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Figure 1: Rectified and synthesized texture results from real images. Our framework is able to rectify degraded textures, which
include occlusions and geometric deformations, and synthesize holistic textures from selected areas. The first row presents
real images, where the masked input to our framework is highlighted, while the second row shows outputs generated by
our proposed approach. Our method accomplishes more than merely filling in missing regions; it also rectifies geometric
deformations, including perspective variations and distortions to synthesize textures amenable for usage in many different
applications such as 3D modelling. Photographs courtesy of Elliott Brown (CC-BY), Scott Meis (CC-BY), denisbin (Public
Domain), Jameel Winter (CC-BY), and Bettina Arrigoni (CC-BY).
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ABSTRACT
We present a novel framework for rectifying occlusions and distor-
tions in degraded texture samples from natural images. Traditional
texture synthesis approaches focus on generating textures from pris-
tine samples, which necessitate meticulous preparation by humans
and are often unattainable in most natural images. These challenges
stem from the frequent occlusions and distortions of texture sam-
ples in natural images due to obstructions and variations in object
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surface geometry. To address these issues, we propose a framework
that synthesizes holistic textures from degraded samples in natu-
ral images, extending the applicability of exemplar-based texture
synthesis techniques. Our framework utilizes a conditional Latent
Diffusion Model (LDM) with a novel occlusion-aware latent trans-
former. This latent transformer not only effectively encodes texture
features from partially-observed samples necessary for the gener-
ation process of the LDM, but also explicitly captures long-range
dependencies in samples with large occlusions. To train our model,
we introduce a method for generating synthetic data by applying
geometric transformations and free-form mask generation to clean
textures. Experimental results demonstrate that our framework
significantly outperforms existing methods both quantitatively and
quantitatively. Furthermore, we conduct comprehensive ablation
studies to validate the different components of our proposed frame-
work. Results are corroborated by a perceptual user study which
highlights the efficiency of our proposed approach.
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1 INTRODUCTION
Textures are a crucial visual aspect of real-world scenes, repre-
senting surface appearance and consisting of repeating patterns
with some inherent randomness. There are numerous applications
in computer graphics and vision that use textures, including 3D
modelling, image editing [Criminisi et al. 2003], virtual object cre-
ation [Chen and Rosenberg 2018], and augmented reality [Isoyama
et al. 2021]. Textures can be derived from various sources such as
hand-drawn images or natural images. In this work, we concentrate
on synthesizing textures from natural images.

Traditional texture synthesis methods [Efros and Freeman 2001;
Efros and Leung 1999; Wei et al. 2009; Wei and Levoy 2000] aim
to generate arbitrarily large texture images indistinguishable from
small input samples. However, these approaches require holistic
textures, which are rectangular and free from geometric distortions.
Obtaining such holistic textures demands extensive human inter-
vention [Wei et al. 2009] and is often unattainable in most natural
images. This limitation stems from frequent occlusions and distor-
tions in real-world objects within natural images, caused by nearby
obstructions and variations in the surface geometry of the objects.
While recent work [Li et al. 2022b] has automated texture scraping
from natural images by grouping texture regions and filling missing
regions, it overlooks deformations, resulting in unnatural textures.
Consequently, there is a pressing need to both handle occlusions
and deformations in texture samples from real images.

We propose a novel framework that addresses these challenges
by leveraging Diffusion Models (DM) [Ho et al. 2020] to synthe-
size holistic textures from degraded samples in real images. Due
to pixel misalignment and a lack of correspondence between holis-
tic textures and degraded samples, we empirically find generative
adversarial networks (GANs) [Goodfellow et al. 2014] struggle to
synthesize holistic textures from degraded samples. We argue that
GANs, due to their susceptibility to mode-collapsing and the dif-
ficulty in capturing complex data distributions, often produce un-
natural results. DM, on the other hand, provides a more efficient
training process and produces a superior-quality of image sample,
thanks to its stationary training objective and extensive data distri-
bution coverage. Consequently, we adopt DM as the basis of our
framework for rectifying and synthesizing holistic textures.

Our framework builds upon Latent DiffusionModels (LDM) [Rom-
bach et al. 2022] and introduces a novel occlusion-aware latent
transformer. The LDM operates in the latent space rather than the
standard pixel space, drastically reducing computational costs. We
build our framework upon LDM to allow further downstream ap-
plications such as integration into existing photo editing tools on
personal computers. However, operating in the latent space unin-
tentionally entangles valid and difficult usability of the features,
which originate from occluded and unobstructed regions in sample
textures. Discriminating these features is essential for rectifying
degraded textures as the invalid features not only fail to contribute
to the rectification process but can also impede it. To address this,
we introduce an occlusion-aware latent transformer into the LDM
model, delivering effective information to the rectification process.
This latent transformer utilizes partial convolutional layers [Liu
et al. 2018] to encode the degraded sample into a latent code com-
posed solely of valid features, and incorporates a self-attention
block [Zhang et al. 2019] to efficiently model the non-local depen-
dencies of the degraded sample. We empirically demonstrate the
effectiveness of the latent transformer and carefully analyze the
importance of each component.

Moreover, we introduce a method for generating synthetic train-
ing data by applying geometric transformations and free-formmask
generation to planar textures, simulating deformations, and occlu-
sions in degraded samples from natural images. Specifically, we
employ the homography transformation [Hartley and Zisserman
2003] and the thin plate spline transformation [Bookstein 1989]
to simulate perspective variations and geometric distortions, re-
spectively. We also make use of free-form masks [Yu et al. 2019]
to mimic occlusions found in natural images. Our approach allows
obtaining a vast number of degraded texture images from a finite
number of planar texture images by introducing varying scales of
the transformations, and enables end-to-end training of our LDM-
based framework.

Experimental results attest to the superior performance of our
framework compared to existing methods. Additionally, we conduct
comprehensive ablation studies to validate the effectiveness of each
component within our proposed framework. Finally, we perform
a perceptual user study that corroborates the effectiveness of our
approach.

Our contributions are summarized as follows:
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• The first framework for rectifying occlusions and deformations
in degraded sample textures from natural images, expanding the
applicability of exemplar-based texture synthesis techniques.

• A novel occlusion-aware latent transformer that provides effec-
tive information to the texture rectification process.

• A synthetic data generation method to create training data for
rectifying occlusions and deformations in texture samples.

• In-depth evaluation that demonstrates the superior performance
of our framework compared to existing methods.

2 RELATEDWORK
In this section, we discuss the related work on texture synthesis
and generative models for image-to-image translation.

2.1 Texture Synthesis
Here we review the relevant literature on texture synthesis, includ-
ing exemplar-based texture synthesis, texture exemplar extraction,
and shape from texture.

2.1.1 Exemplar-based texture synthesis. Exemplar-based texture
synthesis aims to generate arbitrarily large new textures that are
perceptually similar to a given input sample texture. Early methods,
such as [Efros and Freeman 2001; Efros and Leung 1999; Wei and
Levoy 2000], utilized non-parametric techniques, copying pixels
or patches sequentially while ensuring neighborhood consistency.
These methods, although visually pleasing, were computationally
demanding and struggled with complex patterns or large-scale
structures. Recently, deep convolutional neural networks (CNNs)
were employed by [Gatys et al. 2015] for texture synthesis, iterat-
ing between sample textures and random Gaussian noise. Despite
revealing CNNs’ potential, the optimization process remained slow.
Alternative methods [Bergmann et al. 2017; Jetchev et al. 2016; Li
et al. 2017] offered texture generation through a single CNN forward
process, yet generalizing to unseen textures remained problematic.
More recently, [Liu et al. 2020; Mardani et al. 2020] enabled unseen
texture synthesis by upsampling textures in the Frourier domain or
formulating texture synthesis as transposed convolution operations.
Nevertheless, these approaches necessitate pristine samples, which
are rectangular and free from geometric distortions.

Recently, [Li et al. 2022b] introduced an automatic texture ex-
traction framework that groups texture regions and synthesizes
large textures. Although this method can handle occlusions in de-
graded texture images, addressing deformations remains a signif-
icant challenge. In contrast, our framework efficiently deals with
both occlusions and geometric deformations.

2.1.2 Texture exemplar extraction. Texture exemplar extraction is
crucial in exemplar-based texture synthesis, as synthesis quality
relies heavily on the selection of representative texture samples.
Traditionally, this process is labor-intensive, necessitating expert
input and significant resources. To mitigate this, [Wu et al. 2018]
introduced an automated method for extracting texture exemplars
from images, utilizing both global and local textureness measures.
Building on this, [Wu et al. 2021] proposed a deep learning-based
approach for texture exemplar extraction. However, frequent occlu-
sions and deformations in natural images can hinder the extraction
of appropriate exemplars. Therefore, rectifying these occlusions

and distortions, as proposed in our framework, is key to improving
the texture synthesis process.

2.1.3 Shape from texture. Shape from texture, a subfield of com-
puter vision and image processing, focuses on deriving 3D shape
information from 2D images or textures. The goal is to extract depth,
orientation, and other geometric properties from the arrangement
of texture elements, allowing for the reconstruction of planar tex-
tures. Representative work by [Verbin and Zickler 2020] formulates
the problem as a three-player game to convert an input image into
a 2.5D shape and a planar texture. However, while capable of es-
timating depth and creating planar textures, shape-from-texture
methods struggle with structured textures and require significant
computational time per input image.

In summary, despite the advancements in texture synthesis, syn-
thesizing textures from natural images is still challenging due to
occlusions and deformations. Our framework addresses these is-
sues by rectifying these elements in sample textures, ultimately
enhancing the performance and applicability of texture synthesis
from natural images.

2.2 Generative Models for Image-to-image
Translation

We tackle the rectification of occlusions and deformations as an
image-to-image translation problem, a process that converts an
input image from one domain to a corresponding image in another,
while preserving crucial structural and contextual details. In our
task, we consider converting a degraded texture sample into a planar
texture, maintaining the overall texture appearance and structure.
Therefore, we delve into several recent generative models for the
image-to-image translation problem.

2.2.1 Generative Adversarial Networks (GANs). GANs [Goodfellow
et al. 2014] consist of a generator and a discriminator that play an
adversarial game to generate realistic samples from a prior distri-
bution. GANs have been extensively employed in image-to-image
translation tasks, with notable examples being [Isola et al. 2017],
which uses a conditional GAN [Mehdi Mirza 2014] to learn a map-
ping between input and output images, and [Zhu et al. 2017], which
extends this concept to unpaired image translation. Several existing
approaches [Liu et al. 2020; Mardani et al. 2020; Zhou et al. 2018] in
exemplar-based texture synthesis have also adopted GANs as a basis
to generate textures. We find that GANs, due to their susceptibility
to the mode-collapse problem and challenges in capturing complex
data distributions, often produce unnatural results in difficult tasks
like ours.

2.2.2 Diffusion probabilistic models. Recently, diffusion probabilis-
tic models (DM) [Sohl-Dickstein et al. 2015] have taken the lead
in the image synthesis field in terms of both sample quality and
diversity. [Ho et al. 2020] presented Denoising Diffusion Probabilis-
tic Model (DDPM) for high-quality image synthesis and achieved
sample quality comparable to GANs. [Song et al. 2021a,b] exploited
advances in score-based generative modeling for accurate score
estimation and efficient sample generation. A seminal work [Dhari-
wal and Nichol 2021] showcased that DM can attain superior image
sample quality compared to GANs. With the advent of classifier-
free guidance [Ho and Salimans 2021], the necessity of an external
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classifier in the generation process of conditional DM was elimi-
nated.

Various applications using DM have since emerged. For instance,
[Saharia et al. 2023] utilized DMs for conditional image generation,
achieving superior performance in various super-resolution tasks
and producing more realistic outputs than GAN-based methods.
Notably, [Saharia et al. 2022] introduced a unified framework for
image-to-image translation using conditional DM, paving the way
for DM in image-to-image translation tasks. However, the use of DM
has been limited by its extensive computational resource demands
during both training and sampling. This not only impedes progress
in the field but also constrains downstream applications. Tomitigate
this limitation, [Rombach et al. 2022] proposed latent diffusion
models (LDM) to reduce computational resources for DM while
maintaining their quality and flexibility. By training DM on the
latent representation of a pre-trained vector-quantized variational
autoencoder (VQ-VAE) [van den Oord et al. 2017], LDM achieves
competitive results in various tasks with reduced computational
costs. Our framework builds upon the LDM for further downstream
applications such as integration into existing photo editing tools
on personal computers.

3 APPROACH
In this section, we introduce our proposed framework for rectify-
ing occlusions and deformations in degraded sample textures. Our
framework is based on a Latent Diffusion Model [Rombach et al.
2022]. We enable conditional generation by concatenating a latent
code of the degraded sample with random noise, while also incor-
porating features from an occlusion-aware latent transformer using
cross-attention layers. An overview of the framework is depicted
in Fig. 2.

3.1 Preliminary: Latent Diffusion Models (LDM)
Our framework for rectifying deformations and occlusions is built
on the LDM [Rombach et al. 2022]. This allows for integration
with existing photo editing tools due to its lower memory con-
sumption compared to pixel-based DMs. The LDM utilizes a VQ-
VAE [van den Oord et al. 2017] encoder E𝑣𝑞 to encode a planar tex-
ture P ∈ R𝐶×𝐻×𝑊 into a latent code 𝑧0 ∈ R𝑐×ℎ×𝑤 . During training,
the forward diffusion process 𝐹𝑤𝑑𝐷𝑖 𝑓 𝑓 incrementally introduces
Gaussian noise to the latent code 𝑧0 at timestep 𝑡 ∼ U(1,𝑇 ), and
the reverse denoising process subsequently denoises a corrupted
latent code 𝑧𝑡 at timestep 𝑡 using a trainable denoising network
𝜖𝜃 . After training, we acquire a trained denoising network 𝜖𝜃 that
predicts the noise added at timestep 𝑡 given 𝑧𝑡 . With the trained
denoising network, we can synthesize a planar texture from scratch
by iteratively denoising on a Gaussian noise 𝑧𝑇 ∼ N(0, I).

3.2 Conditional Generation
In addition to the above unconditional generation, we employ con-
ditioning mechanisms to constrain the generated textures on de-
graded samples. Following the concept of classifier-free diffusion
guidance [Ho and Salimans 2021], we train our model by modeling
the conditional distributions 𝑝 (P | D), where P and D are pla-
nar textures and degraded textures, respectively. More specifically,
we incorporate concatenation and cross-attention conditioning

mechanisms into our framework to ensure the textures generated
correspond to the degraded textures.

In the concatenation mechanism, the diffused latent code 𝑧𝑡 is
paired with the latent code 𝑧𝑣𝑞−𝑑 of a degraded sample. Both latent
codes, encoded using the same VQ-VAE encoder, are concatenated
along the channel dimension. Although this concatenation ensures
that the identity of the degraded samples is maintained, the latent
code 𝑧𝑣𝑞−𝑑 unintentionally entangles valid and invalid features
coming from occluded and valid regions in the degraded sample.
This can mislead the reverse denoising process and produce unnat-
ural results.

We address the entanglement of the latent code 𝑧𝑣𝑞−𝑑 by intro-
ducing an occlusion-aware latent transformer 𝜏𝜃 . This transformer
is trained from scratch to offer valid guidance during the generation
process. We integrate this guidance into the generation process
using cross-attention layers. Let 𝑧𝑙𝑡−𝑑 ∈ R𝐶𝑙𝑡×𝑑𝑙𝑡 be compensatory
feature obtained by the occlusion-aware latent transformer 𝜏𝜃 , and
𝜑𝑖 (𝑧𝑡 ) ∈ R𝐶

𝑖
𝑖𝑛𝑡𝑒𝑟

×𝑑𝑖
𝑖𝑛𝑡𝑒𝑟 be flattened intermediate features before

the 𝑖-th cross-attention layer. Conditional generation with cross-
attention layers is implemented as:

𝑄 =𝑊
(𝑖 )
𝑄

· 𝜑𝑖 (𝑧𝑡 ) , 𝐾 =𝑊
(𝑖 )
𝐾

· 𝑧𝑙𝑡−𝑑 , 𝑉 =𝑊
(𝑖 )
𝑉

· 𝑧𝑙𝑡−𝑑 ,

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
(
𝑄𝐾𝑇
√
𝑑

)
·𝑉 ), (1)

where𝑊 (𝑖 )
𝑄

,𝑊 (𝑖 )
𝐾

, and𝑊 (𝑖 )
𝑉

are learnable encoding functions.
The final training objective used for training the conditional LDM

with pairs of planar textures and degraded samples {(Pi,Di)}𝐾𝑖=1
can be formally described as follows:

𝑧𝑣𝑞−𝑑 = E𝑣𝑞 (D), 𝑧𝑙𝑡−𝑑 = 𝜏𝜃 (D), 𝑧𝑡 = 𝐹𝑤𝑑𝐷𝑖 𝑓 𝑓 (E𝑣𝑞 (P)),

𝐿𝐿𝐷𝑀 = E𝜖∼N(0,1),𝑡∼U(1,𝑇 )

[


𝜖 − 𝜖𝜃 (
𝑧𝑡 , 𝑡, 𝑧𝑣𝑞−𝑑 , 𝑧𝑙𝑡−𝑑

)


2] , (2)

where 𝐹𝑤𝑑𝐷𝑖 𝑓 𝑓 refers to the forward diffusion process that adds
noise according to the scheduler. Note that the 𝐹𝑤𝑑𝐷𝑖 𝑓 𝑓 is only
used during training and is replaced with a random Gaussian noise
𝑧𝑇 ∼ N(0, I) during inference. With these conditioning mecha-
nisms and conditional training objectives, our framework is able to
map the degraded textures to planar textures.

3.3 Occlusion-aware Latent Transformer
Since the entangled features 𝑧𝑣𝑞−𝑑 , mislead the generation pro-
cess, we propose to use a novel occlusion-aware latent transformer
to compensate for the entangled features. This latent transformer
takes as input a degraded texture and outputs valid guidance to the
generation process while capturing long-range dependencies. We
achieve these capacities with two key components: partial convolu-
tional layers for occlusion elimination and self-attention block for
modeling long-range relationships. Table 1 provides full details of
our occlusion-aware latent transformer architecture.

3.3.1 Occlusion Elimination. Distilling valid features from degraded
samples is important as these samples often carry invalid infor-
mation stemming from occlusions and geometric deformations.
Building on the concept introduced in [Liu et al. 2018], we employ
partial convolutional layers for the extraction of valid features from
these samples, effectively mitigating the effects of occlusions. In
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Figure 2: An overview of the proposed framework. Our synthetic training dataset is constructed by applying random geometric
transformations and free-form masks on planar textures. During the training phase, our framework takes as input both
degraded and planar textures, and performs forward diffusion and reverse sampling processes. Upon completion of the training,
our approach takes as input a degraded texture sample and outputs a rectified texture.

Table 1: Architecture of the occlusion-aware latent trans-
former. The input layer takes as input a concatenation of
a sample texture and its corresponding mask. Each Partial-
Conv layer consists of a sequence: a partial convolution layer,
followed by a Batch Norm layer, and then a ReLU layer. At
the end of the latent transformer, the output feature is flat-
tened to a size of 256 × 1024.

Layer Type Kernel Strides Output Resolution

Input&Mask - - 6 × 256 × 256
PartialConv 3 × 3 2 × 2 64 × 128 × 128
PartialConv 3 × 3 1 × 1 128 × 128 × 128
PartialConv 3 × 3 2 × 2 128 × 64 × 64
PartialConv 3 × 3 1 × 1 256 × 64 × 64
PartialConv 3 × 3 2 × 2 256 × 32 × 32
PartialConv 3 × 3 1 × 1 512 × 32 × 32
PartialConv 3 × 3 1 × 1 512 × 32 × 32
Self-attention 3 × 3 1 × 1 512 × 32 × 32
PartialConv 3 × 3 1 × 1 256 × 32 × 32
Flatten layer 3 × 3 1 × 1 256 × 1024

detail, given input features 𝑥 and a corresponding mask𝑚, in which
0 and 1 indicate invalid and valid regions respectively, the partial

convolutional layer is defined as:

𝑥 ′ =

{
W𝑇 (𝑥 ⊙𝑚) sum(1)

sum(𝑚) + 𝑏, if sum(𝑚) > 0
0, otherwise

, (3)

where ⊙ denotes Hadamard product, while W and 𝑏 represent the
convolution filters and the corresponding bias, respectively. The
input feature 𝑥 can either be degraded texture or any intermediate
feature. After each partial convolutional layer, the current mask𝑚
is updated with the following definition:

𝑚′ =

{
1, if sum(𝑚) > 0
0, otherwise

. (4)

We apply the partial convolutional layer sequentially eight times,
where the downsampling operation is performed three times. By
repeatedly applying the layer with downsampling operations, we
eventually obtain a valid feature in latent representation. This latent
representation subsequently offers valid guidance to the texture
rectification process.

3.3.2 Modeling Long-Range Dependencies. While the partial convo-
lutional layers are proficient in addressing occlusions, they fall short
in modeling long-range dependencies. Modeling long-range depen-
dencies is crucial for rectifying degraded textures, especially since
valid information in these textures is often sparse due to occlusions.
To address this, we incorporate a self-attention layer [Zhang et al.
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2019] at the end of the latent transformer. This allows for the calcu-
lation of non-local relationships from sparse information, thereby
capturing long-range contextual information. This self-attention
layer, which can be construed as a variant of the cross-attention
layer (Eq. 1) with a single input feature, can then generate an out-
put feature that guides the texture rectification process through the
subsequent cross-attention layers.

Overall, our proposed occlusion-aware latent transformer ad-
dresses occlusions using partial convolution layers and captures
long-range dependencies through the self-attention layer. The re-
sulting valid guidance is then integrated into the texture rectifi-
cation process via the cross-attention conditioning mechanism,
leading to enhanced performance in the texture rectification and
synthesis task.

4 DATASET
We generate synthetic training data by applying homography trans-
formation [Hartley and Zisserman 2003], thin plate spline trans-
formation [Bookstein 1989], and free-form mask [Yu et al. 2019]
to planar textures, simulating perspective variations, geometric
deformations, and occlusions. We first collect texture images from
multiple sources [Abdelmounaime and Dong-Chen 2013; Bell et al.
2013; Burghouts and Geusebroek 2009; Cimpoi et al. 2014; Dai et al.
2014; Kwitt andMeerwald 2008; Mallikarjuna et al. 2006; Picard et al.
2010; Sharan et al. 2014] and manually filter out images that already
exhibit degradations. After filtering, we obtain a collection of 22,043
planar texture images. And then, we perform homography transfor-
mation and thin plate spline (TPS) transformation on these planar
texture images to simulate perspective variations and geometric
distortions. Subsequently, free-form masks are applied to mimic
occlusions. A visual illustration of the synthetic data generation is
shown in Fig. 2.

We incorporate randomness into the generation process by vary-
ing the scale of transformations. Specifically, homography transfor-
mation is applied with a distortion scale 𝑠ℎ𝑚𝑔 ∼ U(0.3, 0.5) and a
probability of 80%, while the TPS transformation is employed with
a distortion scale 𝑠𝑡𝑝𝑠 ∼ U(0.1, 0.3) and a probability of 80%. These
transformations are implemented using the Kornia library [Riba
et al. 2020]. This random generation process produces a diverse set
of degraded texture images from a finite pool of planar textures,
which is crucial for learning holistic texture rectification and syn-
thesis in an end-to-end manner. The synthetic dataset is split into a
training set with 15,430 images, a validation set with 2,205 images,
and a test set with 4,408 images.

5 EXPERIMENTAL RESULTS
In this section, we present a comprehensive evaluation of our tex-
ture rectification framework.

5.1 Implementation Details
Our framework is trained for one million iterations on the pro-
posed dataset with a batch size of 32. This takes approximately 4
days on eight A100 GPUs. The sampling process is performed on
a single RTX 3090 GPU. The input patch used during the training
phase is first resized to 294×294 pixels and then randomly cropped

256×256 pixels from the resized one. We employ the Adam op-
timizer [Kingma and Ba 2015] with a learning rate of 1e-6. The
diffusion process operates with a linear noise schedule, ranging
from 0.0015 to 0.0195, which is distributed over 1000 time steps.
For sampling, we utilize 200 steps of the Denoising Diffusion Im-
plicit Model (DDIM) strategy [Song et al. 2021a], which requires 4
seconds to generate a 256×256 texture.

5.2 Evaluation Metrics
Following the common metrics used in the field of texture synthe-
sis [Li et al. 2022b; Liu et al. 2020], we employ a set of evaluation
metrics that captures various aspects of texture images to assess
the occlusion elimination and geometric rectification capabilities of
our framework. Specifically, we use the following metrics to assess
the content preservation, reconstruction quality, style consistency,
and distribution match between generated and real planar textures:
• Structural Similarity IndexMeasure (SSIM): The SSIM [Wang
et al. 2004] measures the preservation of structural information
in the rectified textures with a larger value indicating higher
similarity.

• Learned Perceptual Image Patch Similarity (LPIPS): The
LPIPS [Zhang et al. 2018] quantifies perceptual differences be-
tween images with a lower score indicating higher similarity.

• Gram Matrix Distance (GMD): We use the GMD [Johnson
et al. 2016] to evaluate the style consistency with a lower score
indicating closer matching in texture style.

• Fréchet Inception Distance (FID):We employ the FID [Heusel
et al. 2017] to measure the statistical similarity between distribu-
tions of images with a lower score indicating higher similarity.

5.3 Baselines
Our task inherently relates to the problems of image-to-image trans-
lation as we consider converting degraded texture to planar texture.
Among these problems, image inpainting is closely related to our
task as it also handles occlusions. We compare our approach against
several representative methods recognized for their performance in
these areas to provide a comprehensive evaluation of our approach.
These comparison baselines include pix2pix [Isola et al. 2017] and
VQGAN [Esser et al. 2021], well-known for image-to-image trans-
lation methods, and a leading method in image inpainting. All
approaches are trained on the same dataset as our approach. The
implementation details of the comparisons can be found in the
supplemental.
• pix2pix: A widely-adopted Generative Adversarial Network-
based image-to-image translation framework [Isola et al. 2017].

• VQGAN: The Vector Quantized Generative Adversarial Network
(VQGAN) [Esser et al. 2021] represents the state-of-the-art for
diverse image-to-image translation tasks.

• MAT:Given the inpainting aspect of our task, we draw a compari-
sonwith a leading transformer-based image inpaintingmethod [Li
et al. 2022a].

5.4 Quantitative Evaluation
We assess the performance of our method against baselines pix2pix,
VQGAN, and MAT using the LPIPS, SSIM, GMD, and FID metrics.
As demonstrated in Table 2, our method consistently outperforms
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Table 2: Quantitative results. Comparative analysis of our
method against other texture generation models, consider-
ing different metrics: SSIM, LPIPS, GMD, and FID. The table
presents results that highlight the superiority of our method
in terms of these metrics. For a fair comparison, all methods
were trained on the synthetic training dataset and evaluated
on the synthetic test dataset.

Method SSIM ↑ LPIPS ↓ GMD ↓ FID ↓
pix2pix 0.0141 0.7742 39.29 607.15
MAT 0.2466 0.6751 34.17 187.40

VQGAN 0.4549 0.4407 24.65 45.21
Ours 0.5096 0.3417 15.32 15.50

the others. Key aspects contributing to these quantitative results
include:

Occlusion and Deformation Handling: Our framework effectively
addresses occlusions and deformations, as indicated by the low
LPIPS and high SSIM scores. This suggests our method generates
textures that are perceptually and structurally more similar to the
planar textures compared to the other methods.

Texture Preservation: The lower GMD of our method signifies a
higher degree of texture feature preservation, demonstrating the
capability of our framework in effectively extracting valid features
from degraded textures.

Quality of Generated Images: The FID scores suggest our syn-
thesized textures match the statistical properties of planar texture
more closely than other methods, indicating the effectiveness in
accurately learning the distributions of planar textures.

In summary, the superior performance of our framework in these
quantitative evaluations underscores its effectiveness in holistic
texture rectification and synthesis. The qualitative evaluations in
the next section provide further visual evidence to support these
findings.

5.5 Qualitative Evaluation
We provide visual results of our method alongside the outputs of
VQGAN and MAT baselines. As shown in Figure 3, our method
consistently generates visually superior results, effectively han-
dling occlusions and distortions, reconstructing detailed texture
information, and producing results perceptually closer to the planar
textures. We also validate the effectiveness of our method on real-
world textures, feeding selected regions from real images to our
framework and the baseline methods. As evident in Figure 5, our
method successfully preserves the texture and overall structure of
the selected regions, delivering visually pleasing results that remain
perceptually closer to the original textures.

In contrast to our framework that synthesizes realistic results,
other methods often yield unnatural textures. Although MAT can
produce texture-like images, it succumbs to the mode-collapse prob-
lem, resulting in outputs that disregard the degraded textures. VQ-
GAN, despite effectively capturing data distributions, generates
incorrect results relative to the degraded textures. We exclude the

Table 3: Results of the perceptual user study. The table
presents the percentage of times each method was preferred
over the others for generating more realistic textures, as
determined by human evaluators. A higher percentage indi-
cates a method was often favored due to its superior quality
in texture rectification.

MAT VQGAN Ours

vs. MAT - 85.40% 90.56%
vs. VQGAN 14.60% - 75.32%

vs. Ours 9.44% 24.68% -

results of pix2pix in visual comparison as it persistently produces
all-black images.

5.6 User Study
To further validate the perceptual quality of our synthesized re-
sults, we conduct a user study with synthetic data and real images.
The goal is to get a human perspective on the effectiveness of our
method compared to baselines. We first use synthetic test images
for the study, considering the potential complexity of our task for
laypersons. We randomly select 50 images from the test set for
participants, showing them a degraded texture and a ground truth
image. Participants are asked to select the more realistic image
from two randomly generated results by different methods. After
ensuring participants understand our task through this initial study
with synthetic data, we conduct a user study with real images. We
prepare 63 real images, manually selected a desired texture region
for each, and generate synthesized textures using each of the three
methods. We randomly pick 50 images from these 63 images and
ask participants to select the more realistic one from two randomly
chosen results. 14 laypersons participate in the study, and each of
them provides 50 sets of feedback on synthetic test images and 50
sets on real images. As shown in Table 3, our method is preferred
90.56% of the time compared to MAT and 75.32% compared to VQ-
GAN. This user study underscores the perceptual superiority of
our framework in holistic texture rectification and synthesis, as it
is consistently favored over the baselines.

5.7 Ablation Study
In order to further evaluate the effectiveness of various components
of our method, we conduct an ablation study that the occlusion-
aware latent transformer and conditioning mechanisms.

5.7.1 Conditioning Mechanism. We explore the conditioning mech-
anisms of our framework, comparing three different configurations:
only concatenation with the latent code 𝑧𝑣𝑞−𝑑 , only cross-attention
with the compensatory feature 𝑧𝑙𝑡−𝑑 , and our full method combin-
ing both. As Table 4 and Figure 4b show, the full method yields
the best performance overall. These results validate our hypothesis
that while concatenation provides overall guidance, cross-attention
offers essential valid features.

5.7.2 Occlusion-Aware Transformer. We also conduct an ablation
study on each component of our occlusion-aware latent transformer
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Table 4: Ablation study on the occlusion-aware latent trans-
former and conditioning mechanism. The table presents
a performance comparison of different configurations of
our framework, including the influence of the self-attention
layer and partial convolutional layers in the occlusion-aware
latent transformer, and the impact of various conditioning
mechanisms. The ‘Conditions’ and ‘Arch.’ represent the con-
ditioning mechanism and architecture of the latent trans-
former. The terms ‘Concatenation’ and ‘Crossattn’ refer to
the ‘only concatenation’ and ‘only cross-attention’ condition-
ingmechanisms, respectively. The ‘PCE’ represents removing
the self-attention block from the latent transformer, and the
‘SAE’ indicates replacing the partial convolutions with stan-
dard convolutions.

Conditions Arch. SSIM ↑ LPIPS ↓ GMD ↓ FID ↓
Full Full 0.5096 0.3417 15.32 15.50

Concatenation Full 0.4842 0.3621 16.37 17.68
Crossattn Full 0.4721 0.3857 23.47 21.77

Full SAE 0.4865 0.3608 15.78 17.85
Full PCE 0.4879 0.3596 17.61 16.15

to evaluate their contributions to the overall performance. In par-
ticular, we evaluate the impact of removing the self-attention layer
and replacing partial convolutional layers with standard ones. Ta-
ble 4 presents the results, and Fig. 4a provides visual outcomes. The
results show that both the partial convolutional layer and the self-
attention layer proved crucial to holistic texture rectification and
synthesis. Their removal or replacement led to significant perfor-
mance reduction, underscoring the importance of these components
in effectively rectifying degraded textures.

6 LIMITATIONS AND DISCUSSION
Despite its effectiveness, our method has limitations, most notably
the requirement for fixed-size degraded textures, limiting the flex-
ibility and usage scenarios of our approach. Future work should
focus on addressing this limitation. Recent advancements [Bar-
Tal et al. 2023] in generating arbitrarily large images with DM
present potential solutions for varying input sizes. Such improve-
ments could broaden the applicability of our approach, making it
more versatile for tasks such as synthesizing large textures from
degraded samples. This advancement is expected to substantially
contribute to texture synthesis research. Additionally, our frame-
work occasionally produces imperfect results, particularly in cases
with varying lighting conditions and extreme distortions in the
sample images. We can address these issues by masking regions
with significant lighting changes and incorporating more training
data with extreme distortions.
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Input MAT [Li et al. 2022a] VQGAN [Esser et al. 2021] Ours Ground Truth
Figure 3: Rectification results on the synthetic test dataset. Our framework can generate texture images that are perceptually
closer to the ground truth than other methods. MAT generates textures that are not related to the input as it falls into the
mode-collapse problem. Although the VQGAN can rectify degraded textures, it loses details of the input texture. Texture images
from [Dai et al. 2014].

Input PCE SAE Ours Ground Truth
(a) Ablation results on the architecture of the occlusion-aware latent transformer.

Input Concat Cross-attention Ours Ground Truth
(b) Ablation results on the architecture of the conditioning mechanisms.

Figure 4: Visual results of the ablation study. Fig. 4b shows ablation results relating to the architecture of the conditioning
mechanisms, while Fig. 4a presents ablation results on the architecture of the occlusion-aware latent transformer. It is readily
apparent that our full method generates more realistic textures than the other methods. Texture images from [Cimpoi et al.
2014].
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Real Image MAT VQGAN Ours
Figure 5: Rectified and synthesized texture results on real images. Our framework can generate texture images from real
images. One can easily get a planar texture image by selecting desired regions with brush tools. The input to our framework is
highlighted. Compared to other methods, our framework preserves the original appearance and synthesizes holistic texture
images. Photographs courtesy of TheTurducken (CC-BY), Alan Light (CC-BY), Andrea Dufrenne (CC-BY), and Toshiyuki IMAI
(CC-BY).
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