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Figure 1: We present a multimodal markup document model (MarkupDM) for graphic design documents. Our model can
generate alternative designs by inferring target spans, such as attribute values, images with transparency, and text, from the

surrounding context.

Abstract

We introduce MarkupDM, a multimodal markup document model
that represents graphic design as an interleaved multimodal docu-
ment consisting of both markup language and images. Unlike exist-
ing holistic approaches that rely on an element-by-attribute grid
representation, our representation accommodates variable-length
elements, type-dependent attributes, and text content. Inspired by
fill-in-the-middle training in code generation, we train the model to
complete the missing part of a design document from its surround-
ing context, allowing it to treat various design tasks in a unified
manner. Our model also supports image generation by predicting
discrete image tokens through a specialized tokenizer with support
for image transparency. We evaluate MarkupDM on three tasks,
attribute value, image, and text completion, and demonstrate that
it can produce plausible designs consistent with the given context.
To further illustrate the flexibility of our approach, we evaluate
our approach on a new instruction-guided design completion task
where our instruction-tuned MarkupDM compares favorably to
state-of-the-art image editing models, especially in textual comple-
tion. These findings suggest that multimodal language models with
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our document representation can serve as a versatile foundation
for broad design automation.
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1 Introduction

Graphic design is a visual medium for communicating informa-
tion and ideas by organizing text, images, and other elements in
an aesthetically pleasing way. It is critical in numerous applica-
tions, such as websites, advertisements, and printed materials, but
creating high-quality designs typically requires specialized exper-
tise and substantial time. Several studies employ machine learning
techniques to automate design-related tasks, including layout gen-
eration [13, 16, 17, 28, 39, 40, 44], colorization [22, 35, 36], and
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typography stylization [42, 53]. Beyond individual tasks, there have
also been holistic modeling approaches for multiple design tasks
by formulating graphic design as a grid representation of heteroge-
neous attributes (element type, position, size, and font information)
for each element and then performing generation or completion
tasks over this representation [18, 50]. Although these methods
open the door to flexible foundational models for graphic design,
they rely on a predefined grid structure and are inefficient for deal-
ing with variable element lengths and type-dependent attributes.

To allow for more flexible application, we represent a graphic de-
sign as an interleaved multimodal document composed of markup
language and images and then model it using multimodal large lan-
guage models (LLMs). This resulting formulation is more human-
readable and naturally accommodates variable-length elements,
type-dependent attributes, and text content. Moreover, by employ-
ing the fill-in-the-middle training [1, 3], we can represent various
design tasks in a unified manner by completing the missing part in a
document from the surrounding context. We train our model, which
we call the Multimodal Markup Document Model (MarkupDM), on
19K graphic design templates. Our model converts image content
into discrete tokens using a specialized image tokenizer designed
to handle images with transparency in various sizes, allowing it
to recognize and generate partial images that compose the overall
design. We evaluate MarkupDM on three design completion tasks:
generating missing attribute values, images, and text in graphic
design templates. Results show that MarkupDM can produce plausi-
ble designs consistent with the given context, enabling exploration
of various design alternatives (Fig. 1).

To further demonstrate the extensibility of our approach, we de-
fine a new task called instruction-guided graphic design completion,
where the model completes a design based on a given instruction.
This setup not only reflects the user’s intent but also allows an
emerging LLM agent [48] to control the design process, making
it more adaptable to specific objectives or creative requirements.
To this end, we extend the commonly used Crello dataset [50] to
include 125K triplets of instructions, partial designs, and completed
designs, resulting in the Crello-Instruct dataset. We then fine-tune
MarkupDM on this dataset to adapt it to the instruction-guided task.
Compared with state-of-the-art image editing models, our model
demonstrates favorable performance on this task, particularly in
textual completion. Our contributions are as follows:

e We formulate graphic design as an interleaved multimodal
document consisting of markup language and images.

e We propose MarkupDM, a multimodal model that can gen-
erate both markup language and images, supported by a
tailored image tokenizer capable of encoding variable-sized
images with transparency into discrete tokens.

e We extend MarkupDM to an instruction-guided completion
task by introducing the Crello-Instruct dataset, which com-
prises instruction-partial design-completed design triplets.

o We show empirically that both MarkupDM and its instruction-
tuned variant can successfully complete graphic design doc-
uments, demonstrating advantages over existing methods.
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2 Related Work

We first discuss existing approaches to graphic design generation
and completion, covering both task-specific and holistic modeling
methods. We then review recent advances in multimodal large
language models that can recognize and generate images. Finally, we
examine instruction-guided image editing methods, clarifying how
our structured editing differs from purely image-based approaches.

2.1 Graphic Design Generation and Completion

Researchers have long studied computational support for graphic
design tasks such as layout generation [5, 17, 23, 30, 31, 40], coloriza-
tion [22, 35], typography stylization [42, 53], and general styliza-
tion [41]. Several studies share a common goal of inferring missing
parts or alternative solutions from the existing context. For example,
completing a layout from a partially specified layout is a common
subtask in layout generation [17]. Zhao et al. [53] predict typo-
graphic styles in web design from both visual and semantic cues.
Shao et al. [41] introduce a generative model for web page styling.
Qiu et al. [35] propose a masked prediction approach for recoloring
design documents based on color palette representations.

Different from the task-specific approaches, some studies aim to
model entire design documents. CanvasVAE [50] is a variational au-
toencoder that generates heterogeneous attributes (type, position,
size, and image content) for each element in a graphic design docu-
ment. FlexDM [18] adopts a masked prediction strategy to capture
relationships among elements and their attributes. Both methods
estimate feature representations for images and text and then re-
trieve similar ones from a dataset. These methods, however, rely
on a predefined element-by-attribute grid representation, which
can be inefficient for variable-length elements and type-dependent
attributes. There is also growing interest in generating stylized text
over generated raster images [6, 19, 20, 49], focusing on producing
high-quality overall designs.

Recent work has also applied large language models (LLMs) to
design tasks [27-29, 39, 44]. Lin et al. [27] translate a text description
into an intermediate representation to guide the subsequent layout
generation. LayoutNUWA [44] formulates layout generation as a
code generation task and leverages LLM knowledge to generate
layout code. LaDeCo [29] uses multimodal LLMs to automatically
place visual and textual elements in a layered manner.

Inspired by these studies, we propose a novel approach to holistic
modeling by representing graphic design as an interleaved mul-
timodal document. Unlike the grid-based methods [18, 50], our
representation naturally accommodates variable-length elements,
type-dependent attributes, and text content. We train a multimodal
LLM on this document representation and support both text and
image generation, in contrast to methods that assume images and
text are provided [29] or retrieval-based methods [18, 50].

2.2 Multimodal Large Language Models

The recent success of large language models (LLMs) has led to the
development of multimodal LLMs that can recognize and generate
images [51]. Some approaches, such as DreamLLM [9], connect an
LLM to an off-the-shelf pre-trained image encoder like CLIP [37]
and a decoder such as Stable Diffusion [38]. However, these image
encoders and decoders are not suitable for graphic design tasks
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because they do not support images with transparency. They also re-
quire large-scale image-text datasets, which are difficult to collect in
the graphic design domain, where textual descriptions often fail to
capture the fine details of images, especially for decorative elements.

Another line of work in multimodal LLMs represents images as
discrete tokens [1, 8, 45] using a pre-trained image tokenizer like
VQGAN [10]. Publicly available tokenizers often do not support
transparency, but they only require image data rather than large
image-text datasets. We adopt this token-based approach and adapt
it to handle images with transparency in graphic design. Further-
more, inspired by LLMs developed for code generation, we use a
fill-in-the-middle training objective [1, 3] for our multimodal LLM.
This objective enables the model to learn how to complete missing
parts of a design from the surrounding context, serving as a flexible
foundation for graphic design completion.

2.3 Instruction-guided Image Editing

Recent advances in image generation models have led to more
practical applications of instruction-guided image editing. Instruct-
Pix2Pix [4] is a pioneering work in this field. The authors create a
dataset by starting with manually created editing examples and then
scaling them up using an off-the-shelf large language model and
image generation model. MGIE [11] augments brief instructions
with additional context derived from the embedded knowledge
of pre-trained multimodal LLMs. HQ-Edit [15] enhances dataset
quality through a tailored data creation pipeline that leverages
advanced foundation models. More recently, proprietary models
such as Gemini 2.0 Flash Experimental [21] and OpenAI’s 40 Image
Generation [33] have demonstrated impressive performance on
image editing tasks. Concurrently, IDEA-Bench [26] proposes a
comprehensive benchmark of professional design tasks, including
image retouching and text insertion.

In contrast with the image-based approaches described above,
we focus on instruction-guided editing within structured multi-
modal documents. This approach can improve the preservation
of the original content while providing a more interpretable edit-
ing process. We build a new dataset specifically for this task and
validate our model’s performance with it.

3 Method

We begin by describing our multimodal document representation,
then introduce our proposed MarkupDM model. Finally, we present
our specialized image tokenizer, which supports images with trans-
parency commonly used in graphic design. We illustrate an overview
of our method in Figs. 2 and 3.

3.1 Document Representation

We represent graphic design as a multimodal markup document
based on the SVG format!, which naturally supports variable-length
elements, type-dependent attributes, and text content. Unlike stan-
dard SVG, we replace image content with discrete image tokens
generated by our image tokenizer (described later in Section 3.3).
We show an example of the markup document representation in
the following:

https://www.w3.org/TR/SVG11/
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[bos] <svg xmlns=..> 1 (42 94 57 [eoi]" x="-9" y=.>
<image href="[boi] <text font-family=..>
360[sep]260[sep] 33 1 S5 .</svg> [eos]

Text Image Text
Head Head Head

Causal Multimodal Large Language Model

Text Image Text
Embedding Embedding Embedding
[bos] <svg xmlns=..> 1 [eoi]" x="-9" y=.>
<image href="[boi] 42 o o <text font-family=..>

360[sep]260[sep] 334 (18 1 |58(94 (15 .</svg> [eos]

Figure 2: Our MarkupDM is based on causal multimodal LLM,
with separate embedding layers and prediction heads dedi-
cated to images and text tokens.

Multimodal markup document

[bos]<svg xmlns="http://www.w3.0rg/2000/svg" viewBox="0 @ 419 298
"width="419" height="298">
<image href="[boi]360[sep]26@[sep][img:1][img:42][img:3][img: 94
J...[e0i]" x="-9" y="-9" width="436" height="315"/>
<text font-family="Montserrat" font-size="30" font-weight="bold
" fill="rgba(255, 255, 255, 1)" x="32" y="81">FAMILY</text>
...</svg>[eos]

The image content, ie., the value of href attribute in the <image>
tag, starts with the special token [boi] and ends with [eoi]. The
inside of these is separated by the special token [sep], and each
represents the width, height, and image tokens such as [img: 1] ob-
tained by our image tokenizer. This image representation is similar
to the previous work on a multimodal LLM for simplified HTML
documents [1], but differs in that the image size is also described
as text and included in the target of generation.

3.2 Multimodal Markup Document Model

To incorporate the image representation described in Section 3.1,
we build the multimodal markup document model (MarkupDM)
by applying two extensions to the base LLM. First, we extend the
vocabulary of the base LLM to include the additional special tokens,
such as [boi]. Second, we add new modules dedicated to the image
tokens, such as [img: 1], the embedding module, and the prediction
head. In the embedding module, we first embed the image tokens via
the frozen lookup table in our image decoder (Section 3.3). We then
concatenate them with the positional encodings [43] and project
them to the same dimension as the text embeddings. The prediction
head for image tokens is similar to the one for text tokens, but uses
a different set of parameters and vocabulary, i.e., the codebook size
in image tokenization.

We train our model based on the next token prediction in our
sequences to which we randomly apply the fill-in-the-middle trans-
formation [1, 3], allowing the model to predict the missing middle
part from the prefix and suffix parts. During inference, our model
must identify the modality of the next token due to the different
prediction heads. To determine which modality to generate, we
explicitly track whether the model is currently in the process of
generating image tokens based on the generated text so far.
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Figure 3: Our image tokenizer is trained by reconstructing
images resized to a fixed size. When decoding, the image size
is given in addition to the image tokens.

3.3 Specialized Image Tokenizer

Existing publicly available image tokenizers are typically designed
for RGB images and thus do not support transparency in images,
which is common in graphic design. To address this limitation, we
develop a new image tokenizer by training an image autoencoder
that encodes transparent images of varying sizes into discrete token
maps at a 1/ f resolution and decodes them back into the original
images. While it is straightforward to vary the token size according
to the image size, we found in preliminary experiments that this
makes it difficult to train the markup language model at a later
stage. Instead, we take a simple but effective approach of resizing
the input image into a fixed square size. We follow the previous
studies [10, 38] and take the same network architecture and train-
ing objectives for our autoencoder, with the only difference related
to the alpha channel, i.e., transparency. We set the number of in-
put/output channels to four and consider L1 reconstruction loss
for all channels. When calculating the loss based on RGB-based
external models, e.g., the perceptual loss [52], we convert generated
RGBA images to RGB images by alpha compositing on a white back-
ground. We initialize our model with the weights of a pre-trained
RGB image tokenizer. For the alpha channel weights, we use the
mean values of the corresponding RGB weights.

4 Crello-Instruct Dataset

In addition to the document completion tasks and to showcase
the extensibility of our approach, we introduce a new task called
instruction-guided graphic design completion, which requires the
model to complete a design based on a provided instruction. To
create the benchmark dataset for this task, we extend the commonly
used Crello dataset [50] to support instruction-guided completion.
We refer to the resulting dataset as the Crello-Instruct dataset. A
design template in the Crello dataset includes multimodal elements
such as text, images, and other visual elements. We remove one
of the elements to create a partial design, then use the specialized
renderer? to generate rendered images of both the partial and orig-
inal designs. Then, we feed the partial and original designs into
the Qwen2.5-VL-7B-Instruct model [2] and ask it to generate an

Zhttps://github.com/CyberAgentAlILab/cr-renderer
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Partial 1: Add a
charcoal drawing of a

Partial 2: Replace
“WORKSHOP ON”

Completed design horse’s head in the  with “WORKSHOP ON
bottom right corner of CHARCOAL
the image. DRAWING”.

(a) Completed design and two partial designs with instructions.

A detailed pencil sketch of a horse’s head and part of
| its neck. The horse is wearing a bridle with reins, ...

AN AA]

A zigzag pattern consisting of alternating straight

and curved segments, ...

(b) Image elements with captions.

Figure 4: Examples of our Crello-Instruct dataset.

instruction to recreate the original design based on the partial de-
sign. Because the resulting instructions are often noisy, we use
GPT-40 mini [32] to rate the quality of each triplet (instruction,
partial design, and completed design) and filter out lower-quality
samples. We then use the filtered dataset to train and evaluate our
instruction-tuned model.

Additionally, we generate a caption for each non-textual element
in the dataset with Qwen2.5-VL-7B-Instruct [2] to help the model
understand the image content. In our document representation, we
add an extra caption attribute in the <image> tag, placing it before
the href attribute, so that the model predicts the caption first and
then the actual image tokens [1]. We provide examples of instruc-
tions and captions in Fig. 4. The caption examples highlight the
unique challenges of this dataset, which contains both semanti-
cally describable elements and abstract decorative ones, and the
later often have noisy captions. Further details can be found in the
supplementary material.

5 Experiments

We begin by evaluating our image tokenizer on an image recon-
struction task. Next, we assess our multimodal markup language
models on various graphic design completion tasks. Finally, we
evaluate our instruction-tuned models on the instruction-guided
completion task.

5.1 Image Reconstruction

5.1.1 Setup. We use an internal dataset of graphic design tem-
plates, which is similar to the Crello dataset [50]. Each template
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Table 1: Quantitative comparison of image reconstruction
for each tokenizer. The dagger symbol () indicates the score
computed by setting the alpha value of every pixel to 1.0.

MSE | FID |
RGB (x10%)  Alpha (x10") RGB
LDM-VQ [38] 2.42 3.75" 6.34
Ours-RGB 1.50 3.75% 1.65
Ours 1.86 0.03 4.96

consists of an ordered set of elements, and each element is asso-
ciated with an element category, geometric attributes, and design
attributes. The template also includes global attributes such as can-
vas size. We use 800,000 RGBA images of non-textual elements
from these design templates for training and 133,267 images from
different templates for evaluation.

We finetune a baseline RGB tokenizer for 100,000 steps, following
the techniques explained in Section 3.3, to adapt it to RGBA images.
For the baseline tokenizer, we adopt the one from the Latent Diffu-
sion Model (LDM-VQ) [38] trained on the Openlmages dataset [24],
which is primarily composed of photographs. Specifically, we use
the tokenizer with the scaling factor f=16 and the codebook size
Z =16,384, balancing reconstruction quality and the resulting token
length. For further analysis, we finetune the tokenizer solely on
RGB images without additional techniques, referred to as Ours-RGB.
As an additional baseline without the specialized tokenizer, we con-
vert RGB images into RGBA using an off-the-shelf background
removal tool, Rembg [12] with IS-Net [34].

We evaluate the tokenizers using mean squared error (MSE)
for both the RGB and alpha channels, as well as reconstruction
Fréchet Inception Distance (rFID) for RGB images, which measures
the distance between the feature distributions of the original and
reconstructed images. For RGB-based metrics, we convert the RGBA
images generated by our tokenizer to RGB by alpha compositing
them onto a white background.

5.1.2  Results. We show a quantitative comparison of image recon-
struction in Table 1. Both of our tokenizers outperform the baseline
in terms of RGB-based metrics thanks to their fine-tuning on im-
ages from the same domain. We also show qualitative comparisons
in Fig. 5. As illustrated, the general background removal used for
RGB-based reconstructions often fails, removing foreground objects
either too aggressively or insufficiently. In contrast, our tokenizer
successfully reconstructs RGBA images by leveraging the alpha
information embedded in the discrete tokens.

5.2 Graphic Design Completion

5.2.1 Setup. We use the Crello dataset [50] (version 5.0.0), compris-
ing 19,372 templates for training, 1,823 for validation, and 2,107 for
testing. We then convert these templates into SVG format. During
the conversion, we represent text elements with <text> tags and
other elements with <image> tags. We omit attributes when they
have default values. Also, because SVG does not support multi-line
text within a single element, we split any text element into multiple
elements whenever a new line appears.
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Ours-RGB + Rembg [12] Ours

Original

Figure 5: Image reconstruction results.

We train our MarkupDM with the fill-in-the-middle (FIM) objec-
tive [1, 3], which predicts a randomly selected middle span based
on the prefix and suffix. In this setup, MarkupDM can infer the
missing span from its preceding and following context. To demon-
strate its effectiveness, we evaluate three tasks: attribute value com-
pletion, image completion, and text completion. Attribute value
completion is represented as <text x="[MASK]" ...>, where [MASK]
indicates the span to be filled. Image completion is represented as
<image href="[MASK]" .../>, and text completion is represented
as <text ...>[MASKI</text>. For attribute value completion, we
focus on six attribute types: x, y, width, height, font-family, and
font-size. Note that we do not train MarkupDM with task-specific
supervision such as specialized FIM patterns; these tasks serve only
for post-hoc evaluation.

We evaluate MarkupDM using several base language models, in-
cluding StarCoderBase [25] with 1B, 3B, and 7B parameters, as well
as Qwen2.5-7B [46] and Qwen2.5-Coder-7B [14]. We specifically
select these models because they provide sufficiently long context
lengths and employ the FIM objective during their pre-training.
Both of the features are essential for our completion tasks where
the model must handle multiple textual and visual elements and dy-
namically insert missing parts. For comparison with the approach
of holistic yet grid-based graphic design generation approach (see
Section 2.1), we also train FlexDM [18] on our dataset using random
masking patterns, aiming to create similar experimental conditions.
Note that during text and image completion tasks, FlexDM retrieves
texts or images from the combined train and validation set instead
of generating them directly.

We evaluate MarkupDM on between 12,559 and 25,435 target
spans from the test templates, selecting the relevant spans for each
task. To reduce inference time for image completion, we use 1,386
spans from the first 200 templates. We parse the text generated
by MarkupDM and convert it to the same format used by FlexDM.
We then compute accuracy over the quantized representation for
attribute value completion, and cosine similarity over feature repre-
sentations for text and image completion. More details are provided
in the supplementary material.

5.2.2  Results for Attribute Value Completion. We show the quanti-
tative results for attribute values (X, Y, Width, Height, Font, F-Size)
in Table 2. Note that the scores for FlexDM and MarkupDM are not
fully comparable, because they differ in formulation and available
contextual cues. For example, MarkupDM can infer element sizes
from the image dimensions, whereas FlexDM cannot. Nevertheless,
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Table 2: Quantitative comparison for design completion tasks. The reported scores reflect accuracy for attribute values and
cosine similarity for text and image completion. “Font” denotes the font family, and “F-Size” denotes the font size. “Mean”
indicates the average score of all the completion tasks. FlexDM follows a different formulation than MarkupDM, so its scores

are not directly comparable and are provided only for reference.

Model Base LLM X7 YT Width T HeightT FontT F-SizeT TextT ImageT Mean?
FlexDM [18] - 0.420  0.268 0.406 0.612 0.844 0.851 0.813 0.759 0.622
Qwen2.5-7B 0.460 0.285 0.824 0.904 0.460 0.670 0.827 0.811 0.655
Qwen2.5-Coder-7B 0.486  0.331 0.853 0.931 0.365 0.700 0.851 0.806 0.665
MarkupDM StarCoderBase-1B 0.471 0.339 0.843 0.920 0.845 0.678 0.851 0.822 0.721
StarCoderBase-3B 0.508 0.379 0.870 0.936 0.854 0.724 0.865 0.823 0.745
StarCoderBase-7B 0.526  0.404 0.882 0.951 0.867 0.720 0.874 0.817 0.755

MarkupDM performs well in comparison, indicating that it success-
fully learns to fill graphic design templates. Among the MarkupDM
variants, StarCoderBase-7B achieves the highest accuracy for most
attributes. Comparing the results across different parameter sizes
of StarCoderBase (1B, 3B, and 7B), we observe that larger models
consistently perform better, as expected. Although Qwenz2.5-based
models also work with our approach, they tend to show lower
performance, possibly due to limited exposure to SVG data during
pre-training.

5.2.3 Results for Text Completion. We present the quantitative re-
sults for text completion in the Text column of Table 2. We observe
that our model outperforms the baseline, and its performance im-
proves as the model size increases. In the left and middle parts of
Fig. 6, we show examples where the model successfully generates
text that aligns grammatically with preceding or subsequent lines,
or that serves a similar role to the ground truth text. Our model
sometimes fails due to errors in image understanding or conflicting
with other elements visually, e.g., the rightmost example.

5.2.4  Results for Image Completion. The quantitative results for
image completion in the Image column of Table 2 also demon-
strate improved performance compared to the baseline. Unlike
text completion, however, the variation in performance with re-
spect to model size is relatively smaller. For deeper analysis, we
investigate the effect of providing auxiliary caption information,
which we introduced in Section 4. In Table 3, we observe no perfor-
mance gain when training the model with captions. However, using
ground-truth captions substantially improves image generation
performance (the bottom row of Table 3), suggesting that the model
struggles to accurately predict content, possibly due to limited train-
ing data. Qualitative results in Fig. 7 illustrate that our model can
generate simpler design elements, such as underlays or buttons, by
leveraging textual content or repetition patterns as hints. Our model
has difficulty in producing main objects like the rightmost example
or delicate visual harmonization with other elements. For example,
in the middle example, the generated decoration slightly conflicts
with the text element, highlighting the need for visual feedback.

5.3 Instruction-Guided Completion

5.3.1 Setup. We use the Crello-Instruct dataset as described in Sec-
tion 4. Each sample is a triplet composed of an input document with
one element missing, an instruction for completing that document,

Table 3: Image completion results using captions as auxil-
iary information. The baseline model is MarkupDM with
StarCoderBase-7B.

Train with Caption Test Input Completion Target  Image T
- Context Image 0.817
v Context Caption + Image 0.815
v Context + Caption Image 0.857

and a target document in which the missing element is filled in. The
dataset includes 103,917 samples for training, 9,839 for validation,
and 11,350 for testing.

We fine-tune the best variant of MarkupDM, ie., the one that
uses StarCoderBase-7B as its base LLM, on this dataset, referring to
the resulting model as Instruct-MarkupDM. For our baselines, we se-
lect two image editing methods: HQ-Edit [15] and Gemini 2.0 Flash
Experimental (Gemini 2.0 FE) [21]. HQ-Edit is one of the latest open-
source image editing models; we use both its original pre-trained
model and a version further fine-tuned on our dataset. Gemini 2.0 FE
is a proprietary model, which has recently demonstrated strong per-
formance in terms of both image quality and instruction adherence.

We evaluate each model’s performance using four pixel-based
metrics: MSEgT, MSEg4it, Alignment [15], and Coherence [15]. MSEGT
measures the pixel-wise difference between the predicted image and
the ground truth image, while MSEgg4;; measures the difference be-
tween the input and the predicted image. A lower MSEgg;; than the
ground-truth score indicates that the model has under-edited the
image, whereas a higher MSEgg4;; suggests over-editing or adding
irrelevant elements. Therefore, while a lower score indicates better
performance for MSEGT, MSEg4;: is considered better when its score
is closer to the ground truth score. Alignment and Coherence [15]
are both GPT-based evaluations: Alignment measures the degree to
which the edited image satisfies the instruction in the context of the
input image, and Coherence assesses the overall visual quality of
the edited image, independent of the instruction. We employ GPT-
40 mini [32] for both metrics, using the same prompts specified in
the previous work [15].

5.3.2  Results. We present the quantitative results in Table 4 and
the qualitative results in Fig. 8 for instruction-guided graphic design
completion. Among the image-editing methods, HQ-Edit highlights
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the importance of fine-tuning on our design dataset to bridge the do-
main gap from general image-editing datasets. By contrast, Gemini
2.0 FE achieves better performance than HQ-Edit even in zero-shot
settings, presumably due to its strong instruction-following and
image-generation capabilities. However, Gemini 2.0 FE sometimes
applies overly aggressive visual edits or incorrect text edits (as
shown in the top example in Fig. 8), leading to poor MSE scores.

Instruct-MarkupDM achieves the best MSE scores and a higher
Coherence score, because it only adds the missing elements rather
than altering existing ones, leaving most input designs intact. How-
ever, its Alignment score is lower than that of Gemini 2.0 FE, possi-
bly reflecting less robust instruction-following and visual genera-
tion capabilities. As Fig. 8 illustrates, Instruct-MarkupDM generally
handles text editing well but struggles with generating complex
visual elements beyond simple colored backgrounds.

Given the recent success of text-to-image (T2I) models in gener-
ating high-quality images from text prompts, we also introduce a

Table 4: Quantitative comparison for instruction-guided
graphic design completion.

Model MSEgr | MSEgg; Align. T Coher. T
HQ-Edit [15] 93.9 93.5 28.6 57.4
+ Finetune 43.9 43.1 51.1 62.3
Gemini 2.0 FE [21] 33.5 3.6 723 694
Instruct-MarkupDM 10.0 6.7 60.5 69.3
Ground Truth 0.0 8.2 85.2 71.8

variant of our model, Instruct-MarkupDM*, which generates addi-
tional captions for image elements to leverage external T2I mod-
els. Figure 9 shows the qualitative results with and without using
T2I. Without T2I, the model produces vague and unclear objects,
whereas with T2I, the images are more detailed and better aligned
with the instructions. This result demonstrates that our model ben-
efits from recent T2I models to generate high-quality images. While
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Figure 9: Qualitative results for instruction-guided comple-
tion with caption generation. The second column shows
the result of using the external text-to-image model [21] to
generate the image based on the predicted caption.

these models may struggle with images requiring transparency or
extreme aspect ratios, our image tokenizer can handle these needs.
Our findings suggest that external T2I models can compensate for
our model’s limited image-generation capabilities while achieving
instruction-guided completion within editable, structured graphic
design templates.

6 Limitations and Discussion

We presented MarkupDM, a multimodal markup document model
that integrates a large language model trained using the fill-in-the-
middle objective and a specialized image tokenizer for images of
variable sizes with transparency. By treating graphic designs as
interleaved multimodal documents, our approach unifies text and
image token generation within a single framework. Experimental re-
sults indicate that MarkupDM effectively completes various graphic
design tasks, including attribute value prediction, image generation,
and text insertion, while preserving the contextual relationships

among design elements. Further extension to instruction-guided de-
sign completion demonstrates the flexibility of our approach, where
it achieves competitive performance compared with state-of-the-art
image editing models.

Despite these promising results, our approach has several limita-
tions. First, the model still struggles to generate complex or highly
detailed images. As shown in Fig. 9, an external text-to-image model
can generate primary image elements using predicted captions, but
it is unclear whether it can produce decorative or background
elements that visually harmonize with the surrounding content.
Incorporating a more recent, powerful multimodal model such as
Janus-Pro [7] could solve this issue, although it lacks native fill-in-
the-middle capabilities. Additionally, given the rapid progress in
foundation models, agentic approaches to design automation are
another promising direction [47].

Second, our model faces challenges in visually intricate com-
positional tasks that require nuanced spatial reasoning, such as
layering multiple objects or maintaining aesthetic coherence across
various elements. Enhancing the model’s spatial understanding
may require domain-specific training or dedicated spatial modules.

Finally, our current model primarily focuses on the generation
of new elements rather than refining or editing existing elements
in detail or creating entire documents from scratch. Although it can
insert a missing component, full-fledged editing of already-placed
objects (including detailed manipulations of shape and texture)
remains outside its scope. Addressing these limitations in future
work will likely involve larger and more diverse datasets. We hope
our findings encourage further research on multimodal LLMs for
design tasks and motivate the development of more sophisticated,
user-driven design automation techniques.
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