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Abstract

Spatially placing an object onto a background is an es-
sential operation in graphic design and facilitates many dif-
ferent applications such as virtual try-on. The placing op-
eration is formulated as a geometric inference problem for
given foreground and background images, and has been ap-
proached by spatial transformer architecture.In this paper,
we propose a simple yet effective regularization technique
to guide the geometric parameters based on user-defined
trust regions. Our approach stabilizes the training process
of spatial transformer networks and achieves a high-quality
prediction with single-shot inference. Our proposed method
is independent of initial parameters, and can easily incor-
porate various priors to prevent different types of trivial so-
lutions. Empirical evaluation with the Abstract Scenes and
CelebA datasets shows that our approach achieves favor-
able results compared to baselines.

1. Introduction
In this paper, we consider the problem of naturally plac-

ing a new object onto a background image, such that the
resulting composition looks realistic, enabling applications
such as virtual try-on. Geometrically placing an object is a
basic operation in graphic design. The difficulty in object
placement is that subtle misalignment of the object to the
background can severely hurts the design quality. Design-
ers spend a lot of efforts in completing visually pleasing
graphics layout because of this quality requirement. Au-
tomating this operation using machine learning techniques
can help designers’ productivity and open the door for intel-
ligent tools for creating magazine covers [8], posters [10],
banners [9], and virtual try-on [4].
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Figure 1. Overview of our image compositing pipeline. Given
a foreground and background image, our single-shot placement
model produces plausible image warping parameters to place the
foreground image on the background. We propose a simple yet
effective regularization to stabilize the adversarial training of the
spatial transformer network.

Object placement can be formulated as the task of find-
ing appropriate geometric warping given foreground and
background images. One of the promising approaches is
Spatial Transformer Generative Adversarial Networks (ST-
GAN) [6], which comprises of multiple spatial transformer
networks and adversarial training. The main idea is geo-
metrically correcting the location of the foreground object
given the initial warping parameters. For this purpose, ST-
GAN iteratively updates the initial warping parameters to



refine resulting composite image. The drawbacks of this
iterative approach is an increase in computation time due
to costly multiple forward computations, initial parameters
highly affecting the result, it is unclear how many iterations
should be applied to a given input, and most importantly,
the adversarial training process becomes unstable. We ob-
served that the ST-GAN model often suffers from falling
into trivial solutions such as excessive scaling and framing
out , because these solutions can easily fool the discrimina-
tor during training.

In this paper, we propose a simple yet effective regu-
larization technique to guide the parameters based on user-
defined trust regions. Our approach effectively stabilizes
the training process of spatial transformer networks, and
enables an accurate single-shot inference (Figure 1), unlike
the iterative approach in ST-GAN [6]. Furthermore, our ap-
proach does not require any initial warping parameters, and
can easily incorporate different types of user-defined priors
(e.g., avoiding excessive skewing) for further guidance. Our
experiments with the Abstract Scenes and CelebA datasets
shows that our proposed approach shows favorable results
compared to the state-of-the-art approaches.

We summarize our main contributions in the following:
• We propose a novel regularization technique to guide

warping parameters during the adversarial training
of spatial transformer networks, enabling high-quality
single-shot inference of object placement for virtual try-
on.

• We show that our approach achieves favorable results on
the Abstract Scenes and CelebA datasets in comparison
to existing approaches.

2. Related Work
Virtual try-on based on 2D image composition has re-

cently started to attract the attention from the research com-
munity. Most recent approaches are based on pixel-level
transformations of the image [4], however, it is challenging
in this setting to generate realistic high-resolution composi-
tions without modifying the content of the image. Addition-
ally, large amounts of training data limit the applicability. In
this paper, we do not assume the target is wearing a similar
garment to that being tried-on and learn to predict a trans-
formation of the original image, allowing high-resolution
image composition.

Spatial Transformer Networks (STNs) [5] introduce
learnable image warping module within a deep learning ap-
proach, allowing overlaying a masked foreground image
onto a background image. The main components of STNs
are a neural network to predict a set of warp parameters and
a differentiable warping function. We build upon STNs to
implement our single-shot inference.

Generative Adversarial Networks (GAN) [2] are gener-
ative models that learn a generator network G and a dis-

criminator network D. In GAN framework, a well-trained
generator network can reproduce a generative distribution
that matches the empirical distribution of a given data col-
lection. One advantage of GAN is that the loss function
is defined by the discriminator network, and therefore does
not require labeled datasets. Unsupervised training by GAN
framework only requires data collections representing the
desired domain distribution.

Recently proposed ST-GAN [6] introduces the GAN
paradigm into STNs. ST-GAN generates the distribution of
possible updates to the current warping parameters. Since
the generator produces updates to warping, the overall
model iteratively applies updates to the initial warping pa-
rameters to solve for the final warping. Although ST-GAN
nicely fits our purpose of object placement, there are sev-
eral drawbacks arising from unstable training of an iterative
model. In this paper, we propose a single-shot inference ap-
proach to object placement that overcomes the instability in
STNs training by proper regularization.

3. Spatial Transformer Generative Adversarial
Networks (ST-GAN)

We briefly introduce ST-GAN [6] in the following sec-
tion. Given a background image IBG and a foreground im-
age IFG with a corresponding alpha maskMFG, the process
of image compositing is expressed by:

Icomp = IFG �MFG + IBG � (1−MFG) . (1)

A realistic looking composition is then obtained by warping
the foreground image with

I ′FG = warp
(
IFG,p

)
M′FG = warp

(
MFG,p

)
, (2)

where warp(.) is a differentiable warping function [5], usu-
ally comprised of a homography transformation and bilinear
interpolation, and p are the warping parameters.

Original ST-GAN [6] iteratively applies Spatial Trans-
former Networks (STN) to predict a series of warping up-
dates. At the i-th iteration, given the input images and the
previous warping parameters pi−1, the warping update ∆pi

and the new warping parameters pi can be written by:

∆pi = Gi
(
warp

(
IFG,pi−1

)
, IBG

)
pi = pi + ∆pi, (3)

where Gi is the i-th geometric prediction network.
ST-GAN learns the model parameters for the geometric

prediction networks and the discriminator with Wasserstein
GAN [1] objective with a gradient penalty [3] to force the
discriminator to be a 1-Lipschitz function. The warping up-
date ∆pi is constrained to lie within a trust region by intro-
ducing an additional penalty Lupdate = ‖∆pi‖22 [6], which



avoids trivial solutions, e.g., removing the foreground and
leaving only the background image. The final loss function
is written by:

LD = E
[
D
(
Icomp(pi)

)]
− E

[
D(Ireal)

]
+ λgrad · Lgrad (4)

LGi = −E
[
D
(
Icomp(pi)

)]
+ λupdate · Lupdate, (5)

where Icomp(pi) denotes the composite image using IBG
and I ′FG warped by pi, Ireal is a real example sampled from
training data collections, Lgrad is a gradient penalty term [3],
λgrad and λupdate are hyper-parameters to adjust the weights
for the gradient penalty term and the warping penalty term
respectively. For more detail, refer to [6].

4. Proposed Approach
Our approach aims at penalizing the warping parameters

p falling into undesirable regime. The main idea is to in-
troduce plausible warping regions as a prior. To do this,
we introduce the regularization function f to enforce tar-
get parameters x to lie within the range of given minimum
value xmin to given maximum value xmax. The regularizer
f is defined by a rectifier function:

f(x, xmin, xmax) = ReLU(xmin − x)

+ ReLU(x− xmax). (6)

Let us consider two common issues in spatial trans-
former networks: excessive scaling and framing out . For
preventing excessive scaling, we can set a determinant of
the (inverse) affine matrix as a representative parameter, as-
suming we are parameterizing the warp by an affine trans-
formation. We use the ratio between the sum of the origi-
nal maskMFG and the sum of the transformed maskM′FG,
where p is applied, to approximate the scaling factor:

r =

∑
i,jM′FG(i, j)∑
i,jMFG(i, j)

. (7)

Then, our scaling regularizer is defined by:

Lmask = f(r, rmin, rmax). (8)

For preventing framing out, we can apply regularization to
the coordinates of the warped corners C, where p is applied,
of the foreground object:

Lcoord =
∑
c∈C

f(cx, cxmin, c
x
max) + f(cy, cymin, c

y
max) (9)

Our final loss functions become:

LD = E
[
D
(
Icomp(p)

)]
− E

[
D(Ireal)

]
+ λgrad · Lgrad (10)

LG = E
[
D(Ireal)

]
− E

[
D
(
Icomp(p)

)]
+ λmask · Lmask + λcoord · Lcoord, (11)

where λmask and λcoord are hyper-parameters to adjust the
weights for respective regularization terms. We modify
the generator loss for more stable hyper-parameter tuning
since the size of Wasserstein GAN objective for a generator
changes as training proceeds. Note that the first regulariza-
tion term Lmask may suppress framing out as well, however,
we found that using both Lmask and Lcoord is stable. It is also
straight-forward to apply our regularization technique to pe-
nalize any summary statistics from the warping parameters
p, such as skewing, etc.

Thanks to the stable adversarial learning by our loss
(Eq. (11)), we find thati, in contrast to ST-GAN’s iterative
updates, a single-shot inference model can produce high-
quality prediction of object placement, significantly lower-
ing the computational cost. Prediction is then simplified to
the following:

p = G
(
IFG, IBG

)
. (12)

We emphasize that this single-shot inference model does
not converge without our regularization.

5. Experiments
We evaluate our approach quantitatively with the Ab-

stract Scenes dataset [11], and qualitatively with the CelebA
datasets [7].

5.1. Abstract Scenes Evaluation

Dataset. We use the Abstract Scenes dataset [11] to
evaluate our approach in terms of the reproducibility of the
ground-truth placement. The dataset contains 11,000 clip-
art scenes of children playing. Here, we consider a task of
placing glasses and hats in the scene. We split the dataset
into a training, validation and test set of 8,775, 1,111 and
1,109 scenes respectively. We generate background images
by placing all the objects under the target objects (glasses or
a hat), and real images by rendering all of them including
targets. Background images are all resized to 144 × 144.
We create foreground images by placing and resizing target
objects onto the center of 144× 144 transparent pixels.
Warping parameters. We estimate three warping pa-
rameters: scaling, horizontal translation and vertical trans-
lation. We can directly regularize warping parameters with
our regularizing function f (Eq. (??)), but we use Lmask
(Eq. (8)) and Lcoord (Eq. (9)) for emphasizing the generality
of the choice of these parameters.
Evaluation metrics. We regard a frame of foreground
image as a bounding box and compute the accuracy with
Intersection over Union (IoU) under different thresholds.
We denote this metric as IoU@θ where θ indicates the IoU
threshold. We show results for θ = .25, .5, .75.
Results. We summarize the IoU evaluation on the test set
in Table 1. ST-GAN (initial) is the evaluation at the initial
parameters, and ST-GAN (warp 5) is the result at the final



Initial composite 5th update
(b) Ours(a) ST-GAN

Figure 2. Virtual try-on results on the CelebA dataset.

Table 1. Image compositing evaluation in Abstract Scenes. For
ST-GAN (warp 5) we show the average value of 10 trials.

IoU@θ

Method 0.25 0.50 0.75

ST-GAN (initial) 0.13 0.03 0.00
ST-GAN (warp 5) 0.41 0.36 0.25
Ours 0.47 0.43 0.32

warping parameters. Our method achieves higher scores
than the maximum scores in ST-GAN while being much
more computationally efficient.

5.2. CelebA Evaluation

CelebA is a large dataset of facial images [7]. Here, we
evaluate our approach in the virtual try-on task of placing
eyeglasses onto faces. We only conduct qualitative eval-
uation since the dataset does not contain ground truth an-
notation. Following procedures in [6], we create an evalua-
tion dataset which contains 152,249 training and 18,673 test
images without glasses, and 10,521 training images with
glasses. We use images of 10 glasses provided by [6] as
foreground image. Following [6], we use a homography
transformation for warping glasses. Results are shown in

Figure 2. We find that our method is able to produce com-
pelling more compelling results than ST-GAN.

6. Conclusions
We proposed an effective regularization technique to

guide the warping parameters of Spatial Transformer. Ex-
periments demonstrate that our approach achieves favorable
results compared to ST-GAN baseline. In the future, we
wish to evaluate our approach in a more realistic virtual try-
on scenario, and extend our approach to enable simultane-
ous placement of multiple objects.
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