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Figure 1: Example of ink painting rendering results. We compare our approach with existing methods and a reference real painting.

Our approach is able to reproduce real fading and blotting effects similar to the reference ink paintings while capturing texture variations.

Important differences are highlighted in red.

Abstract

Although digital painting has advanced much in recent years, there is still a significant divide between physically drawn paintings

and purely digitally drawn paintings. These differences arise due to the physical interactions between the brush, ink, and paper,

which are hard to emulate in the digital domain. Most ink painting approaches have focused on either using heuristics or physical

simulation to attempt to bridge the gap between digital and analog, however, these approaches are still unable to capture the

diversity of painting effects, such as ink fading or blotting, found in the real world. In this work, we propose a data-driven

approach to generate ink paintings based on a semi-automatically collected high-quality real-world ink painting dataset. We

use a multi-camera robot-based setup to automatically create a diversity of ink paintings, which allows for capturing the entire

process in high resolution, including capturing detailed brush motions and drawing results. To ensure high-quality capture of

the painting process, we calibrate the setup and perform occlusion-aware blending to capture all the strokes in high resolution

in a robust and efficient way. Using our new dataset, we propose a recursive deep learning-based model to reproduce the ink

paintings stroke by stroke while capturing complex ink painting effects such as bleeding and mixing. Our results corroborate

the fidelity of the proposed approach to real hand-drawn ink paintings in comparison with existing approaches. We hope the

availability of our dataset will encourage new research on digital realistic ink painting techniques.

CCS Concepts

• Computing methodologies → Non-photorealistic rendering; Neural networks;

1. Introduction

Ink painting is a traditional artwork with many different forms of
expression. Although ink painting only uses black ink on white
paper, the paintings can exhibit a surprising amount of complex

hand motions, bleeding effects, and subtle control of tone gradients.
Through careful use of whitespace and the nuances arising from
the interaction between ink, water, and paper, experienced painters
are able to create masterpieces that evoke the imagination of the
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viewer. Present works [Xue20, BDGH∗20] combine heuristics and
physical simulation to express real-world effects. To fill the gap
between digital and real-world painting, such approaches provide
computational parameters such as ink color, water amount, and
brush type. However, these approaches rely on the mathematical
formulation to render the ink painting, which in many cases can not
capture the full variability of interactions found in the real world,
such as the mixing of strokes, fading of the ink, or blotting. Instead
of focusing on an increasingly complex mathematical expression of
ink, water, and paper interactions, we take a data-driven approach
with the proposed dataset and model to render realistic ink paintings.

To provide viable ink painting data amenable for training data-
driven approaches, we employ a multi-camera robot-based setup to
automatically create a diversity of ink paintings while capturing the
entire process in high resolution. In order to capture the diversity
of ink paintings, we use different brushes, papers, and ink tones by
adjusting the ratio of water to ink. The dataset is split by strokes and
contains a rich amount of meta-data relating to the brush, ink, and
strokes.

We also propose a model to render realistic ink painting strokes,
consisting of a recursive convolutional network, which takes stroke
embeddings as an input generated from stroke parameters, and
outputs realistic ink painting strokes. Using an explicit canvas, our
model is able to draw complex drawings recursively while showing
complex ink painting effects such as blotting or ink fading. We use
our new dataset to train a model to reproduce the real strokes and our
results corroborate the fidelity of our approach in comparison with
existing approaches. Figure 1 shows an example of our proposed
approach in comparison with existing methods.

In summary, we present:

• An ink painting dataset providing real ink paintings with rich
metadata for stroke.

• A recursive convolutional network framework to generate ink
paintings.

• Significant improvements over the state of the art in ink painting
quality.

We plan to make the dataset available and hope the availability
will encourage new advances in neural rendering for realistic ink
painting.

2. Related Work

2.1. Ink Painting Frameworks

Given the proliferation of digital software and the cost associated
with analog painting materials, the popularity of digital ink paint-
ing frameworks has been increasing in recent years. However, the
reproduction of different physical effects in the digital medium is a
non-trivial task and has led to significant research in the field.

In the early stages of ink painting research, many approaches
focused on mathematical approximation techniques. One such fam-
ily of approaches is the mathematical modeling of brushstrokes.
Curtis [CAS∗97] use the Kubelka-Munk compositing model for
simulating ink painting effects, and Xu et al. [XYW12] employs a
simple brushstroke model and renders the stroke movements via a
shader for real-time applications. Xie et al. [XHS13] also modeled

the brushstrokes and their movement while resorting to a reinforce-
ment learning paradigm for the stroke generation. While the previous
approaches are based on heuristics, other approaches focus on trying
to model the fluid dynamics when ink painting. In this direction, the
lattice Boltzmann equations [Suc01] have been proposed as a simple
fluid dynamics simulation method to apply fluid dynamics to other
tasks. In the ink painting community, Yu et al. [YMLS03] proposed
a viscous flow using the lattice Boltzmann equations, which was
later extended by MoXi [CT05] to be more physically accurate.
While these approaches significantly improved the quality of ren-
dering at the time, they were unable to model more complicated
bleeding effects that can be seen in real paintings.

More recent paint rendering systems consolidate the best parts of
the earlier research to create more user-friendly and higher-quality
software. WetBrush [CKIW15] is a famous painting simulation
framework that simulates brush movements and renders the ink par-
ticles. Although this software is mainly focused on oil painting, their
new Eulerian-Lagrangian approach enables the simulation of more
complex ink paintings simulations using GPUs. Expresii [Chu17]
is an example of a popular research-based commercial watercolor
rendering software. This software mainly extends MoXi [CT05] to
use 3D brush information [CT04] while ensuring the simulation is
applicable to real-time interaction in a user-friendly package. Adobe
Fresco [ado19] is a similar framework to Expresii that can make a
wide variety of picture effects. Unfortunately, unlike Expresii, the
details of the rendering techniques used are not made open to the
public. However, experimental results show that Adobe Fresco can
also simulate essential ink painting effects such as bleeding effect,
change at the color crossing, and water flow. Rebelle [reb22] is also
a painting framework that can make an ink painting expression with
the effects. Rebelle has a similar rendering quality to Adobe Fresco,
and some technical artists prefer using this framework to draw the
ink painting. Compared with Expresii, Adobe Fresco and Rebelle
can adjust the size of brushes and layers in more detail. However,
all aforementioned approaches are based on heuristics and physical
simulation like older approaches and have trouble rendering some
advanced interactions that arise in ink painting, which are not trivial
to model mathematically.

While these mathematical and physically-based approaches are
able to achieve good rendering quality, they are unable to capture the
full range of effects that arise in ink painting. Instead of explicitly
modeling physical interactions, we adopt a data-driven approach in
which we train a machine learning model to reproduce real ink paint-
ing effects, allowing for much higher quality and natural painting
effects.

Another line of research has focused on learning painting effects
from data. Wu et al. [WCW∗18] proposes a pix2pix-based image
rendering framework that renders the oil painting using a simulation
dataset. To train the model, they use the simulator’s parameters such
as pressure, ink height, time trajectories, and corresponding color
information. Lu et al. [LBDF13] also proposes an algorithm that is
based on data to simulate the natural painting media. This approach
handles various paintings such as oil paintings, watercolor paintings,
pencils, pastels, etc. More recently, Shugrina et al. [SLF22] pro-
posed a Neural Brushstroke Engine that combines deep generative
models with interactive drawing tools in a data-driven setting. In
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Subset name Paper Type Brush Type Strokes Unique Vector Images

Brush-paired Practice Small / Medium / Large 462 8
Paper-paired Practice / Fine Tiny / Small / Medium / Large 1210 42

Backlight-paired Practice - 92 46
Unpaired Fine Medium 146 13

Table 1: Overview of our Ink Painting dataset. The paired subsets repeat the same drawing varying a single parameter, e.g., the brush-paired

dataset will use the same paper and vector image but vary the brush to generate 3 variations of the image for each of the small, medium, and

large brushes.

Figure 2: Overview of our dataset creation approach. We use a 3-camera system with Structure from Motion (SfM) techniques to reconstruct

the drawn ink painting. AR markers and offline calibration are used to get an accurate position information on the brush and paper, while

occlusion-aware blending with a backlight removes the effect of the robot arm and shadows during the capturing process.

particular, they adopt a patch-based rendering system in order to
draw continuous strokes. Although they use real-world data in the
training phase, their focus is on developing interactive drawing tools
rather than accurate reproduction of complex painting effects. Our
approach follows previous data-driven approaches and we manually
collect a dataset of real-world ink painting strokes that we use to
train a neural network to reproduce. We focus on the ink painting
task and design a framework that is able to reproduce complex ink
painting effects such as fading or blotting, which existing approaches
have difficulty reproducing.

2.2. Image-to-Image Translation

Image-to-Image (I2I) translation aims at converting an input im-
age from a source domain to a target domain by preserving the
important details of the the input image and adopting the style
to the target domain. I2I can be applied to the broad tasks such
as style transfer [ZPIE17, KCK∗17, KLA19], image inpainting
[PKD∗16, ZZP∗17, SYL∗18, ISSI17, LHM∗19], and image coloriza-
tion [ISSI16, ZZI∗17, SSV17, HCL∗18, ZHL∗19, XWF∗20].

Stroke stylization is a popular example of interactive I2I for draw-
ing. Liu et al. [LFHK21] propose a 3D line drawing approach based
on the surface and path geometry to render stroke thickness and
displacement accurately. Lijie et al. [YXDW19] rendered strokes
from the user’s rough strokes and selected the optimal pattern for

texture synthesis. Ming et al. [ZMGS17] focused on rendering the
3D painting stroke with stroke coherence.

More recently, I2I has been applied to ink painting tasks as well.
Sketch-And-Paint GAN [Xue20] was proposed to make an ink paint-
ing from generated edge maps, and ChipGAN [HGM∗18] can con-
vert real images to the style of ink paintings. While these approaches
already have significant rendering quality, they focus on the con-
ditional generation of images and can not be used easily in an
interactive setting. On the other hand, our approach focuses on re-
producing individual strokes, which is amenable to interactive usage
scenarios.

2.3. Robot Painting

Robot painting has been developed to automatically draw certain
pictures such as facial portraits [SKT∗20], avatar images [WTZ∗20],
and sketches [GZY∗20]. Furthermore, accurate robot drawing tech-
niques [LWKH20, VKN20] are also being developed.

Recently, robot painting has been applied to data collection by
simulating a realistic painting. Wang et al. [WCD∗20] proposed to
simulate calligraphy by collecting data with a robotic arm. Bidgoli
et al. [BDGH∗20] collect the human painting with motion cap-
ture, then simulate the human drawing using a robot arm. Wang et

al. [WCD∗20] only capture the final result of calligraphy whereas
Bidgoli et al. [BDGH∗20] only captured single brush strokes.
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Unlike the previous works, our proposed ink painting dataset
contains sequential information, occlusion masks, and brush stroke
metadata to allow for more diverse applications of ink painting.

3. RealBrush Ink Painting Dataset

We create a new ink painting drawing dataset for high-quality stroke
painting based on a robot arm. Multiple cameras are used to obtain
high-resolution images of the painting without occlusions, which are
amenable for training high-quality data-driven ink painting models.

3.1. Dataset Overview

Our dataset consists of 1,818 strokes with associated rich metadata
collected with a diversity of brushes and paper quality , which are
extracted from video recordings of robot drawings. We summarize
the dataset details in Table 1. In particular, four types of brushes
(tiny, small, medium, and large) and two different types of paper
(practice and fine) are used. The dataset is split into several subsets
depending on where all aspects are kept fixed except one used to
create variations of the same data. In particular, three paired subsets
are created for paper, brush, and illumination techniques used.

Data is collected using a multi-view system with high-resolution
video cameras and is drawn with a robotic arm. The multiple cam-
eras allow for an occlusion-free accurate reconstruction of the draw-
ing canvas, and by using a robotic arm we are able to have high
reproducibility to collect paired data and have accurate correspon-
dences with the reference vector data. While the robot-drawn images
are less fluid and natural looking than human drawings, we find that
they can already be used to train high-performance ink-painting
models as explained in the next section.

In addition to the captured data, we manually annotated all the
paths and segmentation masks for each stroke. The paths allow
computing accurate distance calculations, that jointly with the masks,
allow our proposed model to learn to generate more natural strokes.

3.2. Data Collection

The focus of our data collection approach is to fuse the multiple
views to generate the resulting ink painting without occlusions,
shadows, or other artifacts. We do this by first calibrating the setup
offline, then we predict the occlusions from discrepancies in the
views, before filtering noise with morphological operators, and fi-
nally blending the images together to obtain the final fused ink
painting image. Figure 2 shows an overview of our proposed data
collection approach.

3.2.1. Offline Calibration

We first employ incremental Structure-from-Motion (SfM) [Wu13,
Ull79] to estimate the mapping from the camera image to world
coordinates. We optimize for both extrinsic and intrinsic camera
parameters by minimizing the mean squared projection error of AR
markers.

3.2.2. Image Fusion

With the pre-computed calibration, we perform mask-aware blend-
ing to obtain an occlusion-free ink painting image. First, we project
the camera images using the calibration parameters to obtain
{III1, III2, III3,} Then, we calculate the binary difference map AAA with:

AAAi, j = AAA j,i =
[

|IIIi − III j|< τ
]

, (1)

where AAAi, j denotes a difference map between i-th image and j-
th image, | · | denotes the absolute value, and τ is a threshold to
determine the pixel difference. In this work, we set τ = 50 when
using 8-bit RGB values considering the light and camera noise.

We hypothesize that the occluded area should be overlapped with
another difference map, and using the difference maps, we compute
the occlusion maps MMMi with:

MMMi =
(

1−AAAi, j

)

⊙
(

1−AAAi,k

)

, (2)

where MMMi denotes i-th image’s occlusion map, ⊙ indicates element-
wise multiplication, and both AAAi, j and AAAi,k denote a difference map
against j-th, k-th image. We find our approach is more robust than
training a segmentation model or other data-driven approach. For
more accurate occlusion mask generation, we also employ erosion
and dilation morphological operators [Dou18] to MMM. In particular,
we first apply a 60-pixel erosion followed by a 60-pixel dilation.

We finally blend the visible areas of the projected images
{III1, III2, III3} using refined masks {MMM1,MMM2,MMM3} as follows:

III
′

i+1 = IIIi ⊙ (1−MMMi)⊙ M̂MMi (3)

M̂MMi+1 = M̂MMi ⊙MMMi (4)

M̂MMi denotes an accumulated mask that is used for filling the occluded
area and we initialize M̂MM0 = 111.

Finally, III′4 is used as the final reconstructed image of the ink
painting. This resulting image is the composition of the visible areas
of all the cameras which are blended in the order front image III1, left
image III2, and right image III3.

4. Data-Driven Ink Painting

In this section, we propose a data-driven model that is capable of
ink painting, closely mimicking real-world ink painting effects. Our
model consists of three components: stroke embedding to capture
stroke direction and fading, ink painter to draw the strokes, and
lighting correction to improve visual quality.

4.1. Stroke Embedding

Our painter model consists of an image-to-image translation model,
that converts rasterized vector stroke paths into realistic ink brush
strokes. One of the issues with the rasterization of vector strokes is
that the stroke direction information is lost, which limits the quality
of the results. We overcome this by converting the vector strokes
into a stroke embedding, where the stroke direction information is
preserved, allowing for richer and nuances painting effects.

In order to capture the drawing direction and fading effect, we
embed the distance from the starting position of a stroke with:
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Figure 3: An overview of our proposed data-driven ink painting

framework: We begin with an empty canvas, then for each stroke, we

use a stroke embedding to rasterize it and feed it to an ink painting

model, that combines it with the previous canvas state. Finally, a

lighting correction model can be used to tweak the final look of the

ink painting.

s(u,v) = f (u,v) g(u,v) , (5)

where s denotes the stroke embedding, f denotes the stroke mask
function, g denotes the fading distance function, and (u,v) indicate
the 2D coordinates of a pixel.

The stroke mask function f is defined as follows:

f (u,v) =

{

1, if(u,v) ∈ SSS

0, otherwise
(6)

where SSS denotes an stroke region.

The fading distance function g is defined as follows:

g(u,v) = max

(

1−
1
α

h(u,v)−βi, θ

)

(7)

where the α is a fading ratio, βi s the accumulated distance of the i-th
brush stroke, h is a distance function, and θ denotes the minimum
value to ensure that the embedding is completely disappear.

As a distance function h we use the Euclidean distance between
the current position (uN ,vN) and the stroke starting point (u0,v0).
Specifically, the distance of a point is calculated by N points sampled
at equal intervals from the start point to the current point, and the
sum of the distances is used as the distance. We define the distance
function h as follows:

h(u,v) =
N

∑
i=0

√

(ui+1 −ui)2 +(vi+1 − vi)2 (8)

Given that the amount of liquid contained in a brush monotoni-
cally decreases, we compute the accumulated distance of i-th brush

stroke as:

βi+1 =

{

βi +max(1−g(u,v)) , if N > 1

0, otherwise
(9)

where N denotes the number of times the brush has been used since
it was updated. Each time the brush is dipped in ink, we set β0 = 0.

4.2. Lighting Correction

In order to minimize the effects of shadows when constructing the
dataset, we employ a backlight, which has the unfortunate side
effect of changing the the overall lighting of the output. In order
to correct this, we use a small training dataset of backlit and non-
backlit images to train an image-to-image translation model that can
create a natural ink painting look.

We first reshape the image to the pixel sequences PPP and correct
the pixel value by a nonlinear mapping model. We can then define
the lighting correction process as:

ppp
′ = MLP(ppp) (10)

where ppp is the original pixel, ppp′ is the light corrected pixel, MLP

is a multi-perceptron model. We model with MLP by two linear
layers. The first layer maps the one-dimensional pixel to the latent
space. Then, we reverse the latent space to the one-dimensional
pixel at the next linear layer. For the layer, we use a hyperbolic
tangent activation function (tanh). Furthermore, we do not use both
batch normalization and activation functions on the output of the
first layer since these degrade the light-corrected results and the
network itself is a shallow network. When the optimizing phase, we
use Adam optimizer with a learning rate of 1e−3. For the data, the
user can use backlight-paired images for the training.

We train the light correction model by minimizing the gap be-
tween the light-corrected image to the non-backlight images. In
particular, we employ the weighted L1 loss as the training objective
function:

L(ppp
′
, ppp

⋆) =
∣

∣

(

ppp
′− ppp

⋆
)

⊙
(

1+ γ(1− ppp
⋆)
)∣

∣ (11)

where γ is a weighting hyper-parameter that controls how much
importance is given shadow over the ink painting paper. Specifically,
a value of γ = 0 makes the loss behave like an L1 loss, while a
value of γ = 1 makes the dark regions have twice the influence of
the light regions. The reweighting compensates for the bias toward
white pixels in the training data. ppp⋆ is the light-corrected image
which is from our backlight-paired dataset. After the training of
the light correction model, we freeze the parameter and use the
pre-processing of the ink state.

4.3. Ink Painter Architecture

Our ink painter model consists of an image-to-image translation
model that converts the stroke embedding and a canvas state to
an ink painting stroke. Our model consists of an encoder-decoder
fully convolutional architecture that is applied recursively stroke-
by-stroke to update an initially blank canvas state, which consists
of a 2D grayscale image representation of the paper on which is
being drawn. An adversarial training scheme that makes use of an
auxiliary discriminator is used to improve the quality of the results.
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Advanced ink painting techniques include wet-on-wet painting,
where water or diluted ink is first applied to the paper, before draw-
ing on top to create complex bleeding effects. To be able to represent
these effects, we recursively draw to a canvas, allowing the model
to learn to render complex bleeding. We note that our stroke em-
bedding consists of 0 on non-drawn areas and close-to-1 values on
drawn areas which allows us to use zero padding in the convolutional
layers without introducing border artifacts.

Our stroke embedding consists of a 2D grayscale image with
additional metadata that encodes the stroke shape and direction.
In particular, as metadata, currently, the type of paper and brush
hair size are currently used. We update the painting canvas in the
inference phase recursively with:

yyy
t+1 = max

(

P
(

yyy
t
,sss

t
,mmm

t
,sss

t−1
,mmm

t−1
)

, yyy
t
)

(12)

where yyyt+1 is the new canvas state, P is our ink painter model, yyyt

is the canvas state at time step t, ssst is the stroke embedding of the
t-th stroke, and mmmt is additional meta-data regarding the paper and
brush. The max operator is used under the assumption drawing
is purely additive, i.e., ink is not able to disappear. The previous
stroke and metadata are aimed at enabling ink bleeding effects by
providing detailed information about paper, brush, and the current
and previously drawn strokes. In the case of consecutive strokes,
information from the previous stroke is used, which helps improve
blotting and blending effects. For more fine-grained control, the user
can also choose to edit the stroke embedding sss. Furthermore, the
model uses blank input in place of the two parameters ssst−1, mmmt−1 if
the user ignores the past rendering information on the present time
step.

We model P with an encoder-decoder convolutional network that
consists of 21 layers. First, the input is processed by a 7× 7 con-
volutional layer with reflection padding, then it is reduced in size
four times with downsampling layers, then self-attention is applied,
followed by 9 convolutional layers, another layer of self-attention,
and finally, four upsampling layers and a 7×7 convolutional output
a brush stroke at the same resolution as the input image. All convo-
lutional layers, except the first and last, use 3×3 pixel kernels with
1 pixel 0-padding. Every layer uses batch normalization and ReLU
activation function, except the last layer which uses a hyperbolic
tangent activation function (tanh). In the case of downsampling,
a stride of 2 is used, while upsampling is implemented by bilin-
ear upsampling followed by a convolutional layer. Please see the
supplemental materials for full details of the model architecture.

4.3.1. Training Details

We train our ink painter model using an L1 loss and adversarial loss
Ladv for single-time steps or individual strokes. In particular, we can
write the training loss as:

Ladv +λ
∣

∣

∣
y

t+1 −Pi(sss
t
,mmm

t
,sss

t−1
,mmm

t−1)
∣

∣

∣

1
(13)

where Ladv is the standard adversarial loss and λ is a weighting
hyper-parameter on L1 loss which we set to λ = 10 in all experi-
ments.

For L1 loss, we also use identity mapping constraint that if

Input. Light Corr. Input. Light Corr.

(w/o backlighting) (w/o backlighting)

Figure 4: Visualization of the light correction. The light correction

compensates for the fact that the paper of training data is backlit,

allowing for the rendered ink paintings to have a more natural look.

the input stroke mmmt is none, the model will produce the present
time step’s state ssst . When training, we prepare original mmmt and
blank version of mmmt

b and compute the loss with same λ as

λ
∣

∣

∣
yt −Pi(sss

t
,mmmt

b,sss
t−1

,mmmt−1)
∣

∣

∣

1
.

5. Experiments

5.1. Experimental Setting

We train our model with the ADAM optimizer [KB14] for 200
epochs with a learning rate of 0.0002, weight parameter λ = 5,
and momentum parameters β1 = 0.5 and β2 = 0.999 and select the
model with best quality. During inference, we initialize an initial
state yyy0 = 0.075 based on the paper color statics.

We compare with the state-of-the-art ink painting commercial
software Expresii [CT05, Chu17], Adobe Fresco [ado19], Rebelle6
pro [reb22], and DeepBrush [WCW∗18]. Expressi is based on real-
time fluid simulation of the interaction between the ink and the
paper, while the exact details of the implementation of Adobe
Fresco is unknown. Rebelle6 pro is a similar framework to Adobe
Fresco that expresses complex textures with a variety of tools. Deep-
Brush [WCW∗18] is a data-driven rendering model that is trained
on simulated data. For a fair comparison, we perform an in-depth
analysis of both comparison approaches to choose the best combi-
nation of brush and parameters to represent the reference images,
and adjust the brush color and size manually for each stroke. In
particular, we use brush parameters of the Wash Soft Live water-
color brush (Adobe Fresco), Large-short brush (Expresii), and round
brush (Rebelle6 pro), which our analysis shows give the best results
on our dataset. Full details on the brush and parameter selection are
shown in the supplementary materials.

Each reference image used in the evaluation is traced to obtain
vector lines which are used to generate the input for all approaches
while making sure the stroke order is the same as the reference
image.

© 2023 The Authors.
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Expresii Adobe Fresco Rebelle6 pro DeepBrush Ours Reference Stroke Order

[Chu17] [ado19] [reb22] [WCW∗18]

Figure 5: Qualitative ink painting results for different settings.. The proposed approach consistently shows a similar style to the artist-created

references. See the supplementary material for additional examples.

For the DeepBrush model, we used our proposed dataset and
preprocessed it with light correction for a fair comparison.

5.2. Quantitative Comparison

We compare Expresii, Adobe Fresco, and Rebelle6 pro using 21 test
images with 148 strokes including the results shown in Fig. 1 and
Fig. 5. For each image we compute the LPIPS [ZIE∗18] at 1024×
1024 pixel resolution with VGG network, which captures differences
between shape and texture between the images. We use SSIM and

MSE to objectively evaluate the image quality. Numerical results
are summarized in Table 2. We can see that the results significantly
favor our approach over existing approaches, indicating that it is able
to better capture all the different ink painting effects. Specifically,
for the models that use our proposed dataset (DeepBrush and ours),
LPIPS and SSIM show better scores compared with the commercial
software systems, which more accurately capture structural and
perceptual differences. Furthermore, we can see that, even when
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Expresii

Adobe Fresco

Rebelle6 pro

DeepBrush

Ours

2 strokes 4 strokes 6 strokes 8 strokes 10 strokes

Figure 6: Stroke-by-stroke break down. We show the painting process for an example image.

trained on the same dataset, our approach is able to represent the ink
paintings.

5.3. Qualitative Comparison

We compare with existing approaches using a diversity of different
inputs and show some example results in Fig. 1 and Fig. 5. Although
all approaches use brushes designed for ink painting, we can see that
Expresii fails to correctly blend overlapping strokes, Adobe Fresco
is unable to represent complex textures, and Rebelle6 pro produces
dissimilar textures with reference images. Furthermore, Expresii,
Adobe Fresco, and Rebelle6 pro fail to capture the strokes fading

as ink decreases. DeepBrush can produce more accurate results on
some rendering results. However, their model fails to capture the
fading effects on many of the strokes, and thus failing to capture the
important global effects of ink paintings.

By leveraging our dataset and model improvements, our approach
is able to capture complex stroke interactions and obtain the most
plausible results when compared with the reference human-drawn
images. In particular, the character in Fig. 1 is composed of a single
long stroke with overlapping parts where it can be seen that the
existing approaches fail to capture the subtle complexity of the real

© 2023 The Authors.
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Table 2: Quantitative comparison. Evaluation with

LPIPS [ZIE∗18] is done over 21 images (1024 × 1024 px)

with 148 strokes. The best values are highlighted in bold. Deep-

Brush and Ours are trained with the proposed dataset while the

other approaches are based on their own simulator’s rendering

system.

Expresii Fresco Rebelle6 DeepBrush Ours

LPIPS ↓ 0.3413 0.2824 0.2898 0.2691 0.2593

SSIM ↑ 0.8617 0.8768 0.8518 0.9011 0.9070

MSE ↓ 0.0364 0.0236 0.0110 0.0146 0.0134

drawing, while our approach is able to significantly outperform
them.

We also show a breakdown of the drawing process in Fig. 6. The
characters in Fig. 6 are composed of several line intersections. Our
approach gives the most plausible results at the stroke-by-stroke
level whereas compared approaches fail to reproduce the physical
phenomenon, e.g., line intersection or color fading, and is able to
reproduce the drawing process most accurately.

5.4. Lighting Correction Analysis

We visualize the effect of lighting compensation in Fig. 4. Our light
correction model can handle shadows on paper in both backlit and
non-backlit settings. The light correction scheme has an important
role in correcting artifacts from the data collection process intro-
duced during training with our dataset.

6. Limitations and Discussion

We have presented a dataset and an approach for interactively draw-
ing realistic ink paintings. Our dataset is able to capture accurate
high-resolution ink paintings in the reproducible manner with a
robot arm. This data allows our model to learn the complex inter-
actions between strokes and paper, and experiments show that our
results are much more convincing than existing approaches. We be-
lieve our model is an important first step in data-driven ink painting
and hope that the release of our dataset will stimulate research in
this field as there are still open problems as discussed below.

Although the proposed approach significantly improves rendering
results by simulating complex interactions between ink and paper,
it still struggles with more difficult cases of wet-on-wet painting,
that is, painting on areas of the paper that is not dry and susceptible
to blotting. We show such a challenging example in Fig. 7, where
existing approaches struggle to accurately represent blotting. Al-
though the results of our approach are still significantly better than
existing methods, there is still significant room for improvement
when compared with the reference image. To improve such results,
a more sophisticated recursive model capable of capturing wetness
to understand blotting may be necessary.

Additionally, our proposed CNN updating scheme, uses the the
canvas in its entirety as input. While this can limit the resolution size,
ink paintings can have complex interactions with paper and water,
affecting areas much larger than just the stroke, and patch-based

Expresii

Fresco

Rebelle

DeepBrush

Ours

First Stroke Second Stroke Reference

Figure 7: Limitations. Complex wet-on-wet interactions such as

drawing a dark stroke across a wet area are still an open challenge

for existing approaches. Reference images are real ink painting

effects.

approaches are limited in what parts of the image can be updated
in each iteration. Given that there is a trade-off between rendering
quality and computational complexity, merging patch-based and
image-based approaches is left as future work and is out of the
scope of this paper.

In addition to rendering improvements, utilizing the metadata
(e.g., 6DoF parameter, amount of ink, etc.) is one of the directions
to improve the approach. The proposed approach is suitable for real-
time usage, however, given the stroke-based nature of our approach,
the current interface is not optimal for user experience (e.g., faster
computational speed. real-time usage). The focus of this work is
proposing an efficient and high-quality data-driven approach to
reproduce complex real-world effects, which are not possible with
other existing approaches. Extending the proposed approach to be
more usable and improving the user interface is out of the scope of
the current work and we believe is an exciting future direction.
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