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Figure 1: We present a multimodal markup document model (MarkupDM) for graphic design documents. Our model can

generate alternative designs by inferring target spans, such as attribute values, images with transparency, and text, from the

surrounding context.

Abstract

We introduce MarkupDM, a multimodal markup document model

that represents graphic design as an interleaved multimodal docu-

ment consisting of both markup language and images. Unlike exist-

ing holistic approaches that rely on an element-by-attribute grid

representation, our representation accommodates variable-length

elements, type-dependent attributes, and text content. Inspired by

�ll-in-the-middle training in code generation, we train the model to

complete the missing part of a design document from its surround-

ing context, allowing it to treat various design tasks in a uni�ed

manner. Our model also supports image generation by predicting

discrete image tokens through a specialized tokenizer with support

for image transparency. We evaluate MarkupDM on three tasks,

attribute value, image, and text completion, and demonstrate that

it can produce plausible designs consistent with the given context.

To further illustrate the �exibility of our approach, we evaluate

our approach on a new instruction-guided design completion task

where our instruction-tuned MarkupDM compares favorably to

state-of-the-art image editing models, especially in textual comple-

tion. These �ndings suggest that multimodal language models with
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our document representation can serve as a versatile foundation

for broad design automation.
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1 Introduction

Graphic design is a visual medium for communicating informa-

tion and ideas by organizing text, images, and other elements in

an aesthetically pleasing way. It is critical in numerous applica-

tions, such as websites, advertisements, and printed materials, but

creating high-quality designs typically requires specialized exper-

tise and substantial time. Several studies employ machine learning

techniques to automate design-related tasks, including layout gen-

eration [13, 16, 17, 28, 39, 40, 44], colorization [22, 35, 36], and
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typography stylization [42, 53]. Beyond individual tasks, there have

also been holistic modeling approaches for multiple design tasks

by formulating graphic design as a grid representation of heteroge-

neous attributes (element type, position, size, and font information)

for each element and then performing generation or completion

tasks over this representation [18, 50]. Although these methods

open the door to �exible foundational models for graphic design,

they rely on a prede�ned grid structure and are ine�cient for deal-

ing with variable element lengths and type-dependent attributes.

To allow for more �exible application, we represent a graphic de-

sign as an interleaved multimodal document composed of markup

language and images and then model it using multimodal large lan-

guage models (LLMs). This resulting formulation is more human-

readable and naturally accommodates variable-length elements,

type-dependent attributes, and text content. Moreover, by employ-

ing the �ll-in-the-middle training [1, 3], we can represent various

design tasks in a uni�ed manner by completing the missing part in a

document from the surrounding context. We train our model, which

we call the Multimodal Markup Document Model (MarkupDM), on

19K graphic design templates. Our model converts image content

into discrete tokens using a specialized image tokenizer designed

to handle images with transparency in various sizes, allowing it

to recognize and generate partial images that compose the overall

design. We evaluate MarkupDM on three design completion tasks:

generating missing attribute values, images, and text in graphic

design templates. Results show that MarkupDM can produce plausi-

ble designs consistent with the given context, enabling exploration

of various design alternatives (Fig. 1).

To further demonstrate the extensibility of our approach, we de-

�ne a new task called instruction-guided graphic design completion,

where the model completes a design based on a given instruction.

This setup not only re�ects the user’s intent but also allows an

emerging LLM agent [48] to control the design process, making

it more adaptable to speci�c objectives or creative requirements.

To this end, we extend the commonly used Crello dataset [50] to

include 125K triplets of instructions, partial designs, and completed

designs, resulting in the Crello-Instruct dataset. We then �ne-tune

MarkupDM on this dataset to adapt it to the instruction-guided task.

Compared with state-of-the-art image editing models, our model

demonstrates favorable performance on this task, particularly in

textual completion. Our contributions are as follows:

• We formulate graphic design as an interleaved multimodal

document consisting of markup language and images.

• We propose MarkupDM, a multimodal model that can gen-

erate both markup language and images, supported by a

tailored image tokenizer capable of encoding variable-sized

images with transparency into discrete tokens.

• We extend MarkupDM to an instruction-guided completion

task by introducing the Crello-Instruct dataset, which com-

prises instruction-partial design-completed design triplets.

• We show empirically that bothMarkupDMand its instruction-

tuned variant can successfully complete graphic design doc-

uments, demonstrating advantages over existing methods.

2 Related Work

We �rst discuss existing approaches to graphic design generation

and completion, covering both task-speci�c and holistic modeling

methods. We then review recent advances in multimodal large

language models that can recognize and generate images. Finally, we

examine instruction-guided image editing methods, clarifying how

our structured editing di�ers from purely image-based approaches.

2.1 Graphic Design Generation and Completion

Researchers have long studied computational support for graphic

design tasks such as layout generation [5, 17, 23, 30, 31, 40], coloriza-

tion [22, 35], typography stylization [42, 53], and general styliza-

tion [41]. Several studies share a common goal of inferring missing

parts or alternative solutions from the existing context. For example,

completing a layout from a partially speci�ed layout is a common

subtask in layout generation [17]. Zhao et al. [53] predict typo-

graphic styles in web design from both visual and semantic cues.

Shao et al. [41] introduce a generative model for web page styling.

Qiu et al. [35] propose a masked prediction approach for recoloring

design documents based on color palette representations.

Di�erent from the task-speci�c approaches, some studies aim to

model entire design documents. CanvasVAE [50] is a variational au-

toencoder that generates heterogeneous attributes (type, position,

size, and image content) for each element in a graphic design docu-

ment. FlexDM [18] adopts a masked prediction strategy to capture

relationships among elements and their attributes. Both methods

estimate feature representations for images and text and then re-

trieve similar ones from a dataset. These methods, however, rely

on a prede�ned element-by-attribute grid representation, which

can be ine�cient for variable-length elements and type-dependent

attributes. There is also growing interest in generating stylized text

over generated raster images [6, 19, 20, 49], focusing on producing

high-quality overall designs.

Recent work has also applied large language models (LLMs) to

design tasks [27–29, 39, 44]. Lin et al. [27] translate a text description

into an intermediate representation to guide the subsequent layout

generation. LayoutNUWA [44] formulates layout generation as a

code generation task and leverages LLM knowledge to generate

layout code. LaDeCo [29] uses multimodal LLMs to automatically

place visual and textual elements in a layered manner.

Inspired by these studies, we propose a novel approach to holistic

modeling by representing graphic design as an interleaved mul-

timodal document. Unlike the grid-based methods [18, 50], our

representation naturally accommodates variable-length elements,

type-dependent attributes, and text content. We train a multimodal

LLM on this document representation and support both text and

image generation, in contrast to methods that assume images and

text are provided [29] or retrieval-based methods [18, 50].

2.2 Multimodal Large Language Models

The recent success of large language models (LLMs) has led to the

development of multimodal LLMs that can recognize and generate

images [51]. Some approaches, such as DreamLLM [9], connect an

LLM to an o�-the-shelf pre-trained image encoder like CLIP [37]

and a decoder such as Stable Di�usion [38]. However, these image

encoders and decoders are not suitable for graphic design tasks



Multimodal Markup Document Models for Graphic Design Completion MM ’25, October 27–31, 2025, Dublin, Ireland.

because they do not support images with transparency. They also re-

quire large-scale image-text datasets, which are di�cult to collect in

the graphic design domain, where textual descriptions often fail to

capture the �ne details of images, especially for decorative elements.

Another line of work in multimodal LLMs represents images as

discrete tokens [1, 8, 45] using a pre-trained image tokenizer like

VQGAN [10]. Publicly available tokenizers often do not support

transparency, but they only require image data rather than large

image-text datasets. We adopt this token-based approach and adapt

it to handle images with transparency in graphic design. Further-

more, inspired by LLMs developed for code generation, we use a

�ll-in-the-middle training objective [1, 3] for our multimodal LLM.

This objective enables the model to learn how to complete missing

parts of a design from the surrounding context, serving as a �exible

foundation for graphic design completion.

2.3 Instruction-guided Image Editing

Recent advances in image generation models have led to more

practical applications of instruction-guided image editing. Instruct-

Pix2Pix [4] is a pioneering work in this �eld. The authors create a

dataset by startingwithmanually created editing examples and then

scaling them up using an o�-the-shelf large language model and

image generation model. MGIE [11] augments brief instructions

with additional context derived from the embedded knowledge

of pre-trained multimodal LLMs. HQ-Edit [15] enhances dataset

quality through a tailored data creation pipeline that leverages

advanced foundation models. More recently, proprietary models

such as Gemini 2.0 Flash Experimental [21] and OpenAI’s 4o Image

Generation [33] have demonstrated impressive performance on

image editing tasks. Concurrently, IDEA-Bench [26] proposes a

comprehensive benchmark of professional design tasks, including

image retouching and text insertion.

In contrast with the image-based approaches described above,

we focus on instruction-guided editing within structured multi-

modal documents. This approach can improve the preservation

of the original content while providing a more interpretable edit-

ing process. We build a new dataset speci�cally for this task and

validate our model’s performance with it.

3 Method

We begin by describing our multimodal document representation,

then introduce our proposed MarkupDMmodel. Finally, we present

our specialized image tokenizer, which supports images with trans-

parency commonly used in graphic design.We illustrate an overview

of our method in Figs. 2 and 3.

3.1 Document Representation

We represent graphic design as a multimodal markup document

based on the SVG format1, which naturally supports variable-length

elements, type-dependent attributes, and text content. Unlike stan-

dard SVG, we replace image content with discrete image tokens

generated by our image tokenizer (described later in Section 3.3).

We show an example of the markup document representation in

the following:

1https://www.w3.org/TR/SVG11/

Figure 2: OurMarkupDM is based on causal multimodal LLM,

with separate embedding layers and prediction heads dedi-

cated to images and text tokens.

Multimodal markup document

[bos]<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 419 298

"width="419" height="298">

<image href="[boi]360[sep]260[sep][img:1][img:42][img:3][img:94

]...[eoi]" x="-9" y="-9" width="436" height="315"/>

<text font-family="Montserrat" font-size="30" font-weight="bold

" fill="rgba(255, 255, 255, 1)" x="32" y="81">FAMILY</text>

...</svg>[eos]

The image content, i.e., the value of href attribute in the <image>

tag, starts with the special token [boi] and ends with [eoi]. The

inside of these is separated by the special token [sep], and each

represents the width, height, and image tokens such as [img:1] ob-

tained by our image tokenizer. This image representation is similar

to the previous work on a multimodal LLM for simpli�ed HTML

documents [1], but di�ers in that the image size is also described

as text and included in the target of generation.

3.2 Multimodal Markup Document Model

To incorporate the image representation described in Section 3.1,

we build the multimodal markup document model (MarkupDM)

by applying two extensions to the base LLM. First, we extend the

vocabulary of the base LLM to include the additional special tokens,

such as [boi]. Second, we add new modules dedicated to the image

tokens, such as [img:1], the embedding module, and the prediction

head. In the embeddingmodule, we �rst embed the image tokens via

the frozen lookup table in our image decoder (Section 3.3). We then

concatenate them with the positional encodings [43] and project

them to the same dimension as the text embeddings. The prediction

head for image tokens is similar to the one for text tokens, but uses

a di�erent set of parameters and vocabulary, i.e., the codebook size

in image tokenization.

We train our model based on the next token prediction in our

sequences to which we randomly apply the �ll-in-the-middle trans-

formation [1, 3], allowing the model to predict the missing middle

part from the pre�x and su�x parts. During inference, our model

must identify the modality of the next token due to the di�erent

prediction heads. To determine which modality to generate, we

explicitly track whether the model is currently in the process of

generating image tokens based on the generated text so far.

https://www.w3.org/TR/SVG11/
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Figure 3: Our image tokenizer is trained by reconstructing

images resized to a �xed size. When decoding, the image size

is given in addition to the image tokens.

3.3 Specialized Image Tokenizer

Existing publicly available image tokenizers are typically designed

for RGB images and thus do not support transparency in images,

which is common in graphic design. To address this limitation, we

develop a new image tokenizer by training an image autoencoder

that encodes transparent images of varying sizes into discrete token

maps at a 1/5 resolution and decodes them back into the original

images. While it is straightforward to vary the token size according

to the image size, we found in preliminary experiments that this

makes it di�cult to train the markup language model at a later

stage. Instead, we take a simple but e�ective approach of resizing

the input image into a �xed square size. We follow the previous

studies [10, 38] and take the same network architecture and train-

ing objectives for our autoencoder, with the only di�erence related

to the alpha channel, i.e., transparency. We set the number of in-

put/output channels to four and consider L1 reconstruction loss

for all channels. When calculating the loss based on RGB-based

external models, e.g., the perceptual loss [52], we convert generated

RGBA images to RGB images by alpha compositing on a white back-

ground. We initialize our model with the weights of a pre-trained

RGB image tokenizer. For the alpha channel weights, we use the

mean values of the corresponding RGB weights.

4 Crello-Instruct Dataset

In addition to the document completion tasks and to showcase

the extensibility of our approach, we introduce a new task called

instruction-guided graphic design completion, which requires the

model to complete a design based on a provided instruction. To

create the benchmark dataset for this task, we extend the commonly

used Crello dataset [50] to support instruction-guided completion.

We refer to the resulting dataset as the Crello-Instruct dataset. A

design template in the Crello dataset includes multimodal elements

such as text, images, and other visual elements. We remove one

of the elements to create a partial design, then use the specialized

renderer2 to generate rendered images of both the partial and orig-

inal designs. Then, we feed the partial and original designs into

the Qwen2.5-VL-7B-Instruct model [2] and ask it to generate an

2https://github.com/CyberAgentAILab/cr-renderer

Completed design

Partial 1: Add a

charcoal drawing of a

horse’s head in the

bottom right corner of

the image.

Partial 2: Replace

“WORKSHOP ON”

with “WORKSHOP ON

CHARCOAL

DRAWING”.

(a) Completed design and two partial designs with instructions.

A detailed pencil sketch of a horse’s head and part of

its neck. The horse is wearing a bridle with reins, ...

A zigzag pattern consisting of alternating straight

and curved segments, ...

(b) Image elements with captions.

Figure 4: Examples of our Crello-Instruct dataset.

instruction to recreate the original design based on the partial de-

sign. Because the resulting instructions are often noisy, we use

GPT-4o mini [32] to rate the quality of each triplet (instruction,

partial design, and completed design) and �lter out lower-quality

samples. We then use the �ltered dataset to train and evaluate our

instruction-tuned model.

Additionally, we generate a caption for each non-textual element

in the dataset with Qwen2.5-VL-7B-Instruct [2] to help the model

understand the image content. In our document representation, we

add an extra caption attribute in the <image> tag, placing it before

the href attribute, so that the model predicts the caption �rst and

then the actual image tokens [1]. We provide examples of instruc-

tions and captions in Fig. 4. The caption examples highlight the

unique challenges of this dataset, which contains both semanti-

cally describable elements and abstract decorative ones, and the

later often have noisy captions. Further details can be found in the

supplementary material.

5 Experiments

We begin by evaluating our image tokenizer on an image recon-

struction task. Next, we assess our multimodal markup language

models on various graphic design completion tasks. Finally, we

evaluate our instruction-tuned models on the instruction-guided

completion task.

5.1 Image Reconstruction

5.1.1 Setup. We use an internal dataset of graphic design tem-

plates, which is similar to the Crello dataset [50]. Each template

https://github.com/CyberAgentAILab/cr-renderer
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Table 1: Quantitative comparison of image reconstruction

for each tokenizer. The dagger symbol (†) indicates the score

computed by setting the alpha value of every pixel to 1.0.

MSE ↓ rFID ↓

RGB (×10-3) Alpha (×10-1) RGB

LDM-VQ [38] 2.42 3.75† 6.34

Ours-RGB 1.50 3.75† 1.65

Ours 1.86 0.03 4.96

consists of an ordered set of elements, and each element is asso-

ciated with an element category, geometric attributes, and design

attributes. The template also includes global attributes such as can-

vas size. We use 800,000 RGBA images of non-textual elements

from these design templates for training and 133,267 images from

di�erent templates for evaluation.

We �netune a baseline RGB tokenizer for 100,000 steps, following

the techniques explained in Section 3.3, to adapt it to RGBA images.

For the baseline tokenizer, we adopt the one from the Latent Di�u-

sion Model (LDM-VQ) [38] trained on the OpenImages dataset [24],

which is primarily composed of photographs. Speci�cally, we use

the tokenizer with the scaling factor 5 =16 and the codebook size

/ =16,384, balancing reconstruction quality and the resulting token

length. For further analysis, we �netune the tokenizer solely on

RGB images without additional techniques, referred to as Ours-RGB.

As an additional baseline without the specialized tokenizer, we con-

vert RGB images into RGBA using an o�-the-shelf background

removal tool, Rembg [12] with IS-Net [34].

We evaluate the tokenizers using mean squared error (MSE)

for both the RGB and alpha channels, as well as reconstruction

Fréchet Inception Distance (rFID) for RGB images, which measures

the distance between the feature distributions of the original and

reconstructed images. For RGB-basedmetrics, we convert the RGBA

images generated by our tokenizer to RGB by alpha compositing

them onto a white background.

5.1.2 Results. We show a quantitative comparison of image recon-

struction in Table 1. Both of our tokenizers outperform the baseline

in terms of RGB-based metrics thanks to their �ne-tuning on im-

ages from the same domain. We also show qualitative comparisons

in Fig. 5. As illustrated, the general background removal used for

RGB-based reconstructions often fails, removing foreground objects

either too aggressively or insu�ciently. In contrast, our tokenizer

successfully reconstructs RGBA images by leveraging the alpha

information embedded in the discrete tokens.

5.2 Graphic Design Completion

5.2.1 Setup. We use the Crello dataset [50] (version 5.0.0), compris-

ing 19,372 templates for training, 1,823 for validation, and 2,107 for

testing. We then convert these templates into SVG format. During

the conversion, we represent text elements with <text> tags and

other elements with <image> tags. We omit attributes when they

have default values. Also, because SVG does not support multi-line

text within a single element, we split any text element into multiple

elements whenever a new line appears.

Ours-RGB + Rembg [12] Ours Original

Figure 5: Image reconstruction results.

We train our MarkupDM with the �ll-in-the-middle (FIM) objec-

tive [1, 3], which predicts a randomly selected middle span based

on the pre�x and su�x. In this setup, MarkupDM can infer the

missing span from its preceding and following context. To demon-

strate its e�ectiveness, we evaluate three tasks: attribute value com-

pletion, image completion, and text completion. Attribute value

completion is represented as <text x="[MASK]" ...>, where [MASK]

indicates the span to be �lled. Image completion is represented as

<image href="[MASK]" .../>, and text completion is represented

as <text ...>[MASK]</text>. For attribute value completion, we

focus on six attribute types: x, y, width, height, font-family, and

font-size. Note that we do not train MarkupDM with task-speci�c

supervision such as specialized FIM patterns; these tasks serve only

for post-hoc evaluation.

We evaluate MarkupDM using several base language models, in-

cluding StarCoderBase [25] with 1B, 3B, and 7B parameters, as well

as Qwen2.5-7B [46] and Qwen2.5-Coder-7B [14]. We speci�cally

select these models because they provide su�ciently long context

lengths and employ the FIM objective during their pre-training.

Both of the features are essential for our completion tasks where

the model must handle multiple textual and visual elements and dy-

namically insert missing parts. For comparison with the approach

of holistic yet grid-based graphic design generation approach (see

Section 2.1), we also train FlexDM [18] on our dataset using random

masking patterns, aiming to create similar experimental conditions.

Note that during text and image completion tasks, FlexDM retrieves

texts or images from the combined train and validation set instead

of generating them directly.

We evaluate MarkupDM on between 12,559 and 25,435 target

spans from the test templates, selecting the relevant spans for each

task. To reduce inference time for image completion, we use 1,386

spans from the �rst 200 templates. We parse the text generated

by MarkupDM and convert it to the same format used by FlexDM.

We then compute accuracy over the quantized representation for

attribute value completion, and cosine similarity over feature repre-

sentations for text and image completion. More details are provided

in the supplementary material.

5.2.2 Results for A�ribute Value Completion. We show the quanti-

tative results for attribute values (X, Y, Width, Height, Font, F-Size)

in Table 2. Note that the scores for FlexDM and MarkupDM are not

fully comparable, because they di�er in formulation and available

contextual cues. For example, MarkupDM can infer element sizes

from the image dimensions, whereas FlexDM cannot. Nevertheless,
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Table 2: Quantitative comparison for design completion tasks. The reported scores re�ect accuracy for attribute values and

cosine similarity for text and image completion. “Font” denotes the font family, and “F-Size” denotes the font size. “Mean”

indicates the average score of all the completion tasks. FlexDM follows a di�erent formulation than MarkupDM, so its scores

are not directly comparable and are provided only for reference.

Model Base LLM X ↑ Y ↑ Width ↑ Height ↑ Font ↑ F-Size ↑ Text ↑ Image ↑ Mean ↑

FlexDM [18] – 0.420 0.268 0.406 0.612 0.844 0.851 0.813 0.759 0.622

Qwen2.5-7B 0.460 0.285 0.824 0.904 0.460 0.670 0.827 0.811 0.655

Qwen2.5-Coder-7B 0.486 0.331 0.853 0.931 0.365 0.700 0.851 0.806 0.665

MarkupDM StarCoderBase-1B 0.471 0.339 0.843 0.920 0.845 0.678 0.851 0.822 0.721

StarCoderBase-3B 0.508 0.379 0.870 0.936 0.854 0.724 0.865 0.823 0.745

StarCoderBase-7B 0.526 0.404 0.882 0.951 0.867 0.720 0.874 0.817 0.755

MarkupDM performs well in comparison, indicating that it success-

fully learns to �ll graphic design templates. Among the MarkupDM

variants, StarCoderBase-7B achieves the highest accuracy for most

attributes. Comparing the results across di�erent parameter sizes

of StarCoderBase (1B, 3B, and 7B), we observe that larger models

consistently perform better, as expected. Although Qwen2.5-based

models also work with our approach, they tend to show lower

performance, possibly due to limited exposure to SVG data during

pre-training.

5.2.3 Results for Text Completion. We present the quantitative re-

sults for text completion in the Text column of Table 2. We observe

that our model outperforms the baseline, and its performance im-

proves as the model size increases. In the left and middle parts of

Fig. 6, we show examples where the model successfully generates

text that aligns grammatically with preceding or subsequent lines,

or that serves a similar role to the ground truth text. Our model

sometimes fails due to errors in image understanding or con�icting

with other elements visually, e.g., the rightmost example.

5.2.4 Results for Image Completion. The quantitative results for

image completion in the Image column of Table 2 also demon-

strate improved performance compared to the baseline. Unlike

text completion, however, the variation in performance with re-

spect to model size is relatively smaller. For deeper analysis, we

investigate the e�ect of providing auxiliary caption information,

which we introduced in Section 4. In Table 3, we observe no perfor-

mance gain when training the model with captions. However, using

ground-truth captions substantially improves image generation

performance (the bottom row of Table 3), suggesting that the model

struggles to accurately predict content, possibly due to limited train-

ing data. Qualitative results in Fig. 7 illustrate that our model can

generate simpler design elements, such as underlays or buttons, by

leveraging textual content or repetition patterns as hints. Ourmodel

has di�culty in producing main objects like the rightmost example

or delicate visual harmonization with other elements. For example,

in the middle example, the generated decoration slightly con�icts

with the text element, highlighting the need for visual feedback.

5.3 Instruction-Guided Completion

5.3.1 Setup. We use the Crello-Instruct dataset as described in Sec-

tion 4. Each sample is a triplet composed of an input document with

one element missing, an instruction for completing that document,

Table 3: Image completion results using captions as auxil-

iary information. The baseline model is MarkupDM with

StarCoderBase-7B.

Train with Caption Test Input Completion Target Image ↑

– Context Image 0.817

✓ Context Caption + Image 0.815

✓ Context + Caption Image 0.857

and a target document in which the missing element is �lled in. The

dataset includes 103,917 samples for training, 9,839 for validation,

and 11,350 for testing.

We �ne-tune the best variant of MarkupDM, i.e., the one that

uses StarCoderBase-7B as its base LLM, on this dataset, referring to

the resulting model as Instruct-MarkupDM. For our baselines, we se-

lect two image editing methods: HQ-Edit [15] and Gemini 2.0 Flash

Experimental (Gemini 2.0 FE) [21]. HQ-Edit is one of the latest open-

source image editing models; we use both its original pre-trained

model and a version further �ne-tuned on our dataset. Gemini 2.0 FE

is a proprietary model, which has recently demonstrated strong per-

formance in terms of both image quality and instruction adherence.

We evaluate each model’s performance using four pixel-based

metrics:MSEGT, MSEEdit, Alignment [15], and Coherence [15].MSEGT
measures the pixel-wise di�erence between the predicted image and

the ground truth image, while MSEEdit measures the di�erence be-

tween the input and the predicted image. A lower MSEEdit than the

ground-truth score indicates that the model has under-edited the

image, whereas a higher MSEEdit suggests over-editing or adding

irrelevant elements. Therefore, while a lower score indicates better

performance for MSEGT, MSEEdit is considered better when its score

is closer to the ground truth score. Alignment and Coherence [15]

are both GPT-based evaluations: Alignment measures the degree to

which the edited image satis�es the instruction in the context of the

input image, and Coherence assesses the overall visual quality of

the edited image, independent of the instruction. We employ GPT-

4o mini [32] for both metrics, using the same prompts speci�ed in

the previous work [15].

5.3.2 Results. We present the quantitative results in Table 4 and

the qualitative results in Fig. 8 for instruction-guided graphic design

completion. Among the image-editing methods, HQ-Edit highlights
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Figure 6: Text completion results. Each pair shows the predicted completion and the original design from left to right or top to

bottom. The green boxes indicate the target text and some of them are zoomed in for better visibility.

Figure 7: Image completion results. Each triplet shows the input, the predicted completion, and the original design from left to

right or top to bottom. The gray squares indicate the target image elements to be completed.

the importance of �ne-tuning on our design dataset to bridge the do-

main gap from general image-editing datasets. By contrast, Gemini

2.0 FE achieves better performance than HQ-Edit even in zero-shot

settings, presumably due to its strong instruction-following and

image-generation capabilities. However, Gemini 2.0 FE sometimes

applies overly aggressive visual edits or incorrect text edits (as

shown in the top example in Fig. 8), leading to poor MSE scores.

Instruct-MarkupDM achieves the best MSE scores and a higher

Coherence score, because it only adds the missing elements rather

than altering existing ones, leaving most input designs intact. How-

ever, its Alignment score is lower than that of Gemini 2.0 FE, possi-

bly re�ecting less robust instruction-following and visual genera-

tion capabilities. As Fig. 8 illustrates, Instruct-MarkupDM generally

handles text editing well but struggles with generating complex

visual elements beyond simple colored backgrounds.

Given the recent success of text-to-image (T2I) models in gener-

ating high-quality images from text prompts, we also introduce a

Table 4: Quantitative comparison for instruction-guided

graphic design completion.

Model MSEGT ↓ MSEEdit Align. ↑ Coher. ↑

HQ-Edit [15] 93.9 93.5 28.6 57.4

+ Finetune 43.9 43.1 51.1 62.3

Gemini 2.0 FE [21] 33.5 31.6 72.3 69.4

Instruct-MarkupDM 10.0 6.7 60.5 69.3

Ground Truth 0.0 8.2 85.2 71.8

variant of our model, Instruct-MarkupDM∗, which generates addi-

tional captions for image elements to leverage external T2I mod-

els. Figure 9 shows the qualitative results with and without using

T2I. Without T2I, the model produces vague and unclear objects,

whereas with T2I, the images are more detailed and better aligned

with the instructions. This result demonstrates that our model ben-

e�ts from recent T2I models to generate high-quality images. While
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Input HQ-Edit [15] HQ-Edit [15] + FT Gemini 2.0 FE [21] Instruct-MarkupDM Ground Truth

Add “CRAFT FAIR” above “OPEN TO ALL” in the central orange section of the image.

Change the background color of the image to yellow.

Figure 8: Qualitative comparison for instruction-guided graphic design completion.

Instruct-MarkupDM∗

Instruct-MarkupDM∗ + T2I [21] Ground Truth

Add sewing-related items (...) around the text in the background.

Figure 9: Qualitative results for instruction-guided comple-

tion with caption generation. The second column shows

the result of using the external text-to-image model [21] to

generate the image based on the predicted caption.

these models may struggle with images requiring transparency or

extreme aspect ratios, our image tokenizer can handle these needs.

Our �ndings suggest that external T2I models can compensate for

our model’s limited image-generation capabilities while achieving

instruction-guided completion within editable, structured graphic

design templates.

6 Limitations and Discussion

We presented MarkupDM, a multimodal markup document model

that integrates a large language model trained using the �ll-in-the-

middle objective and a specialized image tokenizer for images of

variable sizes with transparency. By treating graphic designs as

interleaved multimodal documents, our approach uni�es text and

image token generationwithin a single framework. Experimental re-

sults indicate that MarkupDM e�ectively completes various graphic

design tasks, including attribute value prediction, image generation,

and text insertion, while preserving the contextual relationships

among design elements. Further extension to instruction-guided de-

sign completion demonstrates the �exibility of our approach, where

it achieves competitive performance compared with state-of-the-art

image editing models.

Despite these promising results, our approach has several limita-

tions. First, the model still struggles to generate complex or highly

detailed images. As shown in Fig. 9, an external text-to-image model

can generate primary image elements using predicted captions, but

it is unclear whether it can produce decorative or background

elements that visually harmonize with the surrounding content.

Incorporating a more recent, powerful multimodal model such as

Janus-Pro [7] could solve this issue, although it lacks native �ll-in-

the-middle capabilities. Additionally, given the rapid progress in

foundation models, agentic approaches to design automation are

another promising direction [47].

Second, our model faces challenges in visually intricate com-

positional tasks that require nuanced spatial reasoning, such as

layering multiple objects or maintaining aesthetic coherence across

various elements. Enhancing the model’s spatial understanding

may require domain-speci�c training or dedicated spatial modules.

Finally, our current model primarily focuses on the generation

of new elements rather than re�ning or editing existing elements

in detail or creating entire documents from scratch. Although it can

insert a missing component, full-�edged editing of already-placed

objects (including detailed manipulations of shape and texture)

remains outside its scope. Addressing these limitations in future

work will likely involve larger and more diverse datasets. We hope

our �ndings encourage further research on multimodal LLMs for

design tasks and motivate the development of more sophisticated,

user-driven design automation techniques.
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