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Abstract

There exists a large number of old films that have not
only artistic value but also historical significance. How-
ever, due to the degradation of analogue medium over time,
old films often suffer from various deteriorations that make
it difficult to restore them with existing approaches. In this
work, we proposed a novel framework called Recursive Re-
current Transformer Network (RRTN) which is specifically
designed for restoring degraded old films. Our approach
introduces several key advancements, including a more ac-
curate film noise mask estimation method, the utilization of
second-order grid propagation and flow-guided deformable
alignment, and the incorporation of a recursive structure
to further improve the removal of challenging film noise.
Through qualitative and quantitative evaluations, our ap-
proach demonstrates superior performance compared to ex-
isting approaches, effectively improving the restoration for
difficult film noises that cannot be perfectly handled by
existing approaches. The code and model are available
at https://github.com/mountln/RRTN-old-
film-restoration.

1. Introduction
Due to the degradation of the analog medium over time,

old films often suffer from various deteriorations. Many
films with historical and artistic value are gradually for-
gotten by the public because of the bad image qualities.
With the advancements in image processing technologies,
efforts have been made to restore these degraded films. The
restoration process involves physically removing dust and
stains from the film, followed by scanning it into digital for-
mat and digitally restoring it using computers.

Digital restoration is a time-consuming and expensive
task that requires manual frame-by-frame restoration by a
team of experienced experts. Consequently, only a select
few well-known works were chosen for restoration, leaving
behind a large number of films that remained untouched due
to limited resources. As a result, most of the old films avail-
able online suffer from significant degradation. In order to

(a) Input (b) Restoration Results
Figure 1. Examples of restoration results achieved using our
proposed approach. Our purposed approach effectively removes
challenging noise and significantly improves the overall image
quality of frames. Important noise in the input is marked with
red rectangles.

be able to restore these old films to their original appearance
and show them in the best condition, an automatic restora-
tion approach is essential. In recent years, the development
of deep learning has made it possible.

Despite the advancements in existing methods, there still
exists no universal solution that can effectively remove most
of the harder noise well. In order to efficiently remove com-
plex noises, we propose a new framework called Recursive
Recurrent Transformer Network (RRTN), which is based
on a more complex RNN architecture with Transformers.
Within RRTN, we have developed an accurate approach for
estimating the film noise mask. We used both the previ-
ous and next frames of the frame being estimated, and used
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the difference between them to estimate a film noise mask
for guiding the restoration. Additionally, inspired by Ba-
sicVSR++ [3], we employ second-order grid propagation
and flow-guided deformable alignment to efficiently lever-
age the information contained within the different frames
of an old film. Furthermore, our model utilizes a recursive
structure to efficiently handle complex noises in old films
with varying degrees of degradation. When the video degra-
dation is severe, our model performs more steps of recursion
to remove the challenging film noise.

To assess the effectiveness of our approach, we con-
ducted both quantitative and qualitative evaluations. The
quantitative results show that the output of our approach
has better performance than existing approaches in terms
of overall frame quality. The qualitative result shows that
our model can better remove some difficult film noise that
cannot be removed by existing approaches. Furthermore,
we performed an ablation study, verified the significance of
each component in our method.

Our contributions can be summarized as follows:
• Explicit modelling of film noise mask with second-

order grid propagation and flow-guided deformable
alignment that allows removal of large film artefacts.

• Adaptive recursive architecture that encourages tem-
poral coherence of the output, reducing flickering and
other common film damage.

• In-depth comparisons with existing approaches that
demonstrate the effectiveness of our approach.

2. Related Work
2.1. Video Restoration

Video restoration is a common task aimed at restoring
low-quality videos to a higher quality, including aspects
such as noise removal, sharpening, and inpainting. Since
videos can have various degradation, many video process-
ing tasks can be considered as subtasks of video restora-
tion. Extensive research has been conducted in these sub-
tasks, yielding various research results. For instance, video
super-resolution [2, 3, 17, 40, 43] focuses on enhancing the
spatial resolution of videos. Video denoising [31, 44, 47]
addresses the removal of noise from videos. Video deblur-
ring [36, 42, 58] aims to reduce blur and improve video
sharpness. Video colorization [22, 51, 53] involves adding
color to grayscale videos. Video inpainting [19, 28, 52] fo-
cuses on filling in missing regions in videos. Due to the sim-
ilarity of these subtasks, which are all video-to-video trans-
formations, there are also some works like [4, 23, 24, 49]
that can restore different degradation with a single network
architecture by training models using different data.

Unlike image restoration [6, 7, 25, 54–56], video restora-
tion benefits from not only the spatial information within
individual frames but also the temporal information across

multiple frames. As a result, it is important to use infor-
mation in different frames effectively. Consequently, prop-
agation, alignment, and fusion act as essential steps in the
video restoration process.

Propagation plays a key role in transferring informa-
tion between frames in video restoration. While early ap-
proaches [1, 9, 14] primarily used temporal CNNs, were
limited in capturing long-term information. To tackle this
problem, the utilization of RNN structures has gained sig-
nificant popularity in video restoration [10,11,15,16,35]. In
addition to traditional one-way RNNs, there is a increasing
adoption of bidirectional propagation approaches [2,12,13].
Furthermore, Chan et al. [3] introduced a higher-order grid
propagation approach to further gather different levels of
features.

Alignment is used to align the different features ob-
tained by propagation. Compared to the method without
alignment [10, 13, 15, 16], optical flow warping based ap-
proaches [2,20,39,50] using the guide of the optical flow to
warp the frames or features for alignment. In addition to op-
tical flow warping based approaches, other approaches such
as deformable convolution [3,24,27,46,49] and deformable
attention [26] have also been utilized and shown to deliver
strong performance in video restoration tasks.

Fusion aims to restore aligned features and integrate fea-
tures. For fusion step, a common and lightweight option is
to use convolutional layers [2,3,10,13,15]. Wang et al. [49]
incorporates attention mechanism with convolution layers
achieved good results. More recently, with the proposal
vision Transformers [8, 29], Swin Transformer-based ap-
proach has been adopted by some works [26,30,48], which
greatly improves the image quality of the final video.

2.2. Old Film Restoration

Old film restoration is also a type of video restoration
that deals with a variety of degradation, including scratches,
dust adhesion and fading. Unlike other video restoration
tasks, old films may contain multiple types of degradation
at the same time. The purpose of old film restoration is to
remove these degradation and restore the film to its original
state when it was completed. In the past, old films usu-
ally required a large number of experts to perform frame by
frame manual restoration. However, recent advancements
in deep learning based approaches made it possible to auto-
mate the restoration of old films.

DeepRemaster [14] is the first framework using a tem-
poral CNN to restore old films. To generate training data,
they simulated the degradation in old films by blending
real film noise footage with high-quality videos and sub-
sequently applying algorithms to introduce further degra-
dation. Through this approach, they successfully trained a
model that can be used for old film restoration.

Wan et al. [48] introduced a network based on bidirec-



tional RNN with Swin Transformer [29] for old film restora-
tion. They incorporated perceptual loss [18] and adversar-
ial loss to training loss function, resulting in significant en-
hancements in the overall final video quality.

Despite the notable progress achieved by existing meth-
ods, the varying levels of degradation present in old films
pose a challenge. While the existing approaches can effec-
tively handle mildly degraded films, there remains a lot of
films with complex film noise that cannot be entirely re-
moved using these approaches.

3. Approach
An overview of our proposed approach can be seen in

Fig. 2. Our approach takes a sequence of degraded frames
{x1,x2, . . . ,xT} as the input and generates a sequence
of restored frames {y1,y2, . . . ,yT} as the output, where
xij
t , y

ij
t ∈ [0.0, 1.0]. The input frames are first used to esti-

mate the film noise mask, then concatenated with the mask
and fed into an encoder consisting of convolutional layers
for feature extraction. The extracted features are subse-
quently passed through Alignment and Transformer Blocks
in a second-order grid propagation strategy for alignment
and feature restoration. Then, the features are decoded and
added to the input to obtain primary output frames. If the
output frames do not meet the predefined conditions, they
will be processed again as input recursively.

3.1. Film Noise Mask Estimator

The details of film noise mask estimator can be seen in
Fig. 3. In the analogue medium, each frame is entirely in-
dependent, resulting in film noise caused by contaminants
such as dust attached to them being different in each frame.
Exploiting this characteristic of degraded film, we devel-
oped a noise estimator to guide the restoration process. In
[48], Wan et al. also tried a estimation method for masks,
but they only use a single adjacent frame to compute the
mask. The mask estimation often fails due to errors in op-
tical flow estimation. Besides, if the reference frame it-
self contains noise, that would lead to an inaccurate mask.
Therefore, we use both the previous frame xt−1 and the
next frame xt+1 for estimating the t-th film noise mask mt

to improve the accuracy of the mask. We first warp the ad-
jacent frames xt−1, xt+1 to the current frame xt guided by
optical flows, and calculate their variations vt−1,t, vt+1,t.
Then, we calculate the element-wise geometric mean of the
absolute variations vt−1,t, vt+1,t to represent the film noise
mask mt. The process can be represented by the following
Eqs. (1) to (3).

vt−1,t = W(xt−1,ot−1→t)− xt (1)
vt+1,t = W(xt+1,ot+1→t)− xt (2)

mt =

(√
|vijt−1,t| · |v

ij
t+1,t|

)
(3)

where ot−1→t, ot+1→t denote the optical flow from (t −
1)-th and (t + 1)-th frames to t-th frame, W denotes the
spatial warping operation. And to represent element-wise
operations more clearly, tensor v is represented as

(
vij

)
in

Eq. (3).

3.2. Feature Propagation, Alignment and Restora-
tion

Feature propagation plays an important role in the trans-
mission of information between features. Wan et al. used
bi-directional propagation in [48], this method propagates
forward and backward once in each temporal direction, and
the information in the adjacent features in both temporal
directions can be utilized by the current feature, which per-
forms better than the one-directional propagation of tradi-
tional RNN.

As shown by the orange arrows in Fig. 2, our RRTN
uses grid propagation, which propagates forwards and back-
wards multiple times in temporal directions, which allows
the previous and next features in both temporal direction
can be better utilized than the single time bi-directional
propagation. In addition to adjacent frames, we use second-
order propagation, which uses more distant features to di-
rectly obtain information over a larger temporal range. This
propagation method is shown in Fig. 2 with blue dashed ar-
rows.

Through second-order grid propagation, features are
passed between alignment and transformer blocks. Each
alignment and transformer block consists of flow-guided
deformable alignment module and Swin Transformer [29].
The purpose of these blocks are to align the passed features
and to perform spatial restoration on the aligned features.

The details of the enlarged block in Fig. 2 can be repre-
sented by the following Eq. (4).

f t+1
j+1 = R

(
f t+1⌢
j A

(
f t−1
j+1 , f

t
j+1,ot−1→t+1,ot→t+1

))
(4)

where fs denote features, R denotes restoration operation
by Swin Transformer, A denotes flow-guided deformable
alignment and ⌢ denotes the concatenation operation along
the channel dimension.

3.3. Recursive Architecture

In Fig. 2, the recursive structure is represented by red
dashed arrows. The recursive structure leverages another
characteristic of old films, which is that the level of degrada-
tion varies greatly from one old film to another. Some well-
preserved old films may have only a little noise, whereas
some old films that have been poorly maintained may suffer
from severe degradation. Using recursive structure to pro-
cess old films with different levels of degradation for differ-
ent times of recursions is highly beneficial in removing the
film noise that is difficult to handle.



Figure 2. Overview of proposed approach. By using an RNN architecture with an explicit film noise mask estimator and second order
propagation, our model is able to more accurately represent and remove the independent frame noise.

We trained the model twice to get two sets of parame-
ters, denoted as θ1 and θ2. During the inference stage, we
utilize these two sets of parameters for different recursion
steps. θ1 is used in first recursion, and is obtained by setting
the number of recursive steps to 1 during training. Using
θ1 during inference allows for more aggressive frame pro-
cessing, resulting in improved image quality. On the other
hand, θ2 is used in subsequent recursion, and is obtained
by setting the number of recursive steps to 2 during train-
ing. Using θ2 during inference leads to a more gentle frame
processing which keeps the overall image appearance and
specifically targeting the imperfectly processed film noise
from the last recursion step. It is important to note that
using θ1 alone for all recursion steps would result in un-
natural final output frames due to over-processing. In con-
trast, if we use θ2 alone for all recursion steps, although the
model does well in film noise removal and does not make
the output frames look unnatural due to multiple times of
processing, it has a poor performance on super resolution
and deblurring. The final output frames look blurrier than
the output frames obtained by θ1.

Our method determines whether to stop the recursion
based on the mean square error (MSE) of the input and the
output data in the current recursion step. When the MSE
of the current input and output is less than the threshold

ϵ = 10−4, it means that the model has processed the data
very little, at which point we stop the recursion. The value
of ϵ can be determined based on the amount of film noise in
the actual output frames and the number of recursions when
process these frames. If ϵ is too large, the number of recur-
sions will be small and the model will not be able to remove
difficult film noise. Conversely, if ϵ is too small, the number
of recursions will be too large and the inference time will be
greatly increased. In practice, an better choice of ϵ results
in a recursion number of 2 for frames with less film noise,
and 3 for those with more difficult film noise.

4. Experiments and Results
To compare our approach with the state-of-the-art ap-

proaches, we trained models for each approach and con-
ducted both quantitative and qualitative evaluations.

4.1. Training

4.1.1 Data

The training data is generated based on the REDS [34]
dataset. In each iteration of training, we select 7 consec-
utive frames from the REDS dataset as the initial values of
ground truth y and input video x. Then the transformations
listed in Tab. 1 are performed for data augmentation and



Figure 3. Film noise mask estimator. We warp adjacent frames to
a reference image and compute the difference with the geometric
mean to estimate the noise mask and allow more efficient noise
removal.

(a) Example 1 (b) Example 2

Figure 4. Two pair of generated frames using transformations
in Tab. 1. In each example, the left frame is input frame and the
right frame is the corresponding GT.

degraded video synthesis.
In Tab. 1, when target is (x,y), it means the operation

is performed on both x and y at the same time. At first,
we convert the color image to grayscale and perform scal-
ing and random crop operations to obtain a set of frames
of size 128 × 128. Then, the data augmentation is further
performed by random flip and rotation operations. The op-
erations with target x are performed only on the input data
x, and is intended to degrade the data to simulate the de-
graded old film. When performing film noise blending, we
used the footage provided in DeepRemaster [14]. A final
generated data example is shown in Fig. 4.

Name Target Prob. Parameters

Grayscale (x,y) 100% -
Scaling (x,y) 100% h : U(128, 720)

Random Crop (x,y) 100% w : 128, h : 128
Vertical Flip (x,y) 50% -

Horizontal Flip (x,y) 50% -
Rotation (x,y) 50% ±90◦

Film Noise Blending x 100% α : U(0.6, 1.0)
Brightness x 50% U(0.8, 1.2)
Contrast x 50% U(0.9, 1.0)

Gaussian Blur x 100% σ : U(0.0, 1.0)
Gaussian Noise x 50% σ : U(0.0, 0.04)
Speckle Noise x 50% σ : U(0.0, 0.04)
Downsampling x 100% h : U(0.25, 1.0)

JPEG x 100% q : U(40, 100)

Table 1. Transformations for data generation. The “Parame-
ters” column specifies the parameters used for each transformation
operation. U(a, b) denotes a value which is obtained by sampling
from a uniform distribution over the closed interval [a, b].

4.1.2 Objective Function

We use Eq. (5) to compute loss during training.

L = λcLc + λpercLperc + λadvLadv (5)

where λc, λperc, λadv represent the respective weights of
each loss term. We set the weights as: λc = 1, λprec = 1,
and λadv = 0.01. The loss terms included are as follows:
Lc refers to Charbonnier loss [5]. Lperc denotes percep-
tual loss [18]. Ladv represents spatial-temporal adversarial
loss which is used in [48]. For feature extraction in the per-
ceptual loss, we employed a pretrained VGG19 [41] model,
utilized the features extracted after layers relu2 2 to relu5 2
of the VGG19 model.

4.1.3 Training Details

We trained all models with the same setting. We utilized
the Adam optimizer [21] with a learning rate of 2e-4 for the
initial 100,000 iterations, and linearly decayed the learning
rate after 100,000 iterations.

For optical flow estimation, according to the original im-
plementation, we used SPyNet [38] for training RVRT [26]
and BasicVSR++ [3], used RAFT [45] for training the
model proposed by Wan et al. [48]. For training our own
model, we used RAFT [45] for optical flow estimation.

The models with the lowest validation loss were selected
as the final models after 200,000 training iterations.

4.2. Quantitative Evaluation

For the quantitative evaluation, we conducted compar-
isons on both the synthesized data and real old film data.



PSNR↑ SSIM↑ LPIPS↓
Input 19.3584 0.6864 0.4389
DeepRemaster [14] 20.9723 0.7156 0.3606
BasicVSR++ [3] 22.0617 0.7626 0.3610
RVRT [26] 22.1256 0.7404 0.3545
Wan et al. [48] 21.8243 0.7732 0.3636
Wan et al. [48]† 22.9341 0.7774 0.3487
Our method 23.1208 0.7879 0.3185

Table 2. Quantitative comparison on synthetic video dataset.
Best results are highlighted in bold. † denotes using a pre-trained
model trained with 256× 256 frames.

BRISQUE↓ NIQE↓
Input 46.2065 17.6175
DeepRemaster [14] 39.1887 17.5010
BasicVSR++ [3] 25.8349 17.4555
RVRT [26] 33.1265 17.0986
Wan et al. [48] 24.1537 17.1495
Wan et al. [48]† 17.3608 17.3182
Our method 15.6102 16.6216

Table 3. Quantitative comparison on real old film dataset. Best
results are highlighted in bold. † denotes using a pre-trained model
trained with 256× 256 frames.

We used the same transformations in Tab. 1 generate
test synthesized data based on DAVIS [37] dataset, and col-
lected some real old films from the Internet.

On the synthesized data, we employed PSNR, SSIM, and
LPIPS [57] as evaluation metrics. On the real old film data,
we employed two no-reference metrics, BRISQUE [32] and
NIQE [33] as evaluation metrics, since we cannot obtain the
ground truth data of the real films.

The quantitative evaluation results are shown in Tabs. 2
and 3, with the best results highlighted in bold. The re-
sults obtained using the pre-trained model provided by Wan
et al. [48] were also included in the tables. Note that this
model was trained under different conditions than the other
models. It can be seen that our method has significantly
better results than the existing methods for both the synthe-
sized data and the real old film data.

4.3. Qualitative Evaluation

For the qualitative evaluation, we used real old films to
assess the performance of our method. As a result, our
method shows its effectiveness in removing those noises
that cannot be removed by other methods. In Fig. 5, we
selected 4 frames with hard-to-remove noise to show the re-
sults of each method. In the variation image on the right
column, the film noise that needs to be removed is high-

Parameters (M) Runtime (ms)

DeepRemaster [14] 9.9 43
BasicVSR++ [3] 5.8 272
RVRT [26] 8.5 402
Wan et al. [48] 6.2 267
Ours(recursion=1) 7.5 421
Ours(recursion=2) 7.5 876
Ours(recursion=3) 7.5 1322

Table 4. Comparison of model size and inference time. Infer-
ence time was measured using an RTX 2080Ti GPU with a frame
size of 640× 368.

(A) (B) (C) (D) Ours

noise mask ✓ ✓
prop. & align. ✓ ✓
recursion ✓ ✓

PSNR↑ 21.82 22.16 22.70 21.77 23.12
SSIM↑ 0.773 0.771 0.785 0.757 0.788
LPIPS↓ 0.364 0.334 0.327 0.358 0.319

BRISQUE↓ 24.15 21.65 23.73 30.32 15.61
NIQE↓ 17.15 16.86 17.10 17.08 16.62

Table 5. Ablation study of the components. Best results are
highlighted in bold.

lighted by red box. As we can see, our RRTN still performs
well for the noise that cannot be perfectly removed by Ba-
sicVSR++ [3] and the method Wan et al. proposed [48].

4.4. Comparison of Model Size and Inference Time

We measured the inference time of each approach. The
results, along with the size of each model, are shown in
Tab. 4. Our approach takes more inference time than other
approaches. Additionally, as the number of recursions in-
creases, the inference time increases linearly.

Although using recursion significantly increases infer-
ence time, in cases where multiple recursions are required,
since using other approaches cannot remove difficult film
noise perfectly, the time spent on multiple recursions is ac-
ceptable compared to having an expert restore it manually
which would take far more time.

5. Ablation Study
In order to evaluate the significance of each component

in our method, we conducted an ablation study. The results
are presented in Tab. 5 and Fig. 6. We selected Wan et al.’s
method [48] as the baseline, denoted as (A). Method (B∼D)
integrate the baseline with each corresponding components.
Ours refers to our method that combines all the compo-
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Figure 5. Comparison on real films. Our approach is able to remove challenging large noise and significantly improve the original
degraded film. Important noise in the input is marked with red rectangles.

nents. For each component, noise mask represents the film
noise mask, prop. & align. stands for second-order grid
propagation and flow-guided deformable alignment, and re-
cursion refers to the recursive structure.

From columns (B) and (C) of Tab. 5, it can be seen that
the incorporation of film noise mask or prop. & align. en-
hances the overall frame quality of the final video relative
to the baseline. However, the results in column (D) indicate



Input (A) baseline (B) noise mask (C) prop. & align. (D) recursion Ours
Figure 6. Ablation study on real films. Important noise in the input is marked with red rectangles. Compared to the baseline (A),
integrating any component (B∼D) contributes to film noise reduction. With all the components (Ours), the best output frame is obtained.

that the use of recursion diminishes the quality. This decline
can likely be attributed to excessive recursive calls, which
magnify the inherent shortcomings of the under-performing
model, thus deteriorating the results. Yet, when recursion is
combined with the other two components, recursion plays a
very important role in dealing with noise that is difficult to
remove.

The results in Fig. 6 further show that the addition of any
component aids in reduce film noise. However, for chal-
lenging inputs as seen in the first and second rows, slight
residues of film noise remain. These residues are not obvi-
ous in the frame, but can be clearly seen in the video due
to the interruption of the consistency of consecutive frames.
The best results are achieved by combining all the compo-
nents.

6. Conclusion

In this paper, we proposed a novel framework, called Re-
cursive Recurrent Transformer Network, for degraded film
restoration. We obtain better restoration performance than
the existing methods by use of a more accurate film mask
estimator, a more efficient feature propagation, alignment
and spatial restoration strategy, and a recursive structure that
can handle more difficult film noise.

Even though RRTN offers the possibility to restore old
films that cannot be perfectly restored before, the network
uses more computation time than existing approaches due to

Input Output

Figure 7. An example of failure case. Some of the smoke was
mistakenly removed as noise. Important difference is marked with
a red rectangle.

require additional operations. Although more complex film
noises can be handled by recursive processing, the compu-
tation time required increases as the number of recursions
increases, which leads to more time spent on restoration for
degraded films with more noise. To solve this problem, in
future research, we believe we can improve the processing
time by reducing the number of parameters appropriately.

Additionally, there are failure cases where non-noise is
mistakenly removed as noise, which can lead to undesired
alterations in the original content or result in over-smoothed
textures. As illustrated in Fig. 7, some of the smoke from
the input frame was wrongly removed as noise, leading to
an output frame with noticeably less smoke than the orig-
inal. Thus, reducing noise misclassification is also an im-
portant future research direction.
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