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Abstract

Creative workflows for generating graphical documents
involve complex inter-related tasks, such as aligning ele-
ments, choosing appropriate fonts, or employing aestheti-
cally harmonious colors. In this work, we attempt at build-
ing a holistic model that can jointly solve many different
design tasks. Our model, which we denote by FlexDM,
treats vector graphic documents as a set of multi-modal
elements, and learns to predict masked fields such as ele-
ment type, position, styling attributes, image, or text, using
a unified architecture. Through the use of explicit multi-task
learning and in-domain pre-training, our model can better
capture the multi-modal relationships among the different
document fields. Experimental results corroborate that our
single FlexDM is able to successfully solve a multitude of
different design tasks, while achieving performance that is
competitive with task-specific and costly baselines. 1

1. Introduction

Vector graphic documents are composed of diverse
multi-modal elements such as text or images and serve as
the dominant medium for visual communication today. The
graphical documents are created through many different
design tasks, e.g., filling in a background image, chang-
ing font and color, adding a decoration, or aligning texts.
While skilled designers perform tasks based on their de-
sign knowledge and expertise, novice designers often strug-
gle to make decisions to create an effective visual presen-
tation. To assist such novice designers, interactive frame-
works equipped based on models that learn design knowl-
edge from completed designs have been proposed [12, 38].
Our present work proposes models that can be used in such
systems, with a particular focus on developing holistic mod-
els that can flexibly switch between design tasks.

Design tasks are characterized by 1) the variety of

1Please find the code and models at:
https://cyberagentailab.github.io/flex-dm.

possible actions and 2) the complex interaction between
multi-modal elements. As discussed above, a designer
can make almost any edit to the appearance of a vector
graphic document, ranging from basic layout to nuanced
font styling. While there have been several studies in solv-
ing specific tasks of a single modality, such as layout gen-
eration [3,13,23,26,30], font recommendation [56], or col-
orization [22,40,54], in realistic design applications, we be-
lieve it is essential to build a flexible model that can consider
multiple design tasks in a principled manner to make auto-
mated decisions on creative workflow.

In this work, we refer to a certain attribute of an element
as a field and formulate the various design tasks as a uni-
fied masked field prediction, which is inspired by the recent
masked autoencoders [9,15] and multi-task models [19,36].
The key idea is to utilize masking patterns to switch among
different design tasks within a single model; e.g., element
filling can be formulated as predicting all the fields of the
newly added element. Our flexible document model, de-
noted by FlexDM, consists of an encoder-decoder architec-
ture with a multi-modal head dedicated to handling different
fields within a visual element. After pre-training with ran-
dom masking strategy, we train FlexDM by explicit multi-
task learning where we randomly sample tasks in the form
of masking patterns corresponding to the target design task.
We illustrate in Figs. 1 and 2 an overview of FlexDM, with
emphasis on the correspondence between design tasks and
masking patterns.

Through our carefully designed experiments, we show
that our proposed FlexDM performs favorably against base-
lines in five design tasks using the Rico [7] and Crello [52]
datasets. We also study how different modeling approaches
affect the final task performance in the ablation study. Fi-
nally, we apply our framework to several previously stud-
ied design tasks with minimal modifications and show that
the performance matches or even surpasses the current task-
specific approaches.

Our contributions can be summarized in the following.
• We formulate multiple design tasks for vector graphic

documents by masked multi-modal field prediction in a

https://cyberagentailab.github.io/flex-dm
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Figure 1. Examples of the design tasks that can be solved by our proposed FlexDM model, which is designed to process a vector graphic
document consisting of an arbitrary number of elements (e.g., text). Each element is composed of multi-modal fields indicating its attribute
properties (e.g., text content, position, font color, etc.).

set of visual elements.
• We build a flexible model to solve various design tasks

jointly in a single Transformer-based model via multi-
task learning.

• We empirically demonstrate that our model constitutes a
strong baseline for various design tasks.

2. Related Work

2.1. Vector Graphic Generation

There has been a growing interest in vector graphics to
realize resolution/artifact-free rendering that is easy to inter-
pret and edit, such as Scalable Vector Graphics (SVG) [8].
Modeling documents in a vector format is much more com-
plex than the stroke or path level vector graphics [5, 14, 35]
since each element contains multi-modal features such as
text and image. CanvasVAE [52] tackles the document-
level unconditional generation of vector graphics, but is not
a multi-task model and cannot solve specific design tasks
such as element filling. Doc2PPT [11] generates slides
given a longer and more detailed multi-modal document,
but it is a summarization task and cannot infer what is miss-
ing in the incomplete document.

Obtaining transferable representation for downstream
tasks learned from multi-modal large-scale data is getting
popular. Domains closest to our setting are document un-
derstanding [32,49–51] and UI understanding [4,16], where
the data consist of elements with multi-modal attributes.
Despite the generalizable representation, all the methods
fine-tune different parameters for each downstream task
(mainly in classification). In contrast, we aim to solve many

essential tasks for design creation in a single model.

2.2. Multi-task Learning

Multi-task learning (MTL) [2, 6, 10] aims at solving dif-
ferent tasks at the same time while sharing information and
computation among them, which is crucial for deployment.
MTL methods achieve a good tradeoff between perfor-
mance and computational cost by (i) multiple lightweight
heads at the top of shared backbone [25,55] and (ii) efficient
use of task-specific parameters [33,43,44]. On the contrary,
our model obtains the task information from the masking
patterns of the input fields and we empirically show that ex-
tra task-specific parameters are not necessary.

Training a single model that generalizes to many differ-
ent tasks has been a long-standing goal. 12-in-1 [37] and
UniT [17] handle multiple tasks in vision and language do-
main with small task-specific parameters. In a more uni-
fied manner, Perceiver [20] and Perceiver IO [19] treat dif-
ferent modalities as the same data format, OFA [48] and
Unified-IO [36] consider similar attempts in the sequence-
to-sequence framework, resulting in a single model or archi-
tecture with no task-specific tuning. We are highly inspired
by these works and explore how to unify the design tasks in
vector graphic document domain.

2.3. Computational Assistance for Graphic Design

There is a long history of automatic graphic design [1,34,
53]. Recent approaches rely on the learning-based formu-
lation, where the primal focus is in predicting layouts given
label sets [21,30] or in an unconditional manner [3,13], and
avoids the manual design of the energy functions seen in
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Figure 2. Top: example of a vector graphic document consisting
of five elements. The array is used to illustrate the data structure
of the document. Each column corresponds to a single visual ele-
ment. Each row corresponds to an attribute or a group of attributes
consisting the element. Bottom: Correspondence between design
tasks and masking patterns for our masked field prediction.

the earlier work [39]. Some works additionally take posi-
tional/relational constraints [24, 27, 31] or textual descrip-
tions [57] for finer design control, but are not applicable in
a more complex scenario. In contrast, our multi-task ap-
proach solves many conditional tasks thanks to the flexible
multi-modal fields in both inputs and targets.

Considering multi-modal features is essential to go be-
yond layout generation for intelligent graphic design assis-
tance. Wang et al. [47] retrieve images from layout infor-
mation and keywords for each element to obtain visually
pleasing visual design by reinforcement learning. Zhao et
al. [56] predict font properties of a text on a webpage over
a background image considering metadata. Li et al. [29]
predict position and size for a single text box over a back-
ground image considering saliency. We demonstrate that
we can apply our flexible model to solve these tasks with
almost no modification, and our model performs favorably
against the task-specific well-tuned approaches.

3. Approach

We first describe the formal definition of the vector
graphic document and notations in Sec. 3.1. We then in-
troduce the idea of masked field prediction and a model for
it in Sec. 3.2 and Sec. 3.3. Finally, we describe how we train
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Figure 3. The architecture of FlexDM. E, T, and D are short for
Encoder, Transformer blocks, and Decoder, respectively.

FlexDM in Sec. 3.4.

3.1. Preliminary

Document Structure: In this work, a vector graphic
document X consists of a set of elements X =
(X1, X2, . . . , XS), where S is the number of elements in
X . Each element Xi consists of a set of multi-modal fields
and denoted by Xi = {xk

i | k ∈ E}, where E indicates
the indices for all the attributes. Each field xk

i can be either
a categorical or numerical variable such as element type,
position, text content, or image embedding. For ease of ex-
planation, we illustrate X by a 2D-array as shown in the
top of Fig. 2. Note that the order in the array does not
matter because X is a set of sets. Since processing high-
dimensional data such as raw images and texts during op-
timization is computationally intensive, we extract a low-
dimensional numerical vector from such data for xk

i using
pre-trained models.
Special Tokens: In a similar spirit to the masked language
model [9], we use a few special tokens to represent xk

i .
[NULL]: appears when xk

i is inevitably missing (e.g., font
type for an image element), or padding variable-length se-
quence within a mini-batch on training.
[MASK]: appears when xk

i is masked for prediction.

3.2. Masked Field Prediction

Given an incomplete document X containing [MASK]
as context, our goal is to predict values for all the fields
filled with [MASK] and generate a complete document X̂ .
We refer to this problem by masked field prediction, where
a model has to predict the masked field considering the
different multi-modal relations between the fields. While
the masking approach is similar to the masked language
model [9], there is a key distinction in that we process an
order-less set of multi-modal items (i.e., document X). For



this reason, we design our architecture to 1) efficiently cap-
ture inter-field relationships of vector graphic attributes, and
2) ensure that the model works without positional encodings
commonly used to model an ordered sequence.

3.3. FlexDM Architecture

As shown in Fig. 3, our architecture consists of three
modules; encoder, Transformer blocks, and decoder. Given
a document, we first project a set of partially masked fields
(e.g., position or font) into embeddings using the encoder,
and then feed the output to the intermediate Transformer
blocks. The final decoder takes the transformed embed-
dings and projects them back to the original fields space.
The Transformer blocks only process S embeddings, which
is efficient compared to architecture processing S×N fields
with off-the-shelf Transformer [46] directly, when there are
N attributes. In the following, let us denote all model pa-
rameters by θ.
Encoder: The encoder takes a document input X and em-
beds it into henc = {henc

1 , henc
2 , . . . , henc

S } with element-wise
operations. The encoder first maps each field xk

i to a fixed
dimensional vector with f enc,k, and sums up all the fields in
the element to produce a latent vector for the i-th element
with:

henc
i =

∑
k∈E

f enc,k(xk
i ; θ), (1)

where f enc,k is an embedding function that retrieves learn-
able dense embeddings for each category id if xk

i is a cat-
egorical variable, or a simple linear projection layer if xk

i

is a numerical variable. We treat the special tokens (i.e.,
[NULL] and [MASK]) in the same manner to the categor-
ical variable.
Transformer Blocks: Transformer blocks take henc as in-
put and transform it to hdec = {hdec

1 , hdec
2 , . . . , hdec

S }. We
stack these intermediate blocks to process complex inter-
element relations. Our model can stack any off-the-shelf
Transformer layer to build up the blocks f trans:

hdec = f trans(henc; θ) (2)

Decoder: The final decoder takes hdec and decodes them
back into a document X̂ = (X̂1, X̂2, . . . , X̂S), where X̂i =
{x̂k

i | k ∈ E}. We compute each x̂k
i by a linear layer f dec,k

for both categorical and numerical variables:

x̂k
i = f dec,k(hdec

i ; θ). (3)

Loss: We train our model using reconstruction losses. Let
us denote by X∗ the ground truth of the incomplete doc-
ument X , and also denote by M a set of tuples indicating
the indices for [MASK] tokens in X . We define the loss
function by:

L =
∑

(i,k)∈M

lk(x̂k
i , x

∗k
i ), (4)

where lk is the loss function for the k-th attribute. For each
lk, we use softmax cross-entropy loss for categorical vari-
ables and mean squared error for numerical variables.

3.4. FlexDM Training

Masked field prediction allows us to represent diverse
design tasks having various input/output formats just by al-
tering the masking pattern. The pattern can be both deter-
ministic or stochastic. The bottom of Fig. 2 illustrates ex-
ample tasks and the corresponding masking patterns. Al-
though we can formulate arbitrary tasks with masked field
prediction, we consider several subsets of representative de-
sign tasks for our evaluation and analyses in Sec. 4.

We describe typical masking patterns in the following.
Note that fields already filled with [NULL] will never be
replaced in priority to the masking operations. Element
masking randomly selects elements and masks all the fields
within the element; i.e., we can formulate the element fill-
ing task by single element masking. Attribute masking ran-
domly selects attributes and mask the fields across all the
elements; e.g., masking position and size of all the elements
becomes layout prediction, and masking fonts becomes font
prediction. Random masking strategy masks fields by some
probability without considering the data structure, which is
similar to BERT [9].
Pre-training: To learn the initial model, we employ a pre-
training by ordinary random masking similar to the pre-
vailing pre-training strategy of BERT [9]. One distinc-
tion is that our pre-training happens in the same, in-domain
dataset, unlike the common setup where a model is pre-
trained on a larger dataset in a different domain and then
fine-tuned on a target task in a target dataset. We show in
Sec. 4 that this in-domain pre-training moderately improves
the final task performance.
Explicit Multi-task Learning: The random masking pre-
training above is a solid baseline for any task. Radford et
al. [42] hypothesize that this implicit multi-task training
leads to the astonishingly strong zero-shot performance of
large language models. However, the random masking strat-
egy actually produces any task with an extraordinarily low
probability as the number of attributes and elements in-
creases. Instead, we employ the explicit masking strategy
to maximize the performance on all the target tasks. During
training we randomly sample a task from the target tasks,
sample a complete document X∗, and make the triplet (X ,
X∗,M ) by using the masking pattern associated with the
task. We repeat this procedure to build each mini-batch
when training FlexDM.



4. Experiments

4.1. Dataset

We mainly use two datasets containing vector graphic
documents, Rico [7] and Crello [52], to evaluate FlexDM.
We basically follow the setting used in [52]. Due to memory
limitations, we discard documents having more than fifty el-
ements. Position, size, and color information are discretized
in order to enhance the implicit alignment of multiple ele-
ments. We describe the overview of each dataset.
Rico [7]: The dataset collects UI designs from mobile apps.
We follow previous works [27, 30] and exclude elements
whose labels are not in the most frequent 13 labels. We di-
vide the dataset into 45,012 / 5,565 / 5,674 examples for
train, validation, and test splits.
Crello [52]: The dataset provides design templates from
an online design service. Crello contains various design
formats such as social media posts, banner ads, blog head-
ers, or printed posters. We divide the dataset into 18,738 /
2,313 / 2,271 examples for train, validation, and test splits.
Please refer to the original paper [52] for the definition
of each attribute. For image and text features, we extract
768-dimensional features using CLIP [41]. We also addi-
tionally extract categorical font information (called Font).
We group the attributes into some groups based on their
property. TYPE denotes Type attribute. POS denotes
Position and Size attributes. IMG denotes Image at-
tribute. TXT denotes Text attribute. ATTR denotes at-
tributes not listed above, and these attributes have a large
impact on fine-grained appearance.

4.2. Tasks

We carefully select tasks to evaluate how our model per-
forms in various design tasks. We select evaluation tasks
such that (i) they are practical, (ii) they have various com-
binations of input/output modalities, and (iii) the masking
ratio is modest. We impose the masking ratio requirement
because the extreme masking ratio makes the task too dif-
ficult or trivial to solve and makes the baseline comparison
impossible.
Element Filling (ELEM): This task is to predict a new el-
ement that can enhance the document. We mask all the at-
tributes of a single element in a complete document during
training and evaluation.
Attribute Prediction: This task is to predict missing at-
tributes at once in the document, which is very challeng-
ing. We apply attribute masking on a complete document
to make the masked inputs during training and evaluation.
We select an attribute group discussed in Sec. 4.1 and apply
the attribute masking for all the attributes in the group. We
consider each group-level prediction task as an individual
task. Note that we do not consider TYPE prediction since it
is too trivial and unrealistic. Therefore, we have two (POS

and ATTR) and four (POS, ATTR, IMG, and TXT) attribute
prediction tasks for Rico and Crello, respectively.

4.3. Evaluation Metrics

For each task, we quantitatively evaluate the reconstruc-
tion performance. The score S for each document is com-
puted by:

S =
1

|M |
∑

(i,k)∈M

sk(x̂k
i , x

∗k
i ), (5)

where sk ∈ [0, 1] is a scoring function for k-th attribute. If
the attribute is categorical, sk is an indicator function that
takes 1 if x̂k

i and x∗k
i are identical, otherwise 0. For image

and text features that are the only numerical attributes in our
experiments, we use cosine similarity in [0, 1] scale.

4.4. Training Details

We use 256-dimensional latent representations within
the encoder, Transformer blocks, and decoder. For the
Transformer blocks we use the one from DeepSVG [5]. We
apply a dropout probability of 0.1 to all the dropout layers.
We train the model with a batch size of 256 sequences for
500 epochs in all the experiments. We use Adam with learn-
ing rate of 1e-4, β1 = 0.9, β2 = 0.99, and L2 weight decay
of 1e-2. In experiments on Rico, we make FlexDM take po-
sitional embedding as the additional input, since otherwise
the model is unable to distinguish elements having a com-
pletely similar set of attributes, which often occurs in POS
prediction.

4.5. Quantitative Evaluation

We test three models based on our proposed framework
to clarify the contribution of both explicit multi-task learn-
ing and pre-training.
Ours-IMP: As in the standard masked language modeling
such as BERT [9], we randomly mask 15% of the fields
during training. Since this randomized training is called im-
plicit multi-task learning [42], we call it Ours-IMP.
Ours-EXP: All the tasks are explicitly and jointly trained
in a single model by sampling the masking patterns corre-
sponding to each task. For simplicity, T tasks introduced in
Sec. 4.2 are uniformly sampled in a mini-batch.
Ours-EXP-FT: This is our entire model. We use weights
of the model trained on IMP, and fine-tune the model. The
rest of the training is the same as Ours-EXP.

We compare these models with the following baselines,
some of which are adapted from existing task-specific mod-
els to our multi-task, multi-attribute, and arbitrary masking
setting with minimal modification.
Expert: We train the network individually for each task.
Note that the number of the parameters used in this variant
is T times larger than our models.



Dataset Rico [7] Crello [52]

Model #par. ELEM POS ATTR #par. ELEM POS ATTR IMG TXT

Most-frequent 0.0x 0.461 0.213 0.830 0.0x 0.402 0.134 0.382 0.922 0.932
BERT [9] 1.0x 0.517 0.238 0.847 1.0x 0.524 0.155 0.632 0.935 0.949
BART [28] 1.2x 0.515 0.220 0.714 1.2x 0.469 0.156 0.615 0.932 0.945
CVAE [21, 27] 1.1x 0.511 0.214 0.917 1.0x 0.499 0.197 0.587 0.942 0.947
CanvasVAE [52] 1.2x 0.437 0.192 0.790 1.2x 0.475 0.138 0.586 0.912 0.946
Ours-IMP 1.0x 0.505 0.259 0.923 1.0x 0.483 0.197 0.607 0.945 0.949
Ours-EXP 1.0x 0.540 0.226 0.937 1.0x 0.499 0.218 0.679 0.948 0.952
Ours-EXP-FT 1.0x 0.552 0.215 0.945 1.0x 0.508 0.227 0.688 0.950 0.954

Expert 3.0x 0.575 0.228 0.952 5.0x 0.534 0.255 0.703 0.948 0.955

Table 1. Quantitative evaluation in two datasets. A higher score indicates the better per-
formance. Top two results are highlighted in bold and underline, respectively. LGAN++
is short for LayoutGAN++.
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Figure 4. Results in element filling using Rico
dataset. The red dotted box indicates the tar-
get element to be predicted.

Most-frequent: We calculate the statistics of the training
dataset. For a categorical attribute, we count the occur-
rences and pick the most frequent category. For a numerical
attribute, we compute the average because the numerical at-
tributes that we use are only image and text features.
BERT [9]: We convert all the fields into a single sequence
and process them with Transformer blocks. This evaluates
the effect of element-wise embedding discussed in Sec. 3.3.
BART [28]: BART employs an encoder-decoder-based
sequence-to-sequence model for pre-training text genera-
tion models by masked language modeling. We replace our
Transformer blocks with the blocks from BART.
CVAE [21,27]: Recent methods for conditional layout gen-
eration such as LayoutVAE [21] and NDN [27] employ
Conditional VAE [45] in an auto-regressive manner. We re-
place our Transformer block and decoder parts with CVAE
variants used in [21,27] and predict the fields in an element-
by-element manner. Note that the full version of NDN con-
tains relation prediction and layout refinement modules in
addition to CVAE modules. We omit the full NDN pipeline
evaluation due to their specific approach.
CanvasVAE [52]: CanvasVAE is for an unconditional gen-
eration. Although direct comparison is impossible, we
adapt CanvasVAE to our setting, similar to other baselines.

Table 1 summarizes the performance of all the models.
Our full model (Ours-EXP-FT) is almost comparable to Ex-
pert model while being much more efficient in the number
of parameters. Ours-IMP exhibits moderate performance,
resulting in a better initial weight for fine-tuning in Ours-
EXP-FT. We can see that most of the compared baselines
perform clearly worse compared to Ours-EXP. The result
suggests that applying existing Transformer models for se-
quence modeling or conditional layout generation models
is not enough in our challenging setting. POS-prediction in
Rico is the exceptional case, where most of the methods fail

because of the larger number of elements compared to the
benchmark setup in the literature [24] (nine at maximum).

4.6. Qualitative Evaluation

We show the prediction quality of our full FlexDM
(Ours-EXP-FT) for Rico dataset in the element-filling task
in Fig. 4. For Rico, we show a color map indicating the
position and type information. In Fig. 5, we show the pre-
diction of our full FlexDM (Ours-EXP-FT) on all the target
design tasks. For visualizing predicted low-dimensional im-
age and text features, we conduct a nearest neighbor search
to retrieve actual images and texts using the assets in the test
subset, following CanvasVAE [52].

4.7. Ablation Study

In this section, we perform several ablation experiments
in the Crello dataset, as shown in Tab. 2. We demonstrate
that our design choices non-trivially affect the final perfor-
mance of FlexDM.
Task-specific Embedding: The previous work [17] on uni-
fying multiple tasks in a single Transformer uses small task-
specific learnable query embedding to feed information of
the current task explicitly. We append the query as henc

0 at
the beginning of henc = {henc

1 , henc
2 , . . . , henc

S } and train the
model. The result suggests the benefit of the embedding is
marginal. We conjecture that the model implicitly captures
the task information from the masked inputs in our setting.
Attention: Here we study the importance of self-attention
to model the inter-element relationship by training a model
without self-attention. We increase the number of layers to
eight to roughly match the total number of parameters with
Ours-EXP. As expected, the result clearly suggests the im-
portance of modeling the inter-element relationship.
Additional Loss: Our objective function in Eq. (4) only
considers reconstruction. One may argue that incorporating
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Figure 5. Prediction of FlexDM (Ours-EXP-FT trained on Crello). FlexDM jointly handles a large variety of design tasks with a single
Transformer-based model. In the input of ATTR/TXT/IMG prediction, the target fields assigned [MASK] are visualized using fixed default
values (i.e., black for text color, gray for image and solid fill, ‘TEXT’ for text). In POS prediction, we additionally show the layout of the
elements. The correspondence between the color and type of the element is as follows: green = vector shape, magenta = image, purple =
text, yellow = solid fill. Best viewed with zoom and color.

Table 2. Ablation study results in Crello dataset. Top two results
are highlighted in bold and underline, respectively.

Model ELEM POS ATTR IMG TXT

Ours-EXP 0.499 0.218 0.679 0.948 0.952
(i) w/ task-ID 0.496 0.222 0.674 0.949 0.953
(ii) w/o attention 0.446 0.208 0.605 0.939 0.947
(iii) w/ adv. 0.499 0.215 0.677 0.948 0.952

adversarial losses such as those used in LayoutGAN++ [24]
could improve the model. While we tried our best in imple-
menting and tuning the additional adversarial loss, we did
not find a clear benefit in adversarial training.

4.8. Comparison with Task-specific Baselines

In this section, we show that our data-driven masked field
prediction model can match or even surpasses task-specific
approaches. We perform experiments in two tasks: 1) sin-
gle text styling and 2) single text box placement. Since each
task uses partially overlapping set of attributes, we train our
model for each single task for fair comparison. Note that we
are unable to compare to contextual images filling [47] dis-
cussed in Sec. 2.3 due to their task setup where they retrieve

an image only from pre-defined sets used during training.

4.8.1 Single Text Styling

Zhao et al. [56] propose an MLP-based model to predict de-
sirable font properties for a single text box (i.e., font emb.,
color, and size), given context in web designs. We con-
sider that each design is a document with one text and two
image elements, and regard all the context information as
attributes in the elements so that we can just apply FlexDM.
We implement Zhao et al. [56] with the following minor
difference, since the code is not publicly available. We
quantize the color and size into 16 bins and 64 bins, re-
spectively. We did not apply data augmentation using the
external dataset, since the dataset used for the augmentation
is not available. We show the results in Tab. 3. The metrics
are accuracy for font color and size, and cosine similarity
for font type, which is represented by a low-dimensional
embedding. We can clearly see that our model is compara-
ble to the task-specific model.

4.8.2 Single Text Box Placement

Li et al. [29] propose to predict the size and position of a
single text box given a natural image and aspect ratio of
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Figure 6. Qualitative comparison of single text box placement with SmartText+ [29]. Best viewed with zoom and color.

Table 3. Comparison of models for font properties prediction in
CTXFont dataset [56]. The average and standard deviation of three
runs are reported. The values are multiplied by 100x for visibility.

Model Color Size Emb. Avg.

Zhao et al. [56] 45.8±2.9 19.9±3.1 79.2±0.5 48.2±1.2

Ours 54.2±0.7 24.2±0.1 77.7±1.3 52.0±0.5

Table 4. Quantitative evaluation of models for single text box
placement in Crello dataset. The samples are divided into two
groups: no other text box available (Single) and some text boxes
available as the context (Multiple).

Single Multiple

IoU ↑ BDE ↓ IoU ↑ BDE ↓
SmartText+ [29] 0.047 0.262 0.023 0.300
Ours 0.357 0.098 0.110 0.141

w/o image 0.355 0.100 0.103 0.156
w/o text 0.350 0.106 0.086 0.178

the text box. We perform comparison in Crello dataset,
since the dataset used for their model training and evalua-
tion is not publicly available. We evaluate the performance
in terms of the intersection over union (IoU) and bound-
ary displacement error (BDE) [29]. As shown in the upper
half of Tab. 4, our model clearly outperforms Li et al. [29]’s
model. To measure the contribution of multi-modal features
to the prediction, we exclude each of them and train the
model. The results in the lower half of Tab. 4 suggest that
those features contribute to the better performance. Some
results are shown in Fig. 6.

5. Limitation and Discussion

As image and text generation quality is astonishingly
improving, one may want to generate images and texts di-
rectly. However, retrieval-based generation is still a practi-
cal option. For instance, due to clients’ requests, designers
often need to use images from private collections or public
photo stock services such as Adobe Stock or Shutterstock.
Moreover, some people avoid using generated images or
text as there are controversies about the legal and ethical
issues of AI-generated images.

Our model does not support design tasks that cannot be
framed as masked field prediction. We do not consider un-
conditional generation; i.e., generating a complete docu-
ment without input. Extending FlexDM to an unconditional
scenario requires us to apply a generative formulation in-
stead of BERT-style masked modeling, and we leave such
formulation as future work. However, we believe that our
model nicely fits in a common application scenario where
there exist initial design materials to start with.

The model’s performance decreases when the input doc-
ument has more elements. Whether bigger models or
datasets alleviate the issue is worth investigating. Devel-
oping other evaluation metrics would be helpful for further
analysis since current metrics simply evaluate reconstruc-
tion performance. In conditional generation, the input con-
text may correspond to multiple possible outputs, especially
when the input context is sparse (e.g., label sets). Modeling
such variability as in layout generation models [18, 21, 24]
would be an exciting direction.
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