputs into styled
motions, resulting in limited flexibility.

Controllable Text-to-Motion Generation. In text-to-motion
generation, numerous methods have been proposed to im-
prove controllability over either style or trajectory. Applying
multiple conditions in continuous diffusion space often leads
to conflicts between style and trajectory. Style-control meth-
ods, Smoodi [[10] and [9], combine style with text in latent
space, but diffusion-based text-to-motion generation remains
highly stochastic, resulting in unstable trajectories. Existing
trajectory control methods rely on inpainting constraints dur-
ing diffusion [11] or explicit control of input motions [8],
rather than controlling trajectory in latent diffusion. Gener-
ating motions directly from text while controlling both style
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Fig. 1. Overview of our proposed approach. Our model
generates stylized human motions from content text, style,
and trajectory inputs. CLIP, the Style Encoder, and the Tra-
jectory Encoder extract f., fs, and f;. These features guide
the denoising process, where z, is iteratively updated to Z,
using a style—trajectory adaptor on pretrained MLD. The mo-
tion decoder then produces the final stylized motion.

and trajectory continues to be a major challenge.

3. PROPOSED APPROACH

We propose a method that utilizes diffusion models to inte-
grate style motion and trajectory data as additional inputs, en-
abling control over motion features based on descriptive text
in the latent space, shown in Fig. For training, we intro-
duce an adapter-based approach to adapt the pretrained model
and design a mechanism that jointly applies stylistic and tra-
jectory constraints to achieve a balanced contribution from
each condition, as described in Section @ For generation,
we propose a novel guidance strategy that further enhances
multi-condition controllability, as detailed in Section

We utilize the same motion representations in HumanML-
3D [2], zp € REXP, where L denotes the frame length of
the motion and D = 263 indicates the dimension of human
motion representations. The style encoder E; and trajectory
encoder E; process motion inputs to extract style features (f;)
and trajectory features (f;). The text features are obtained
from the CLIP model [14].

f, = CLIP(c),f, = Ey(s),f, = Ey(t) (1)

In our method, the diffusion process is modeled as a Markov
chain that gradually perturbs an initial latent motion feature
Z into a noisy latent z,, ~ A(0, I) via Gaussian noise:

q(zn | anl) = N(\/@anla (1 - an)I) ) (2)

wheren € 1,..., N and a,, controls the noise schedule. The
reverse process iteratively denoises z,, to recover zg, which is
decoded into a stylized motion sequence &g € RX*P.

To guide the denoising with multiple conditions, we de-
sign a multi-condition denoiser eg, which predicts the noise



at each step n using the noisy latent z,,, the timestep n, and
guided features (f., f;, f5): We define the denoising process at
stepn € (0, N] as €, = €p(zn,n, £, £, f;), where €y repre-
sents the predicted noise at timestep n.

3.1. Adapter-based Multi-Condition Latent Diffusion

Training a model to simultaneously capture style, trajectory,
and text remains highly challenging. Inspired by Control-
Net [15]], which efficiently controls complex image genera-
tion with multi-modal conditions, we design a content-aware
style and trajectory adapter for the pretrained MLD [3]] model.
We create a trainable adapter by copying the MLD denoiser,
while keeping the original MLD backbone frozen. In addi-
tion, we design a lightweight style encoder Es and a trajec-
tory encoder E; whose features are injected into the adapter
to modulate the generation process. The adapter output is
merged with that of the frozen denoiser through a zero linear
layer, thereby preserving the pretrained model’s capability.
During training, only the adapter and style/trajectory encoder
are optimized on the style motion dataset, I00STYLE [16].

In addition, we design an integration mechanism that
fuses style and trajectory representations with text embed-
dings directly in the latent space. Specifically, the text condi-
tion feature f. is concatenated with the noisy latent feature to
form z,, = concat(z,, f.), allowing the text condition to con-
sistently influence the denoising process throughout all steps.
Subsequently, to incorporate style (fs) and the trajectory (f;)
and conditions, we first extract modulation parameters from
each using separate multi-layer perceptrons:

757587a8 = MLPS(fS)7 Yt Bta ap = MLPt(ft) (3)

Here, s, 85, and a are style-related modulation parameters,
while ~, 8¢, and oy correspond to the trajectory condition.
MLP(-) and MLP,(-) are independent networks used to pro-
cess f, and f;, respectively. These parameters are incorporated
into the denoising model €y using AdaLLN-Zero [17], which
modulates each transformer layer as follows:

ile,gg =Zn k-1 + @sMSA(LN(Z,, k—1)7s + Bs)

. -(1) -(1) @
Znk =12, + aMLP(LN(z, ;) + B1)

where MSA(-) denotes multi-head self-attention, and LN(+)
refers to layer normalization. The variables z,, ;—1 and Z,
represent outputs from the (k — 1)-th and k-th layers of the
latent denoiser model €. The variable iSL indicates an inter-
mediate value within the k-th layer, while MLP(-) stands for
a multi-layer perceptron. Using AdalLN-Zero to apply sec-
ondary conditions at each layer of €y effectively guides the
denoising process hierarchically.
Training is based on a denoising score-matching loss:

Lo = Ec. [|l€0(zn, . fe, £5, £) — €3] )

where € ~ N (0, I) is the ground-truth noise added to zy. Our
design improves motion content preservation and enhances

style transfer by capturing stylistic intent while maintaining
trajectory structure.

3.2. Classifier-Free Multi-Guided Motion Generation

During the generation process, it is crucial to balance style
and trajectory control. Since Smoodi [10] does not explicitly
model trajectory constraints, we build upon it and propose
an improved classifier-free guidance (CFG) [18] scheme that
jointly enforces content, style, and trajectory control. Specif-
ically, we adopt a Classifier-Free Multi-Guidance (CFMG)
framework, which decomposes the overall guidance signal
into three components: content guidance, style guidance,
and trajectory guidance. Each component is derived in a
classifier-free manner without relying on external classifiers.
The guidance terms are applied according to their functional
roles: content and style guidance operate on the motion gen-
eration process, while trajectory guidance is treated indepen-
dently, since trajectory evolution is not directly constrained
by other motion attributes. This design enables explicit tra-
jectory control while preserving stylistic expressiveness and
content consistency. Formally, the overall guidance is:

€a(ln7n’ f(:7f87ft) = Gg(Zn,’I’L,@,Q, ®)+
We (GQ(Z»,“’I’L,fC, ®a®> - 69(znan7®7@7 @)) +

Classifier-free Content Guidance

W (60(zn7n7fcafsa @) - 60(zn7n7f¢:a 9, Q)) + (6)

Classifier-free Style Guidance

W¢ (Ge(Zn, n7fc7f57ft) - 69(zn7n7fcafsa @))

Classifier-free Trajectory Guidance

Here, w,, ws, and w; are the guidance weights for the content
(£.), style (f5), and trajectory (f;) conditions, respectively. The
symbol & indicates the absence of a specific condition.

This formulation improves generation quality and con-
sistency by combining conditional and unconditional pre-
dictions, while enabling independent modulation of content,
style, and trajectory influences to maintain flexibility and
fine-grained control.

4. EXPERIMENTS

We use the HumanML3D dataset [2]] for motion content and
the 100STYLE dataset [[16] for motion styles. HumanML3D
is the largest text-annotated motion dataset, while 100STYLE
provides the largest collection of 100 diverse motion styles.
We use MLD [5] as the pretrained generative network and
train the style/trajectory network with the denoiser. The
style/trajectory encoder consists of a single transformer en-
coder, while the adapter is a multilayer perceptron (MLP).
The framework is trained with the AdamW optimizer [[19] at
a learning rate of 1 x 10~°. The classifier-free multi-guidance
scale w, is set to 7.5, w, is 0.8 and w; is 1.5.



Table 1. Stylized text-to-motion performance for transferring
the HumanML3D-text [2]] with the 100STYLE-motion [16]].

Method Style SFID| CFID] SRAT Diver- Traj.

Condition (Top-3) sityT err.]
Ours Motion 2.899 4.598 94.403 14.826 0.848
Smoodi[10] Motion 7.372 1.619 73.099 12.429 0.953

MLD[5]+MCMLDM[8] Motion
ChatGPT[20]+MLD[3] Text

6.603 11.254 56.948 14.180 1.703
6.012 1.566 11.630 12.549 1.039

Table 2. Ablation studies on classifier-free multi-guidance.

Method SFID| CFID] SRAT Diver- Traj.

(Top-3) sity T err.)
Ours w/ CFMG 2.899 4.598 94.403 14.826 0.848
only w/ style CFG ~ 4.067 4.968 84.362  10.710  0.760
only w/ traj. CFG 7.814 7.591 60.985  10.626  0.648
w/o any CFG 13.067 9.812 48.502 5.787 0.884

We evaluate the performance of our method on stylized
text-to-motion generation, trajectory control, and motion di-
versity. We compare our approach with the stylized text-
to-motion method Smoodi [10]. In addition, we utilize the
text-to-motion model MLD [5] and apply style transfer meth-
ods [7]] to generate stylized motions. For trajectory control,
we adopt the MLD [5] model in combination with trajectory
control method, MCMLDM [§]]. In scenarios where only text
input is available, we employ ChatGPT [20] together with
MLD, which relies solely on textual descriptions, and this ex-
periment serves only as a qualitative reference.

Stylized Text-to-motion Performance. The transferred re-
sults are evaluated on both the HumanML3D and 100STYLE

datasets. The results are obtained by transferring HumanML3D-

text [2] with 100STYLE-motion [16] to generate stylized
motions, shown in Table. The style features are derived
from 100STYLE-motion, while the trajectory comes from
HumanML3D-motions. First, we use two Fréchet Inception
Distance (FID) [21] metrics to assess motion style transfer
quality: SFID (style FID) and CFID (content FID).

SFID = FID(¢(Zansferred), @(Z100STYLE)) 7
CFID = FID(¢((Etransferred)> ¢(xHumanML3D)) (8)

Here, ¢(-) is a pretrained motion encoder [2] used to extract
semantic features for FID computation. Our method achieves
the lowest SFID, demonstrating a strong alignment with the
target style. The CFID remains comparable to the SFID, in-
dicating a well-balanced trade-off between style fidelity and
content preservation. We further evaluate style recognition
accuracy (SRA) using a pretrained style classifier on the fil-
tered 100STYLE dataset. Our results show that our approach
attains the highest Top-3 performance. In addition, the gener-
ated motions exhibit the greatest diversity among all methods.
We also evaluate the accuracy of generated global trajecto-
ries using trajectory error, which measures absolute deviation.
Our method achieves the lowest trajectory error, demonstrat-
ing the most accurate trajectory generation.

Ablation Study. Table [2] shows the ablation study on the

a person walks a tightrope, a man hunches over and walks

content swaying slightly from side-to- forward and then turns and keeps
text side as he maintains his balance. ~ walking.
trajectory )
style T X
motion 4’ sl
MLD[5]+ %
MCMLDM[8]
Smoodi[10]

Fig. 2. Visualization. The input conditions for the content
include text and trajectory, and the style includes motions.

impact of Classifier-Free Multi-Guidance (CFMG). Our full
model, which includes both style and trajectory guidance,
CFMG, achieves the best overall performance, striking a
strong balance between style fidelity, motion quality, and
diversity. Using only style CFG helps style generation but
lowers content preservation. Conversely, using only trajec-
tory CFG improves physical plausibility but fails to retain
stylistic consistency. Without any CFG, performance drops
significantly across all metrics, highlighting the necessity of
CFG for generating realistic and style-consistent motion.
Visualization. Fig. 2| shows motion generation results condi-
tioned on content text, trajectory, and style motion. Compared
with prior methods, our approach more faithfully captures the
intended style while accurately following the target trajectory.
The generated motions clearly inherit stylistic patterns (e.g.,
arm posture or leg openness) and precisely align with the in-
put paths, including turns and straight movements. In con-
trast, MLD [5]+MCMLDM |[8]] often fails to follow the tra-
jectory, and Smoodi [[10] produces motions that deviate from
both the expected style and path. These results demonstrate
that our method more effectively integrates high-level seman-
tic intent with low-level motion constraints.

5. CONCLUSIONS

We propose a multi-condition motion latent diffusion model
that addresses the challenges of text-driven motion generation
by integrating style and trajectory as distinct conditions. We
propose a text-driven latent denoiser with multiple conditions
and an adapter to finetune the denoiser. This method enhances
the duality of content and style, allowing for diverse, natural,
and text-conforming motion synthesis while improving tra-
jectory control. Our experiments demonstrate that our model
excels in stylized text-to-motion performance and shows en-
hanced adaptability for motion trajectory control.
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