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Abstract

Content-aware image resizing aims to reduce the size of
an image without touching important objects and regions. In
seam carving, this is done by assessing the importance of
each pixel by an energy function and repeatedly removing a
string of pixels avoiding pixels with high energy. However,
there is no single energy function that is best for all images:
the optimal energy function is itself a function of the image.
In this paper, we present a method for predicting the quality
of the results of resizing an image with different energy func-
tions, so as to select the energy best suited for that particular
image. We formulate the selection as a classification prob-
lem; i.e., we ‘classify’ the input into the class of images for
which one of the energies works best. The standard approach
would be to use a CNN for the classification. However, the
existence of a fully connected layer forces us to resize the
input to a fixed size, which obliterates useful information,
especially lower-level features that more closely relate to
the energies used for seam carving. Instead, we extract a
feature from internal convolutional layers, which results in
a fixed-length vector regardless of the input size, making it
amenable to classification with a Support Vector Machine.
This formulation of the algorithm selection as a classification
problem can be used whenever there are multiple approaches
for a specific image processing task. We validate our ap-
proach with a user study, where our method outperforms
recent seam carving approaches.

1. Introduction
Due to the advent of devices with diverse sizes of screens,

resizing images and videos to matching aspect ratio has
become increasingly necessary. Beyond simple scaling and
cropping, various techniques for reshaping images without
changing their feel and content have been proposed. Such
techniques, which are called the content-aware image resizing,
try to resize the image by cutting out unimportant regions,
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Figure 1. A flowchart of our method. (a) Input image. (b) Feature
extraction using a trained CNN. (c) Extracted low-dimensional
feature vector. (d) Classification of the feature vector to determine
the best energy. (e) The chosen energy is used for seam carving.

without reducing the size of important objects and regions.
For instance, a picture of a person with a large background
scene might be reduced in size by only cutting the background,
without changing the size of the foreground.

Among the proposed techniques, seam carving [2] is a fast
and effective method that has been a focus of research and
improvement. It first computes an energy, which estimates
the importance of each pixel, and use it to avoid removing
those pixels with high energy. In the original paper [2], the
intensity gradient is used as the energy. However, this can
lead to warping important regions with complex background,
such as a forest. In such a case, using the visual saliency
as the energy can obtain good results [4]. Along these
lines, various energy functions have been proposed for seam
carving. However, each has its strength; an energy works
for certain kind of images, another for others. Though the
results can be very different, it is not simple to choose the
right energy to use for each image.

In this paper, we propose adaptively selecting the energy
to use for seam carving according to the input image. While
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Figure 2. The eight different energy maps we use, computed on an example input image.

we focus on the seam carving task, our approach is amenable
to any application in which a set of approaches exists for
an image processing task. We formulate the problem as
a classification problem using a pre-trained Convolutional
Neural Network (CNN) to extract image features. In contrast
to the standard approach, where the use of a fully connected
layer fixes the size of the input image, we use the mean and the
covariance of the internal convolutional layers. This allows
using input images of arbitrary size, as well as using lower
level features, that more closely relate to the energies used
for seam carving. We then train a classifier to estimate the
quality of the result of the different seam carving approaches
using these features, which allows us to improve the overall
quality. An overview of the approach can be seen in Fig. 1.

We create a dataset of seam carving results and their
quality score, and evaluate considering eight different energy
functions for the seam carving problem. In total, we use
600 images for training our model. By a user study, we also
compare the quality of the results of using the original single
energy function with that of using the energy function chosen
by our approach.

2. Related Work
Content-aware image resizing aims to reduce the size of

an image without touching important objects and regions.
Early examples of such methods include [15], which detects
human faces in pictures and crops them to create thumbnails,
as well as [4], where images are resized by automatically
detecting important regions in the image according to a visual
attention model that includes the notion of regions of interest
(ROI) and attention value (AV). There is also a method [13]
that crops an image preserving important regions that are
detected by tracking the movement of the eyes of a human
observer, obtaining good resizing results.

Seam carving [2] is one of the most representative of
the methods that define an energy function assessing the
importance of each pixel and then resize images according
to the energy. Seam carving uses the intensity gradient as

the energy map in cutting out a “seam”, which is defined as
a string of pixels that connects the left and the right, or the
top and the bottom, of the image such that there is exactly
one pixel in each column or row. This has been improved
in various ways, including an extension to videos that cuts
out a 2D seam using graph cuts [12], and a combination
with scaling [6]. Matthias et al. [8] took advantage of a
chronologically and spatially discontinuous seams to resize
videos robustly. In [10], for esthetically pleasing resizing of
images with multiple objects, depth maps are used to take
the depth of the scene and the distribution of objects into
consideration. Cao et al. [3] divided the image into a set of
strips and from within each strip chose a single seam leading
to improved results.

Thus, many different variations of energies for seam
carving have been proposed. Yet there is no method to
select the energy best suited for each particular image. In
this paper, we propose a method to do that by learning the
correspondence between images and resizing results using
various energies, and apply it for overall better automatic
resizing results.

3. Proposed Method
We propose a method to select the energy function most

suited to resize a given input image using seam carving in
terms of the resizing quality. We train a classifier to estimate
the quality of the result of the different seam carving energy
functions. For a given input image, we use the classifier to
select the energy function that gives the highest predicted
score and then use it for seam carving.

3.1. Seam Carving

A horizontal seam is an eight-neighbor-connected string
of pixels that connects the left and the right side of the image
such that there is exactly one pixel in each column. Similarly,
a vertical seam connects the top and the bottom and there
is exactly one pixel in each row. For example, in an n × m



image, a vertical seam s is given by

s = {si}ni=1 = {(x(i), i)}ni=1, (1)

for some function x that gives an x-coordinate for each y-
coordinate i = 1, . . . ,n such that |x(i) − x(i − 1)| ≤ 1 for all
i = 2, . . . ,n.

In seam carving [2], the seam that connects together the
least important pixels, according to an energy map that
gives the importance of each pixel, is found by dynamic
programming. By removing this seam, the image is reduced
by one pixel in an direction (vertical or horizontal) without
losing important regions. This is repeated as necessary in
both directions.

Let e(I, p) be the energy function that gives the importance
of the pixel p in image I and define the cost E(I, s) of a seam
s on image I by

E(I, s) =
n∑
i=1

e(I, si). (2)

Then the optimal seam s∗ is given by minimizing E(I, s):

s∗ = argmin
s

E(I, s) = argmin
s

n∑
i=1

e(I, si). (3)

In this paper, we use multiple energy functions e(I, p) and
choose one for a given input image so that the result of the
resizing using it is the best in quality.

3.2. Energy

The energy function gives each pixel a value that repre-
sents its importance as a number in the interval [0,1], 1 being
the most important. Since the best energy function for each
image can be different, here we use eight to choose from. In
addition to the gradient of intensity (Grad) used in the original
seam carving paper [2], we use five saliency-based energies:
the Frequency-tuned saliency [1](FTS), the Histogram-based
saliency [5](HS), the Region-based saliency [5](RS), the
Geodesic saliency [17](GS), and the Saliency filter [11](SF).
In addition, we also use the Line Segment Detector [7](LSD),
which is based on line segment detection, and its (normal-
ized) sum with the gradient (LSD+Grad). Fig. 2 visualizes
the eight energy functions on an example image.

3.3. Seam Carving Dataset

We use the images from the MS COCO dataset [9] in our
dataset. We randomly chose 1000 images and resized them
by seam carving, using the eight energy functions above
and subjectively scored the naturalness of each result. Each
image was resized to 60% of the original width and 80%
of the original height. The scoring was done based on the
following criteria:

Input

(a) score 0 (b) score 1 (c) score 2

Figure 3. Examples of scoring the result of resizing. (a) Most of
the persons are cut out. (b) Some of the persons are cut out, also
their distance reduced. (c) The persons are intact. (a), (b), and (c)
are the results of using LSD, HS, and GS as energies, respectively.

Score 0: The object of interest is clearly distorted.

Score 1: The object of interest is incomplete to a small
degree, or there is an obviously unnatural part in the
image.

Score 2: The object of interest is almost intact and there is
no unnatural part in the image.

An example of resizing results and their scores is shown in
Fig. 3. In (a), most of the persons are cut out, while in (b)
some of the persons are cut out, still seeming unnatural. In
contrast, in (c) the persons are intact and the whole image
seems natural. The examples (a), (b), and (c) are the results
of using LSD, HS, and GS as energies, respectively.

3.4. Feature Vector

As seam carving is used for image resizing, it is important
to be able to compute feature vectors from images of arbitrary
size. The standard approach of using the output of the fully-
connected layers of pre-trained CNNs as features is thus
not applicable, as it limits the input images to a fixed size.
Uniformly resizing input images to a fixed size obliterates
useful information, especially lower-level features that more
closely relate to the energies used for seam carving. We
instead propose using the outputs of the convolutional layers,
and converting them into fixed-length feature vectors, even
though they are computed on images of arbitrary sizes.

Our method here is inspired by the Region Covariance [16],
extending it to the activation map with higher-dimensional
“pixels”. It has the important feature that the output vector
is always of the same dimension irrespective of the size of
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Figure 4. Overview of the process to extract feature vectors from the convolutional layers of a CNN. We illustrate the example assuming that
the activation map is of the size W × H-“pixels” with C channels. The size of the map depends on the input size. First, the C channels are
reduced to 16 dimensions for each “pixel”, using PCA. Then, the “pixel”-wise mean and covariance is computed, resulting in a 16-dim mean
vector and a 16 × 16 covariance matrix. Since the covariance matrix is redundant, we only take its upper triangle, which gives 136 numbers.
Adding the mean vector, the result is a 152-dim feature vector. Note the size of the feature vector is independent of the input image size.

the input image. Our approach consists of computing the
pixel-wise mean and covariance of the activation map of a
convolutional layer, and using them as a fixed-length feature
vector. However, as the number of features can be very large,
thus leading to enormous feature vectors, we initially reduce
the number of channels by applying Principal Component
Analysis (PCA) pixel-wise. Finally, as the covariance matrix
is symmetric, the values on one side of the diagonal become
redundant, which is why we only use the upper triangle. As
a feature vector, we use the concatenation of the mean vector
and the upper triangle of the covariance matrix, which is
flattened into a vector. An overview of the feature extraction
approach is illustrated in Fig. 4.

3.5. Classifier

We train a support vector machine by stochastic gradient
descent with the feature vector and the score of the images
in our training dataset. For an input image, the classifier
predicts the score (0-2) each of the eight energy functions
would obtain.

4. Results
We train using 600 of the images in the dataset and validate

using the remaining 400 images. As a feature extractor, we
consider the VGG-16 pre-trained CNN [14], in which we use
the conv4 layer as the source of the feature vector. We reduce
the activation output of the layer to a 152-dimensional vector
using our feature extraction approach. Among the classifiers
we tried, the best predicted the score with an accuracy of
60.25% on the validation set.

4.1. Feature Evaluation

We evaluate different layers of the VGG-16 network as
possible features. In particular, we consider the conv2,
conv3, conv4, and conv5 convolutional layers and the fully-
connected fc6 layer. For convolutional layers we reduce the
channels to 16 using PCA, which allows us to obtain a 152-
dimensional feature vector when concatenating the mean
vector and the covariance matrix of the compressed activation
maps (see Fig. 4). The fully-connected layer, which extracts

Table 1. Classification results for features extracted for different
layers for predicting which seam carving energy to use. We also
compare with using 224× 224 pixel fixed sizes (Resized), and using
the original size (Full Res.). Best result is highlighted in bold.

conv2 conv3 conv4 conv5 fc6

Resized 43.19 32.78 52.34 47.00 39.84
Full Res. 56.16 57.88 60.25 54.38 N/A

4096-dimensional features, is one of the popular approaches
for extracting features with pre-trained CNNs. The results
of predicting the score of the different energies is shown in
Table 1, in which we also compare the accuracy of resizing
the images to 224×224 pixels and using the full resolution of
the images. We can see that our proposed feature extraction
approach, which allows using full resolution images, gives a
significant improvement in classification performance. For
all further results, we use the features extracted from the
conv4 layer for our energy function classifier.

4.2. User Study

We also evaluate our approach in a user study using 400
images from the MS COCO dataset. We compared our
approach against Grad [2], HS [5], and SF [11]. A total
of 8 people participated in the user study and were asked
to choose the better one out of each pair of results shown.
Each user was shown 100 random pairs of images consisting
of the result of our approach and the result of one of the
other approaches, chosen randomly. Results are shown in
Table 2, where we see our proposed approach significantly
outperforms all the other approaches.

Table 2. Results of the user study in which we compare our approach
against three recent seam carving approaches.

vs Grad [2] vs HS [5] vs SF [11]

Ours (% preferred) 62.25 67.00 57.38
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Figure 5. Qualitative comparison of resizing results.

4.3. Qualitative Comparison

We show qualitative results in Fig. 5. Our approach
adaptively chooses the energy function for each case. Given
that the optimal energy function depends on the image at
hand, this allows obtaining more convincing results in a larger
variety of cases than always using the same energy. While
we have focused on chosing energy for the original seam
carving [2], it is also possible to use our approach with other
varieties, such as the improved seam carving [12]. Some
examples of using both approaches are shown in Fig. 6.

5. Conclusion

In this paper, we have presented a method for adaptively
selecting the best energy function for seam carving. We
have shown the effectiveness of formulating the selection as
classification using CNN, using a size-independent feature so
that small low-level feature is preserved. Although we have
focused on a specific problem, our approach is applicable to
a wide variety of problems, and can be easily extended to
new approaches.



(a) Input (b) Chosen energy map (c) [2] (d) [12]
Figure 6. Using the energy function chosen by our approach with both seam carving [2], and improved seam carving [12].
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