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Fig. 1. Image completion results by our approach. The masked area

is shown in white. Our approach can generate novel fragments that are not present

elsewhere in the image, such as needed for completing faces; this is not possible with patch-based methods. Photographs courtesy of Michael D Beckwith
(CC0), Mon Mer (Public Domain), davidgsteadman (Public Domain), and Owen Lucas (Public Domain).

We present a novel approach for image completion that results in images
that are both locally and globally consistent. With a fully-convolutional
neural network, we can complete images of arbitrary resolutions by filling-
in missing regions of any shape. To train this image completion network to
be consistent, we use global and local context discriminators that are trained
to distinguish real images from completed ones. The global discriminator
looks at the entire image to assess if it is coherent as a whole, while the local
discriminator looks only at a small area centered at the completed region to
ensure the local consistency of the generated patches. The image completion
network is then trained to fool the both context discriminator networks,
which requires it to generate images that are indistinguishable from real ones
with regard to overall consistency as well as in details. We show that our
approach can be used to complete a wide variety of scenes. Furthermore, in
contrast with the patch-based approaches such as PatchMatch, our approach
can generate fragments that do not appear elsewhere in the image, which
allows us to naturally complete the images of objects with familiar and
highly specific structures, such as faces.

CCS Concepts: « Computing methodologies — Image processing; Neu-
ral networks;

This work was partially supported by JST ACT-I Grant Number JPMJPR16U3 and JST
CREST Grant Number JPMJCR14D1.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

© 2017 Copyright held by the owner/author(s). 0730-0301/2017/7-ART107 $15.00
DOI: http://dx.doi.org/10.1145/3072959.3073659

Additional Key Words and Phrases: image completion, convolutional neural
network

ACM Reference format:

Satoshi lizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2017. Globally and
Locally Consistent Image Completion. ACM Trans. Graph. 36, 4, Article 107
(July 2017), 14 pages.

DOIL: http://dx.doi.org/10.1145/3072959.3073659

1 INTRODUCTION

Image completion is a technique that allows filling-in target regions
with alternative contents. This allows removing unwanted objects
or generating occluded regions for image-based 3D reconstruction.
Although many approaches have been proposed for image com-
pletion, such as patch-based image synthesis [Barnes et al. 2009;
Darabi et al. 2012; Huang et al. 2014; Simakov et al. 2008; Wexler
et al. 2007], it remains a challenging problem because it often re-
quires high-level recognition of scenes. Not only is it necessary to
complete textured patterns, it is also important to understand the
anatomy of the scene and objects being completed. Based on this
observation, in this work we consider both the local continuity and
the global composition of the scene, in a single framework for im-
age completion.

Our work builds upon the recently proposed Context Encoder
(CE) approach [Pathak et al. 2016], which employs a Convolutional
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Neural Network (CNN) that is trained with an adversarial loss [Good-
fellow et al. 2014]. The CE approach was motivated by feature learn-
ing, and did not fully describe how to handle arbitrary inpainting
masks nor how to apply the approach to high resolution images.
Our proposed approach addresses these two points and further im-
proves the visual quality of the results as we shall see.

We leverage a fully convolutional network as the basis of our ap-
proach, and propose a novel architecture that results in both locally
and globally consistent natural image completion. Our architecture
is composed of three networks: a completion network, a global con-
text discriminator, and a local context discriminator. The comple-
tion network is fully convolutional and used to complete the image,
while both the global and the local context discriminators are auxil-
iary networks used exclusively for training. These discriminators
are used to determine whether or not an image has been completed
consistently. The global discriminator takes the full image as in-
put to recognize global consistency of the scene, while the local
discriminator looks only at a small region around the completed
area in order to judge the quality of more detailed appearance. Dur-
ing each training iteration, the discriminators are updated first so
that they correctly distinguish between real and completed train-
ing images. Afterwards, the completion network is updated so that
it fills the missing area well enough to fool the context discrimi-
nator networks. As shown in Fig. 1, using both the local and the
global context discriminators is critical for obtaining realistic image
completion.

We evaluate and compare our approach with existing methods on
a large variety of scenes. We also show results on more challenging
specific tasks, such as face completion, in which our approach can
generate image fragments of objects such as eyes, noses, or mouths
to realistically complete the faces. We evaluate the naturalness of this
challenging face completion with a user study, where the difference
between our results and real faces is indiscernible 77% of the time.

In summary, in this paper we present:

e a high performance network model that can complete arbitrary
missing regions,

e a globally and locally consistent adversarial training approach
for image completion, and

o results of applying our approach to specific datasets for more
challenging image completion.

2 RELATED WORK

A variety of different approaches have been proposed for the image
completion task. One of the more traditional approaches is that
of diffusion-based image synthesis. This technique propagates the
local image appearance around the target holes to fill them in. For
example, the propagation can be performed based on the isophote
direction field [Ballester et al. 2001; Bertalmio et al. 2000], or global
image statistics based on the histograms of local features [Levin
et al. 2003]. However, diffusion-based approaches, in general, can
only fill small or narrow holes, such as scratches found commonly
in old photographs.

In contrast to the diffusion-based techniques, patch-based ap-
proaches have been able to perform more complicated image com-
pletion that can fill large holes in natural images. Patch-based image
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Table 1. Comparison of different approaches for completion. Patch-based
approaches such as [Barnes et al. 2009] cannot generate new texture or
objects and only look at local similarity without taking into account the
semantics of the scene. The context encoder [Pathak et al. 2016] handles
only images of small fixed size without maintaining local consistency with
the surrounding region. In contrast, our method can complete images of any
size, generating new texture and objects according to the local and global
structures of the scenes.

Patch-based Context encoder Ours

Image size Any Fixed Any

Local Consistency Yes No Yes
Semantics No Yes Yes

Novel objects No Yes Yes

completion was first proposed for texture synthesis [Efros and Le-
ung 1999; Efros and Freeman 2001], in which texture patches are
sampled from a source image and then pasted into a target image.
This was later extended with image stitching [Kwatra et al. 2003]
with graph cuts and texture generation [Kwatra et al. 2005] based on
energy optimization. For image completion, several modifications
such as optimal patch search have been proposed [Bertalmio et al.
2003; Criminisi et al. 2004; Drori et al. 2003]. In particular, Wexler et
al. [2007] and Simakov et al. [2008] proposed a global-optimization-
based method that can obtain more consistent fills. These techniques
were later accelerated by a randomized patch search algorithm called
PatchMatch [Barnes et al. 2009, 2010], which allows for real-time
high-level image editing of images. Darabi et al. [2012] demonstrated
improved image completion by integrating image gradients into
the distance metric between patches. However, these methods de-
pend on low-level features such as the sum of squared differences
of patch pixel values, which are not effective to fill in holes on com-
plicated structures. Furthermore, they are unable to generate novel
objects not found in the source image, unlike our approach.

To tackle the problem of generating large missing regions of struc-
tured scenes, there are some approaches that use structure guidance,
which are generally specified manually, to preserve important un-
derlying structures. This can be done by specifying points of inter-
est [Drori et al. 2003], lines or curves [Barnes et al. 2009; Sun et al.
2005], and perspective distortion [Pavi¢ et al. 2006]. Approaches for
automatic estimation of the scene structure have also been proposed:
utilizing the tensor-voting algorithm to smoothly connect curves
across holes [Jia and Tang 2003]; exploiting structure-based priority
for patch ordering [Criminisi et al. 2004], tile-based search space
constraints [Kopf et al. 2012], statistics of patch offsets [He and Sun
2012], and regularity in perspective planar surfaces [Huang et al.
2014]. These approaches improve the quality of the image comple-
tion by preserving important structures. However, such guidances
are based on the heuristic constraints of specific types of scenes and
thus are limited to specific structures.

The obvious limitation of most existing patch-based approaches is
that the synthesized texture only comes from the input image. This
is a problem when a convincing completion requires textures that
are not found in the input image. Hays and Efros [2007] proposed
an image completion method using a large database of images. They
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Fig. 2. Overview of our architecture for learning image completion. It consists of a completion network and two auxiliary context discriminator networks that
are used only for training the completion network and are not used during the testing. The global discriminator network takes the entire image as input, while
the local discriminator network takes only a small region around the completed area as input. Both discriminator networks are trained to determine if an

image is real or completed by the completion network, while the completion network is trained to fool both discriminator networks.

first search for the image most similar to the input in the database,
and then complete the image by cutting the corresponding regions
from the matched image and pasting them into the holes. However,
this assumes that the database contains an image similar to the
input image, which may not be the case. This was also extended to
the particular case in which images of exactly the same scene are
included in the database of images [Whyte et al. 2009]. However,
the assumption that the exact same scene is included limits the
applicability greatly in comparison to general approaches.

Completion of human faces has also received attention as a par-
ticular application of inpainting. Mohammed et al. [2009] build a
patch library using a dataset of faces and propose a global and lo-
cal parametric model for face completion. Deng et al. [2011] use a
spectral-graph-based algorithm for face image repairing. However,
these approaches require aligned images for learning patches, and
do not generalize to the arbitrary inpainting problem.

Convolutional Neural Networks (CNNs) have also been used
for image completion. Initially, CNN-based image inpainting ap-
proaches were limited to very small and thin masks [Kohler et al.
2014; Ren et al. 2015; Xie et al. 2012]. Similar approaches have also
been applied to MRI and PET images for completing missing data [Li
et al. 2014]. More recently, and concurrently to this work, Yang et
al. [2017] also proposed a CNN based optimization approach for
inpainting. However, unlike our approach, this has an increased
computation time due to having to optimize for every image.

We build upon the recently proposed Context Encoder (CE) [Pathak
et al. 2016], that extended CNN-based inpainting to large masks,
and proposed a context encoder to learn features by inpainting,
based on Generative Adversarial Networks (GAN) [Goodfellow et al.
2014]. The original purpose of GAN is to train generative models
using convolutional neural networks. These generator networks are
trained by using an auxiliary network, called discriminator, which
serves to distinguish whether an image is generated by a network
or is real. The generator network is trained to fool the discriminator
network, while the discriminator network is updated in parallel. By

using a Mean Squared Error (MSE) loss in combination with a GAN
loss, Pathak et al. [2016] were able to train an inpainting network
to complete a 64 X 64 pixel area in the center of 128 X 128 pixel
images, avoiding the blurring common with using only MSE losses.
We extend their work to handle arbitrary resolutions by using a
fully convolutional network, and significantly improve the visual
quality by employing both a global and local discriminator.

One of the main issues of GAN is the instability during learning,
which has led to numerous research on the topic [Radford et al. 2016;
Salimans et al. 2016]. We avoid this issue by not training purely
generative models and tuning the learning process to prioritize
stability. Additionally, we have heavily optimized the architecture
and the training procedure specifically for the image completion
problem. In particular, we do not use a single discriminator but two:
a global discriminator network and a local discriminator network.
As we show, this proves critical in obtaining semantically and locally
coherent image completion results.

Our approach can overcome the limitations of the existing ap-
proaches and realistically complete diverse scenes. A high-level
comparison of different approaches can be seen in Table 1. On one
hand, the patch-based approaches [Barnes et al. 2009, 2010; Darabi
et al. 2012; Huang et al. 2014; Wexler et al. 2007] show high quality
reconstructions for arbitrary image sizes and masks; however, they
are unable to provide novel image fragments not found elsewhere
in the image nor have a high level semantic understanding of the
image: they only local at similarity on a local patch level. On the
other hand, the context encoder-based approach [Pathak et al. 2016]
can generate novel objects, but are limited to fixed low resolution
images. Furthermore, the approach can lack local consistency as
the continuity of the completed region with the surrounding area is
not taken into account. Our approach can deal with arbitrary image
sizes and masks, while being consistent with the image and able to
generate novel objects.
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3 APPROACH

Our approach is based on deep convolutional neural networks
trained for the image completion task. A single completion net-
work is used for the image completion. Two additional networks,
the global and the local context discriminator networks, are used in
order to train this network to realistically complete images. During
the training, the discriminator networks are trained to determine
whether or not an image has been completed, while the completion
network is trained to fool them. Only by training all the three net-
works together is it possible for the completion network to realisti-
cally complete a diversity of images. An overview of this approach
can be seen in Fig. 2.

3.1 Convolutional Neural Networks

Our approach is based on Convolutional Neural Networks [Fukushima
1988; LeCun et al. 1989]. These are a special variant of neural net-
work based on using convolution operators that conserve the spa-
tial structure of the input, generally consisting of images. These
networks are formed by layers in which a bank of filters is con-
voluted with the input map to produce an output map which is
further processed with a non-linear activation function, most often
the Rectified Linear Unit (ReLU), defined as o(-) = max(-, 0) [Nair
and Hinton 2010].

Instead of using only the standard convolutional layers, we also
employ a variant called the dilated convolution layers [Yu and
Koltun 2016], which allow increasing the area each layer can use
as input. This is done without increasing the number of learnable
weights by spreading the convolution kernel across the input map.
More specifically, if one 2D layer is a C-channel A X w map and the
next layer is a C’-channel h’ X w” map, the dilated convolution op-
erator can be written for each pixel as:

Ky kg
Yu,o =0|b+ Z Z Wk;l+i,k(,,+j Xu+ni,v+nj |
i==k! =K,
kp—1 kw —1
K =—=2—, k! = , 1
e 0

where ky and ky, are the kernel width and height (odd numbers),
respectively, 7 is the dilation factor, x,,., € RC and y, , € RC are
the pixel component of the input and the output of the layer, o(-) is
a component-wise non-linear transfer function, Ws ; are C’-by-C
matrices of the kernel, and b € R is the layer bias vector. With
n = 1 the equation becomes the standard convolution operation.

These networks are then trained to minimize a loss function with
back-propagation [Rumelhart et al. 1986], and are trained by using
datasets which consist of input and output pairs. The loss function
usually tries to minimize the distance between the network output
and the corresponding output pair in the dataset.

3.2 Completion Network

The completion network is based on a fully convolutional network.
An overview of the network model architecture can be seen in
Table 2. The input of the completion network is an RGB image with
a binary channel that indicates the image completion mask (1 for
a pixel to be completed), and the output is an RGB image. As we
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Fig. 3. Importance of spatial support. In order to be able to complete large
regions, the spatial support used to compute an output pixel must include
pixels outside of the hole. On the left, the pixel p; is computed from the
influencing region in the spatial support Q;, while the pixel p; cannot be
calculated since the supporting area Q, does not contain any information
outside of the hole. However, on the right side, the spatial support is larger
than the hole, allowing the completion of the center pixels.

do not wish any change in areas other than the completion regions,
the output pixels outside of the completion regions are restored to
the input RGB values. The general architecture follows an encoder-
decoder structure, which allows reducing the memory usage and
computational time by initially decreasing the resolution before
further processing the image. Afterwards, the output is restored
to the original resolution using deconvolution layers [Long et al.
2015], which consist of convolutional layers with fractional strides.
Unlike other architectures that use many pooling layers to decrease
the resolution, our network model only decreases the resolution
twice, using strided convolutions to 1/4 of the original size, which is
important to generate non-blurred texture in the missing regions.

Dilated convolutional layers [Yu and Koltun 2016] are also used
in the mid-layers (Eq. (1) with > 1). Dilated convolutions use
kernels that are spread out, allowing to compute each output pixel
with a much larger input area, while still using the same amount
of parameters and computational power. This is important for the
image completion task, as the context is critical for realism. By using
dilated convolutions at lower resolutions, the model can effectively
“see” a larger area of the input image when computing each output
pixel than with standard convolutional layers. The resulting network
model computes each output pixel under the influence of a 303 x303-
pixel region of the input image. Without using dilated convolutions,
it would only use a 95 x 95-pixel region, not allowing the completion
of holes larger than 95 X 95 pixels, as depicted in Fig. 3.

3.3 Context Discriminators

A global context discriminator network and a local context discrim-
inator network have the objective of discerning whether an image
is real or has been completed. The networks are based on convolu-
tional neural networks that compress the images into small feature
vectors. Outputs of the networks are fused together by a concate-
nation layer that predicts a continuous value corresponding to the
probability of the image being real. An overview of the networks
can be seen in Table 3.

The global context discriminator takes as an input the entire
image rescaled to 256 X 256 pixels. It consists of six convolutional
layers and a single fully-connected layer that outputs a single 1024-
dimensional vector. All the convolutional layers employ a stride of
2 X 2 pixels to decrease the image resolution while increasing the



Table 2. Architecture of the image completion network. After each convolu-
tion layer, except the last one, there is a Rectified Linear Unit (ReLU) layer.
The output layer consists of a convolutional layer with a sigmoid function
instead of a ReLU layer to normalize the output to the [0, 1] range. “Out-
puts” refers to the number of output channels for the output of the layer.

Type Kernel Dilation () Stride Outputs
conv. 5X5 1 1x1 64
conv. 3x%x3 1 2X2 128
conv. 3X%X3 1 1x1 256
conv. 3X%x3 1 2X2 256
conv. 3X%X3 1 1x1 256
dilated conv. 3 X3 2 1x1 256
dilated conv. 3 x 3 4 1x1 256
dilated conv. 3 X3 8 1x1 256
dilated conv. 3 X3 16 1x1 256
conv. 3X3 1 1x1 256
conv. 3X%X3 1 1x1 256
deconv. 4x4 1 12x1/2 128
conv. 3X%X3 1 1x1 128
deconv. 4%x4 1 1/2 x 1/2 64
conv. 3X%X3 1 1x1 32
output 3X3 1 1x1 3

number of output filters. In contrast with the completion network,
all convolutions use 5 X 5 kernels.

The local context discriminator follows the same pattern, except
that the input is a 128 X 128-pixel image patch centered around the
completed region. (Note that, at the training time, there is always
a single completed region. The trained completion network can,
however, fill-in any number of holes at the same time.) In the case
the image is not a completed image, a random patch of the image
is selected, as there is no completed region to center it on. As the
initial input resolution is half of the global discriminator, the first
layer used in the global discriminator is not necessary. The output
is a 1024-dimensional vector representing the local context around
the completed region.

Finally, the outputs of the global and the local discriminators
are concatenated together into a single 2048-dimensional vector,
which is then processed by a single fully-connected layer, to output
a continuous value. A sigmoid transfer function is used so that this
value is in the [0, 1] range and represents the probability that the
image is real, rather than completed.

3.4 Training

Let C(x, M, ) denote the completion network in a functional form,
with x the input image and M, the completion region mask that is
the same size as the input image. The binary mask M, takes the value
1 inside regions to be filled-in and 0 elsewhere. As a preprocessing, C
overwrites the completion region of the training input image x by a
constant color, which is the mean pixel value of the training dataset,
before putting it into the network. Similarly, D(x, M;) denotes the
combined context discriminators in a functional form.
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Table 3. Architectures of the discriminators used in our network model.
Fully-Connected (FC) layers refer to the standard neural network layers. The
output layer consists of a filly-connected layer with a sigmoid transfer layer
that outputs the probability that an input image came from real images
rather than the completion network.

(a) Local Discriminator (b) Global Discriminator

Type Kernel Stride Outputs Type Kernel Stride Outputs

conv. 5X5 2X2 64 conv. 5X5 2X2 64
conv. 5X5 2X2 128 conv. 5X5 2X2 128
conv. 5X5 2X2 256 conv. 5X5 2X2 256
conv. 5X5 2X2 512 conv. 5X5 2X2 512
conv. 5X5 2X2 512 conv. 5X5 2X2 512
conv. 5X5 2X2 512

FC - - 1024

FC - - 1024

(c) Concatenation layer

Type Kernel Stride Outputs

concat. - - 2048
FC - - 1

In order to train the network to complete the input image realisti-
cally, two loss functions are jointly used: a weighted Mean Squared
Error (MSE) loss for training stability, and a Generative Adversarial
Network (GAN) [Goodfellow et al. 2014] loss to improve the realism
of the results. Using the mixture of the two loss functions allows
the stable training of the high performance network model, and
has been used for image completion [Pathak et al. 2016], and con-
currently with this work, for various image-to-image translation
problems [Isola et al. 2017]. Training is done with backpropaga-
tion [Rumelhart et al. 1986].

In order to stabilize the training, a weighted MSE loss considering
the completion region mask is used [Pathak et al. 2016]. The MSE
loss is defined by:

Lx, Mc) = | Mc © (C(x, M) = ) |I? @

where O is the pixelwise multiplication and || - || is the Euclidean
norm.

The context discriminator networks also work as a kind of loss,
sometimes called the GAN loss [Goodfellow et al. 2014]. This is the
crucial part of training in our approach, and involves turning the
standard optimization of a neural network into a min-max optimiza-
tion problem in which at each iteration the discriminator networks
are jointly updated with the completion network. For our comple-
tion and context discriminator networks, the optimization becomes:

mcin mgx E[ log D(x, Mg) + log(1 — D(C(x, Mc), M) 1, (3)

where M is a random mask, M, is the input mask, and the expec-
tation value is just the average over the training images x.
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Algorithm 1 Training procedure of the image completion network.

1: while iterations t < Ttyqin do

2. Sample a minibatch of images x from training data.

3:  Generate masks M. with random holes for each image x in
the minibatch.

4 if t < Tc then

5 Update the completion network C with the weighted MSE
loss (Eq. (2)) using (x, M).
6 else
7 Generate masks My with random holes for each image x
in the minibatch.
8: Update the discriminators D with the binary cross entropy
loss with both (C(x, M, ), M) and (x, My).
9: if t > Tc + Tp then
10: Update the completion network C with the joint loss
gradients (Eq. (5)) using (x, M,), and D.
11: end if
122 endif

13: end while

By combining the two loss functions, the optimization becomes:
mén mgx E[ L(x, M¢) + alog D(x, My)
+ alog(1 — D(C(x, M¢), M¢)) |, (4)

where « is a weighing hyper parameter.

During the course of the optimization, the completion and the
discriminator networks written here as C and D change, which
actually means that the weights and the biases of the networks
change. Let us denote the parameters of the completion network
C by 6Oc. In the standard stochastic gradient descent, the above
min-max optimization then means that, for training C, we take
the gradient of the loss function with respect to ¢ and update
the parameters so that the value of the loss function decreases. The
gradient is:

E[ Vo.L(x, M¢) + aVg. log(1 = D(C(x, Mc),Mc)) 1. (5)

In practice, we take a more fine-grained control, such as initially
keeping the norm of the MSE loss gradient roughly the same order
of magnitude as the norm of the discriminator gradient. This helps
stabilize the learning.

We also update the discriminator networks D similarly, except we
take update in the opposite direction so that the loss increases. Note
that here D consists of the local and the global context discriminators.
So the flow of the gradient in backpropagation initially splits into
the two networks and then merge into the completion network.

In optimization, we use the ADADELTA algorithm [Zeiler 2012],
which sets a learning rate for each weight in the network automati-
cally.

3.5 Stable Training

During the training, the context discriminators are trained to dis-
tinguish fake from real images, while the completion network is
trained to deceive the discriminators. As the optimization consists
of jointly minimizing and maximizing conflicting objectives, it is
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Table 4. Analysis of computation time of our model. We notice a significant
speedup when using the GPU that drives computation times down to under
a second even for large input images.

Image Size Pixels CPU(s) GPU(s) Speedup

512 X 512 409,600 2.286 0.141 16.2X
768 X 768 589,824 4.933 0.312 15.8X
1024 X 1024 1,048,576 8.262 0.561 14.7X

not very stable. Unlike other approaches that focus on image gener-
ation [Salimans et al. 2016], our method does not generate images
from noise. That helps the training process to be initially more stable.
However, since the image completion task itself is very challenging,
much care has to be still taken in order to train the networks to
convergence.

An overview of the general training procedure can be seen in
Algorithm 1. The training is split into three phases: first, the com-
pletion network is trained with the MSE loss from Eq. (2) for T¢
iterations. Afterwards, the completion network is fixed and the
discriminators are trained from scratch for Tp iterations. Finally,
both the completion network and content discriminators are trained
jointly until the end of training. The pretraining of the completion
and the discriminator networks has proved critical for successful
training.

In order to facilitate the propagation of gradients through the net-
work, during training we use the batch normalization layers [Ioffe
and Szegedy 2015] after all convolutional layers except for the last
layers of both the completion and the discriminator networks. This
normalizes the output of each layer using output statistics that are
updated online. During testing, they can be integrated into the pre-
ceding convolutional layer, so as not to add computational burden.

Training is done by resizing images so that the smallest edge is a
random value in the [256, 384] pixel range. Afterwards, a random
256 x 256-pixel patch is extracted and used as the input image. For
the mask, we generate a random hole in the [96, 128] pixel range
and fill it with the mean pixel value of the training dataset. Note that
the aspect ratio of this hole can vary as the width and height are
drawn separately. The input for the global context discriminator is
the full 256 x 256-pixel image, and for the local context discriminator
the input is a 128 X 128-pixel patch centered around the completed
region (or a random area for real samples).

3.5.1 Simple post-processing. Although our network model can
plausibly fill missing regions, sometimes the generated area has
subtle color inconsistencies with the surrounding regions. To avoid
this, we perform simple post-processing by blending the completed
region with the color of the surrounding pixels. In particular, we
employ the fast marching method [Telea 2004], followed by Poisson
image blending [Pérez et al. 2003].

4 RESULTS

We train our model using 8, 097, 967 training images taken from the
Places2 dataset [Zhou et al. 2016]. This dataset includes images of a
diversity of scenes and was originally meant for scene classification.
We set the weighting hyper-parameter to = 0.0004, and train using
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Fig. 4. Comparisons with existing works. We compare with Photoshop Content Aware Fill (PatchMatch), Image Melding, [Huang et al. 2014], and [Pathak et al.
2016] using random masks. For the comparison, we have retrained the model of [Pathak et al. 2016] on the Places2 dataset for arbitrary region completion.
Furthermore, we use the same post-processing as used for our approach. We can see that, while PatchMatch and Image Melding generate locally consistent
patches extracted from other parts of the image, they are not globally consistent with the other parts of the scene. The approach of [Pathak et al. 2016] can
inpaint novel regions, but the inpainted region tends to be easy to identify, even with our post-processing. Our approach, designed to be both locally and
globally consistent, results in much more natural scenes. Photographs courtesy of Katja Hasselkus (Public Domain), Mississippi Department of Archives and
History (Public Domain), Sprachenatelier Berlin (CC0), and Sami Alhammad (Public Domain). Additional results can be found in the supplemental materials.
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Fig. 5. Comparison with the Context Encoder (CE) [Pathak et al. 2016] on images taken from the ImageNet validation set for center region completion. All
images are resized to 128 X 128 pixels and the center 64 X 64 pixel region is completed. Both CE and Ours (CM) are trained on the same 100k subset of training
images of ImageNet to complete the fixed center masks. Ours is our full model trained on the Places2 dataset using higher resolution images for arbitrary
region completion and not only center region completion at a fixed resolution unlike the CE and Ours (CM) models. We also provide results for PatchMatch
(PM), Image Melding (IM), and [Huang et al. 2014] (SC) for the sake of completion. The first two rows show examples in which our model trained on ImageNet
performs better, while the next two rows show examples which obtain roughly the same performance, while the final row shows an example in which CE
outperforms our model. Additional results can be found in the supplemental materials.

a batch size of 96 images. The completion network is trained for
Tc = 90, 000 iterations; then the discriminator is trained for Tp =
10, 000 iterations; and finally both are jointly trained to reach the
total of T¢rqin = 500, 000 iterations. The entire training procedure
takes roughly 2 months on a single machine equipped with four
K80 GPUs.

We evaluate our model using images from a wide variety of
scenes not used in the training data, and compare with the existing
approaches, demonstrating the performance of our method. Unless
otherwise mentioned, our models are trained on the Places2 dataset.

4.0.1 Computational time. Processing time of image completion
depends on the resolution of the input image, not on the size of
the region to be completed. Table 4 shows the computation time
for several resolutions. We evaluate both on CPU and GPU using
an Intel Core i7-5960X CPU @ 3.00 GHz with 8 cores and NVIDIA
GeForce TITAN X GPU. Even large images can be processed in
under a second using a GPU.
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4.1 Comparison with Existing Work

We evaluate our approach on both the general arbitrary region
completion, and the center region completion task of [Pathak et al.
2016].

4.1.1 Arbitrary Region Completion. We compare our results with
Photoshop Content Aware Fill that uses PatchMatch [Barnes et al.
2009], Image Melding [Darabi et al. 2012], [Huang et al. 2014], and
[Pathak et al. 2016]. For the comparison, we have retrained the
model of [Pathak et al. 2016] on the Places2 dataset for arbitrary
masks for the same number of epochs as our model, and use the
best performing model obtained during training. We evaluate it by
resizing the images to its fixed input size, processing, resizing back
to the original size, and restoring the pixels outside of the mask.
Furthermore, we use the same post-processing as our approach,
which is essential for obtaining results.

Results are shown in Fig. 4. The patch-based approaches are
unable to generate novel objects in the image, unlike our approach.
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(a) Input (b) Weighted MSE

(c) Global D

(d) Local D (e) Full method

Fig. 6. Comparison of training with different discriminator configurations. We show the results of models trained with different discriminator configurations:
(b) Weighted MSE (no discriminators), (c) using Weighted MSE and only a global discriminator, (d) using Weighted MSE and only a local discriminator, and (e)
using Weighted MSE and both the global and the local discriminator. Photographs courtesy of rente42 (Public Domain), and Pete (Public Domain).

Furthermore, while they are able to complete with locally consistent
image patches, they are not necessarily globally consistent with the
scene, e.g., objects may appear in mid-air or in the middle of other
objects. The model of [Pathak et al. 2016] results in blurred and easy
to identify areas, even with our post-processing. Our approach is
explicitly trained to be both locally and globally consistent, leading
to much more natural image completion.

4.1.2  Center Region Completion. We also compare with the Con-
text Encoder (CE) [Pathak et al. 2016] on their provided 128 x 128-
pixel test images, taken from ImageNet [Deng et al. 2009], with the
fixed 64 X 64-pixel inpainting masks in the center of the image. For a
fair comparison, we train our model using their training data, which
consists of a subset of 100K images of ImageNet, for 500 epochs. We
also do not perform post-processing for the results of our model.
Results are shown in Fig. 5. For the center region completion task,
the results of CE are significantly better than in the general arbi-
trary region completion case. We provide many more results in the
supplemental material and encourage the reader to look at them to
appreciate the relative performance of our technique and of CE. We
note that, while the CE approach is specialized to inpaint images of
this size and fixed holes, our model is capable of arbitrary region
completion at any resolution. We also show results of our full model
trained on the Places2 dataset using higher resolution images for
arbitrary region completion. We note that the other two models are
trained exclusively for this particular task of center region comple-
tion at the fixed resolution of 128 X 128 pixels, while this model can
complete arbitrary regions of images of any resolution. For the sake
of completion, the results of patch-based approaches [Barnes et al.
2009; Darabi et al. 2012; Huang et al. 2014] are also provided in the
comparison.

4.2 Global and Local Consistency

We investigate the influence of the global and the local context
discriminators by training models that only use one of them and
comparing with the full approach. We show the results in Fig. 6.
We can see that, when the local discriminator is not used (b)(c),
the result is completion by large blurred areas. On the other hand,

(a) Input
Fig. 7. Effect of our simple post-processing.

(b) Output (c) Post-processed

while using only the local discriminator (d) results in locally more
realistic textures, without the global discriminator it still lacks global
consistency. By using both the global and the local discriminators,
we can achieve results that are both locally and globally consistent.

4.3 Effect of Post-Processing and Training Data

We show the effect of our simple post-processing in Fig. 7. We
can see how this simple post-processing can be used to make the
inpainted area blend better into the global image.

We also look at the effect of the dataset used for training our
model. In particular, we compare models trained on Places2 [Zhou
et al. 2016] and ImageNet [Deng et al. 2009]. The Places2 dataset
consists of roughly 8 million images of scenes, while the ImageNet
dataset focuses on classification on objects and only has 1 million
images. Results are shown in Fig. 8. Although results are fairly
similar, the results of the model trained on Places2 gives better
performance in a wide diversity of scenarios, and is the primary
model we use unless stated otherwise.

4.4 Object Removal

One of the main motivations of image completion is being able to
remove unwanted objects in images. We show examples of object
removal in Fig. 9. The results of our approach are natural and it
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(a) Input (b) Ours (ImageNet)  (c) Ours (Places2)

Fig. 8. Results of training with different datasets. In particular, we compare
a model trained on the ImageNet dataset with one trained on the Places2
dataset. Photographs courtesy of Bernard Spragg. NZ (CC0), and Big Cy-
press National Preserve (Public Domain).

(a) Original (b) Input (c) Output
Fig. 9. Examples of object removal by our approach. Photographs courtesy
of Ginés Gonzalez de la Bandera (Public Domain), and Katja Hasselkus
(Public Domain).

becomes nearly impossible to identify where an object has been
removed.

4.5 Faces and Facades

Although our model can generate various texture or objects to
complete missing regions in general images, fine-tuning the model
using a specific dataset can achieve even better results for more
concrete and complicated image completion tasks. In particular, we
consider both the CelebFaces Attributes Dataset (CelebA) [Liu et al.
2015], and the CMP Facade dataset [Radim Tyle¢ek 2013], which
consist of 202, 599 and 606 images, respectively. For both datasets,
we use the image completion network trained on the Places2 dataset
and further train it on the new data. To adapt to new data, we initially
train the context discriminator from scratch, then both the context
discriminator and the completion network are trained together.
For the CelebA dataset, we train using 200, 000 images. As the
dataset has images of 178 x 218 pixels, we slightly adapt the training
approach: instead of using 256 X 256-pixel image patches for training,
we use 160 X 160-pixel image patches. We randomly generate holes
in the [48, 96]-pixel range and thus modify the input of the local
discriminator to be 96 X 96 pixels instead of 128 X 128 pixels. Finally,
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we remove a layer from the global context discriminator and adapt
the fully-connected layers of both the global and the local context
discriminators to the new training resolutions.

For the CMP Facade dataset, we train using 550 images. The
training procedure is the same as for the Places2 dataset, except that
the completion network is initialized with the one trained on the
Places2 dataset, instead of being trained with the MSE loss for T¢
iterations.

We show the results in Fig. 10. We can see that our approach
can realistically complete faces despite very large occluded areas.
Note that patch-based approaches are unable to complete faces, as it
requires the algorithm to generate novel objects such as eyes, noses,
and mouths that are not already part of the image. We also see that
our approach can complete various types of facades in a way that
they are both locally and globally coherent.

4.6 User Study

We perform a user study using the validation set of the CelebA
dataset for the challenging face completion task and show results in
Fig. 11. We ask 10 users to evaluate the naturalness of the completion.
The users are only shown either the full completed image or a
random image from the dataset, and asked to guess if the image is
an actual image from the dataset or a completed one. The figure
shows the percentage of the images that are deemed to be real. That
is, 77.0% of the completed images by our approach is thought to
be real. For comparison, the real images are correctly categorized
96.5% of the time. This highlights the realism of the resulting image
completion by our approach.

4.7 Additional Results

We show additional results for our approach in Fig. 12. Our ap-
proach can complete a wide diversity of scenes such as mountain
ranges, close ups of walls, and churches. Furthermore, the results
look natural even when large sections of the image are completed.

4.8 Limitations and Discussion

Although our model can handle various images of any sizes with
arbitrary holes, significantly large holes cannot be filled in due to the
spatial support of the model as discussed in Section 3.2. By changing
the model architecture to include more dilated convolutions it is
possible to push this limit. Note that this limitation refers strictly to
square masks, e.g., wide areas can still be completed as long as they
are not too tall: information from above and below will be used to
complete the image. This is especially limiting in the case of image
extrapolation, in which the inpainting mask is at the border of the
image. Figure 13-left shows such an example, which is from the
[Hays and Efros 2007] dataset. Not only is the missing area very
large relative to the image, but information from only one side of
the area is available. Figure 13-right shows another failure case due
to a large inpainting region. We note that in this case, [Hays and
Efros 2007] also fails to realistically inpaint the mask. Approaches
like [Hays and Efros 2007], which leverage sizable databases to
copy and paste large parts of images, work well if the database
contains an image similar to the input. Indeed, for such approaches,
extrapolation is easier than inpainting, since there are less to match
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Fig. 10. Faces and Facades. We also apply our model to more specific datasets such as human faces and building facades by fine-tuning on different datasets.
In the first two rows we show results of a model trained on the CelebA dataset, while the last row shows results of a model trained on the CMP Facade
dataset. The inpainting masks are randomly chosen. Photographs courtesy of SKV Florbal (Public Domain), U.S. Department of Agriculture (Public Domain),
SKYV Florbal (Public Domain), Mo Che (Public Domain), Embajada de los Estados Unidos en Uruguay (Public Domain), Efd Initiative (CCO0), Fiona White
(Public Domain), Paradox Wolf (Public Domain), thinkrorbot (Public Domain), and Darrell Neufeld (Public Domain). Additional results can be found in the

supplemental materials.
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Fig. 11. Result of our user study evaluating the naturalness of the image
completion on the CelebA dataset. The numbers are the percentage of the
images that are deemed to be real by 10 different users for the Ground Truth
(GT) and the result of the completion by our approach.

at the boundary. Note that, in the output by [Hays and Efros 2007],
parts of the original image outside of the mask are modified by
fitting the image patch from the database.

We conducted a user study on this dataset, using its standard
protocol, that compares our approach, Context Encoder (CE) [Pathak
et al. 2016], and [Hays and Efros 2007]. For CE, we use the model
we retrained for arbitrary masks on the Places2 dataset, as well as
our post-processing. A total of 11 users were asked to classify the
images as real or manipulated. The time taken to discern whether
or not an image is manipulated is shown in Fig. 14. As many images
have large holes at the edge of the map, we also evaluate on a subset
of 19 images in which the holes are centered and not on the edge
of the image. With large holes at the edge of the image, [Hays and

Efros 2007] shows much better performance than when they are
centered on the image, and the high resolution of this dataset prove
a challenge for our approach. Of the neural network approaches,
our approach is harder to distinguish as fake than that of CE, which
surprisingly performs worse for the interpolation subset of images.

The main advantage of our approach over standard techniques
such as PatchMatch lies in the fact that our approach can generate
novel objects that do not appear in the image. While this may not be
necessary for certain outdoor scenes when parts of the image can
be used for image completion, for other cases such as completing
faces, it becomes critical, as without being able to generate noses,
eyes, mouths, etc., the completion will fail as shown in Fig. 15.

Some examples of failure cases can be seen in Fig. 16. In general,
the most common failure case is when a heavily structured object,
e.g., a person or an animal, is partially masked. In the left image,
we can see that the model prioritizes reconstructing the trees in
the background over the head of the boy. In the right image, our
approach fails to complete the dog. We do not, however, that struc-
tured textures do get completed as shown in Fig. 12.

5 CONCLUSION

We have presented a novel approach for image completion that pro-
duces locally and globally consistent image completions based on
convolutional neural networks. We have shown that, by using global
and local context discriminators, it is possible to train models to pro-
duce realistic image completion. Unlike the patch-based approaches,
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Fig. 12. Additional image completion results by our approach on image using randomly generated masks. Photographs courtesy of Alex Liivet (CC0), Newcastle
Libraries (Public Domain), Yellowstone National Park (Public Domain), Shenandoah National Park (Public Domain), Shenandoah National Park (Public
Domain), thinkrorbot (Public Domain), Alan Levine (CC0), Bruce Caron (Public Domain), Mr. Delirium (Public Domain), Bernard Spragg. NZ (CC0), Gu Yan
Temple (CC0), Allie G (Public Domain), and gnuckx (CC0). More results can be found in the supplemental materials.
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Fig. 13. Failure cases from the dataset of [Hays and Efros 2007]. For the
comparison, we have retrained the model of [Pathak et al. 2016] on the
Places2 dataset for arbitrary regions. The image on the left corresponds to

a case of image extrapolation, i.e., the inpainting mask lies on the boundary
of the image. Out of the 51 images in this dataset, 32 have masks that
correspond to image extrapolation. Additional results can be found in the
supplemental materials.
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Fig. 14. User study on the [Hays and Efros 2007] dataset. We compare

Ground Truth (GT) images, [Hays and Efros 2007] (Hays), CE [Pathak et al.

2016], and our approach. Users are asked to distinguish whether or not an
image has been manipulated. We plot the percentage properly classified as
function of the maximum response time. The solid line corresponds to the
full dataset, while the dotted line corresponds to a subset of 19 images in
which the inpainting masks are not at the edges. Lower is better.
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(a) Input

(b) PM

(c)IM

(d) Ours
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Fig. 15. Comparison with the PatchMatch (PM) and Image Melding (IM).
We provide results for our general model (Ours), and our model fine-tuned
for faces (Ours (ft)). Patch-based approaches are unable to generate novel
objects in the scene leading to unnatural results. Photographs courtesy of
Owen Lucas (Public Domain), Mon Mer (Public Domain), and SKV Flor-
bal (Public Domain). Additional results can be found in the supplemental
materials.

our approach can generate novel objects that do not appear else-
where in the image. We have provided in-depth comparisons with
existing approaches and show realistic image completion for a large
variety of scenes. Furthermore, we also use our approach to com-
plete images of faces and show in a user study that our generated
faces are indistinguishable from real faces 77% of the time.
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