
Joint Gap Detection and Inpainting of Line Drawings

Kazuma Sasaki Satoshi Iizuka Edgar Simo-Serra Hiroshi Ishikawa

Department of Computer Science and Engineering

Waseda University, Tokyo, Japan

milky_kaid.lc@ruri.waseda.jp {iizuka, esimo}@aoni.waseda.jp hfs@waseda.jp

Abstract

We propose a novel data-driven approach for automati-

cally detecting and completing gaps in line drawings with

a Convolutional Neural Network. In the case of existing

inpainting approaches for natural images, masks indicating

the missing regions are generally required as input. Here, we

show that line drawings have enough structures that can be

learned by the CNN to allow automatic detection and com-

pletion of the gaps without any such input. Thus, our method

can find the gaps in line drawings and complete them without

user interaction. Furthermore, the completion realistically

conserves thickness and curvature of the line segments. All

the necessary heuristics for such realistic line completion

are learned naturally from a dataset of line drawings, where

various patterns of line completion are generated on the fly

as training pairs to improve the model generalization. We

evaluate our method qualitatively on a diverse set of chal-

lenging line drawings and also provide quantitative results

with a user study, where it significantly outperforms the state

of the art.

1. Introduction

Line drawings, either drawn by pencil on paper or by

digital pen on tablet, are used in many situations such as

drafting or illustrating to express object contours or shapes.

However, a scanned image of line drawings on paper or

roughly-drawn illustrations may be missing some parts of

the lines. Completing these line segments contributes in

enhancing line drawings visually and in making them more

precise. Line drawing is also the first step in creating color

illustrations or animations, where appropriate completion of

line segments are important, lest the gaps cause unintentional

colorization in a later step when the flood fill (i.e., paint

bucket) tool is used. However, it is onerous and time-

consuming to find the gaps and manually complete the line

segments while keeping natural thickness and curvature.

For natural images, various approaches to image inpainting

have been proposed. For instance, methods that synthesize

nearest neighbor patches [1, 17, 19] have shown especially

good results in completion of natural images. Darabi et al. [5]

proposed an method that considers not only the patch-color

information but also the gradient of images, which conserved

inpainting results better than previous works. However, these

methods do not work very well when there are complex

structures such as lines and curves in the removed region.

As a result, they are incapable of completing line drawings

adequately (Fig. 1(b)), especially in continuing the thickness

and the curvature of the line. Moreover, these approaches

require the missing regions specified as input, which is a

real drawback in applications where there are numerous

such regions. Our approach can overcome these limitations

and detect and complete the gaps without any input mask

specifying inpainting regions.

In this paper, we propose a novel approach for automati-

cally filling-in the gaps in line drawings. To our knowledge,

there is no known method that can naturally “inpaint” line

drawings in this way. Moreover, in contrast with most inpaint-

ing methods, our approach can both automatically detect the

missing line segments and complete them, adaptively recog-

nizing and generating lines, curves, and corners suitable for

the structure of the line drawing. Our approach to this prob-

lem is training a Convolutional Neural Network end-to-end

with many different image patterns in a line drawing dataset.

By generating training data pairs that contain many different

image patterns in real-time, we train our model efficiently for

the task of joint gap detection and completion.

We compare and evaluate our approach to the state of the

art in inpainting, both qualitatively and quantitatively, with a

user study. Our approach is preferred to others over 90% of

the time, and obtains a 1.5 point advantage on a scale of 1

to 5 when absolutely scored. Note that, while our approach

does not require a mask indicating what regions to inpaint,

other approaches require such a mask.

In summary, the key features of our contribution are:

• a novel method for inpainting raster images of line

drawings, with

• automatic detection of missing regions,

• natural continuation of thickness and curvature, and

• training data generated on-the-fly using a small dataset.

1

mask

(a) Input (b) Image Melding [5] (c) Ours

Figure 1. An example of completion of gaps in a line drawing. (a) The input raster image of a line drawing containing numerous gaps. (b)

The result of inpainting with Image Melding [5], which does not generate accurate lines, even though it requires a region mask specifying

where the lines are missing as an additional input (shown as the magenta mask). (c) The result by our approach, where the structure in the

lines are conserved, even though it does not require the missing-region mask. Our method can correctly detect and complete the gaps in not

only single lines, but also in several parallel lines and intersecting lines.

2. Related Work

One of the traditional approaches for inpainting and line-

completion consists of exploiting the image curvature. In-

painting without texture [3] or using Euler’s elastica [16]

give good completion results for grayscale images. In a

similar problem, Esedoglu et al. [7] use a Mumford-Shah

model [12] for inpainting. These approaches have shown that

they are capable of line completion to some extent; however,

they require the missing region as input masks. Shoenemann

et al. [15] propose a region-segmentation approach with

curvature regularity and extend it to solve the inpainting

problems, although regions that contain complex line struc-

tures are not correctly segmented. Huang et al. [8] propose a

curve-completion technique for reconstructing from several

image fragments. This approach needs to join the curves

extracted from the image fragments one-by-one: it cannot

complete several line segments contained in an image. There

are other methods that take a vector image as input and com-

plete curves by fitting with Bézier or spline curves. However,

regions with intersecting lines are not completed very well,

and that they require vector input falls short of the desired

capability.

For inpainting more general images, approaches that

utilize similar regions in an image have shown good results.

In such approaches, target regions in a given image are filled

using information from surrounding regions in the same

image. Typically, the target regions are given as input masks,

specifying gaps in old images or objects to be erased [2].

Criminisi et al. [4] presented a technique that can complete

larger regions by using both texture and object structure such

as the boundary. Drori et al. [6] used the level-set method

to gradually complete large regions from the outside to the

inside. Patch-based inpainting method [1, 5, 10, 17, 19] have

shown good results for natural image completion. These

methods look for patches in the same image that are most

similar to the region surrounding the target, and synthesize a

texture for filling-in from them. Recently, a deep learning

based approach [14] has also been proposed for inpainting.

However, this approach is limited to fixed size input images

and focuses on inpainting a fixed sized region in the center of

the image. In general, the patch-based completion approaches

have difficulty completing line drawings that contain complex

structures, e.g., intersecting lines and curves in the target

region, as line-drawing images are dominated by white region,

making it hard to detect similar patches. Additionally, they

generally require the target region as the input, either given as

a mask or by some user interaction. In this paper, we propose

a novel data-driven approach to both automatically detect

and fill the missing region of line drawings. By training a

CNN with many different image patterns, we show that we

can correctly complete line segments conserving thickness

and curvature.

Related to this approach, we have applied deep learning

to the sketch simplification problem [18]. Though we also

use a fully convolutional network here, the networks differ in

several aspects. At a low level, we employ upsampling layers

in place of deconvolution layers, and reduce the number of

filters in posterior layers, which behave in a way closer to

sharpening filters than feature extractors. This results in

both higher quality results and a much faster runtime. At a

Table 1. Architecture of our model. We use two different types of layers denoted as “C” for convolutional layers and “U” for nearest neighbor

upsampling layers. All convolutional layers use Rectified Linear Unit (ReLU) except for the last one, for which the Sigmoid function is used

to keep the output range [0,1]. Scale refers to the resolution of the output of the layer with respect to the original input size.

layer id 1 2 3 4 5 6 7 8U 8 9 10U 10 11 12U 12 13 14U 14 15 16

layer type C C C C C C C U C C U C C U C C U C C C

filters 24 64 128 256 512 512 256 256 128 64 64 32 16 16 8 4 4 2 1 1

stride 2 2 1 2 1 2 1 - 1 1 - 1 1 - 1 1 - 1 1 1

scale 1/2 1/4 1/4 1/8 1/8 1/16 1/16 1/8 1/8 1/8 1/4 1/4 1/4 1/2 1/2 1/2 1 1 1 1

conceptual level, while both networks output line drawings,

[18] is trained to simplify rough sketches using a small

manually created supervised dataset, while our model is

trained to both detect and inpaint line drawings, using our

data generation.

3. Line Drawing Completion Method

For line-drawing inpainting, we use a deep Convolutional

Neural Network (CNN). Unlike the more familiar CNN

models for classification, our model produces an image

output. It consists only of convolution and upsampling layers.

Since it does not have fully-connected layers, the size of the

input and output images are not fixed, outputting images of

the same size as the input. The input is a grayscale line-

drawing image, and the output is the image in which gaps in

the line drawing are completed. In our approach, we can train

the very deep model from scratch using a small dataset of

clean line drawings by augmenting it by generating different

kinds of line completion patterns automatically. We erase

parts of each image and use it as the input for training, while

the complete image is used as the target. By training with

these pairs of target and input images with discontinuous

regions, the network can learn where and what kind of lines

it should complete. The real-time generation of training data

by removing random parts of the images is critical in order

to train our model using only a small dataset.

3.1. Model Architecture

Our model is based on the fully convolutional networks,

which have been proposed for semantic segmentation [11, 13].

Since they do not have fully-connected layers, the whole

network functions as a kind of filter, and can be applied to

images of any size.

The structure of our model is summarized in Table 1.

This model consists only of convolution layers, using neither

pooling layer nor fully-connected layer. All the convolution

layers use a kernel size of 3 × 3 except for the first layer,

which uses a kernel size of 5 × 5. The proposed model uses

zero-padding for feature maps in all convolution layers, to

ensure that the image does not shrink. For example, if the

size of the filter kernel is 3 × 3 and the stride is 1 pixel, we

add a 1-pixel “margin” with value 0 to the border input maps.

We use filters with a 2-pixel stride to downsample to 1/2 size

in each axis, without the need for explicit pooling layers.

Downsampling allows the model to compute features and

recognize structures from a larger region. We additionally

use the nearest neighbor upsampling approach to increase

the resolution of the output. We found this upsampling to

give better results than the “deconvolution” layers usually

used in fully convolutional networks. The size of the output

is kept the same as the size of the input by using the same

number of downsampling and upsampling layers.

The general architecture follows an encoder-decoder de-

sign, in which the first half of the model serves to extract

features and compress the data by reducing the resolution of

the image. This allows each output pixel be computed from a

larger area of the input image. The second half of the model

serves to consolidate the lines and sharpen the output, which

is why it has a fewer filters in comparison with the first half

of the model.

For activation functions, we use the Rectified Linear Unit

(ReLU) for all convolution layers, except for the last one,

where the Sigmoid function is used instead, so that the output

falls within a grayscale range of [0, 1]. For training, we insert

a batch-normalization layer [9] after each convolution layer

except for the last. These batch-normalization layers keep the

mean of the output near 0 and the standard deviation near 1,

which enables the network to learn effectively from scratch.

Additionally, the input data is normalized by subtracting

and dividing by the mean and the standard deviation of the

training data, respectively.

3.2. Dataset and Training

In the training process, we use clean line-drawing images

as targets and the same images with lines at some regions

erased as inputs. In deep CNN models, typically millions

of training data is needed for learning well from scratch.

However, since there is no such dataset for line drawing com-

pletion, we generate training pairs with various completion

patterns automatically from a small dataset of line drawings.

Generating Training Data. Our dataset is based on only

60 images of simple line drawings. Each image has many

Dataset

Training data pairs

In
p
u
t

Ta
rg

e
t

Figure 2. The process of generating training data pairs of (input,

target) images from a small dataset. First, we prepare a small dataset

of images of various line patterns with different thickness, curvature,

and location. From this, we randomly choose an image and crop

out a patch. Then, we rotate, reverse, or downscale the patch and

set it as the target image. Finally, we remove the segments inside

randomly-generated squares to create the input image.

kinds of lines, e.g., polygonal lines, curves, or straight lines,

which can be intersecting and/or with various thickness and

curvatures. When training, we generate various training data

pairs as shown in Fig. 2. First, the target image of the pair

is generated by randomly cropping an image patch from a

dataset image. Then, the input data is created by erasing the

inside of ten to twenty squares of randomly varying size (10

to 50 pixels in side) and position. Additionally, the images

are rotated and scaled randomly, and flipped with one-half

probability, so that more various line-completion patterns

can be learned, in view of the CNN’s non-invariance under

rotation and inversion, as opposed to parallel translation. We

note that we do not generate nor use masks for training.

Learning. We train our model using the mean squared error

(MSE) as the model loss, which represents the difference

between the input Y and the target Y ∗:

l(Y ∗
,Y) =

1

|N |

∑

p∈N

(Y ∗
p − Yp)

2
,

O
u
tp

u
t

 I

n
p

u
t

Figure 3. Examples of basic line completion results. Here, we

show several zoomed-in results from larger images. In each pair,

the input is shown on the top and the corresponding output on the

bottom. Our model can complete well even at such places that

are too complicated for most approaches, such as corners, curves

with varying curvature, and intersections of lines with different

thicknesses. Note that our model detects the missing area and fills

it automatically, without any user input.

where N is the set of all pixels in the image, and Y ∗
p and Yp

are the values at pixel p in the target and the input images,

respectively. To learn the model weights, we use back-

propagation with AdaDelta [20], which updates the weights

without the need to manually set the learning rate.

4. Results and Discussion

Our model is trained using 352 × 352-pixel patches ex-

tracted from the training dataset, although it can be evaluated

on images of any resolution. We train the model for 300,000

iterations with a batch size of 2, which takes roughly two

days. We also apply a simple tone curve adjustment as post-

processing with the same parameters for all images when

showing results.

We evaluate our approach on real and synthetic images

qualitatively, as well as quantitatively with a user study.

4.1. Qualitative Results

We show completion results with our model on various

basic patterns in Fig. 3. Our model can complete complicated

areas such as corners, curves with varying curvature, and

intersections of lines with different thickness, from only very

simple cues. As a result, a wide variety of line drawings

can be completed, such as draft design, scanned illustration,

and roughly generated line-drawing, as shown in Fig. 4.

Our model can both automatically detect the missing line

segments and complete them with correct thickness and

curvature, even in images that contain many missing parts.

Furthermore, it can complete several parallel lines, crossing

lines, corners, and so on.

4.2. Comparison with the State of the Art

We compare our model with previous inpainting ap-

proaches in Fig. 5. In particular, we compare against Patch-

Match [1] and Image Melding [5]. Our results show the

most accurate completion of line drawings. The previous

Figure 4. Results of line completion with our approach. Each image pair shows the input with missing regions on the left and the output of

line completion on the right. They are all examples of real scanned data taken from various sources, including old schematics, books, and

illustrations. For all the images, our proposed approach can automatically detect the missing regions and complete them, despite being from

very different sources. In particular, the Leonardo da Vinci’s “Flying Machine” shown in the lower left, despite having heavy deterioration, is

cleanly completed by our approach.

works can complete small regions, but often fail to complete

a large gap. Moreover, while these approach need the miss-

ing regions as an additional input, our method automatically

detects and recognizes where the lines are missing, complet-

ing them in a fully-automatic fashion. To utilize the missing

region mask with our approach, we tried restoring the im-

age outside of the region after the completion; however, it

resulted in little difference (Fig. 5 (e)).

We also compared with the deep learning based approach

of Pathak et al. [14] in Fig. 6. We note that unlike our

approach, it is limited to both fixed resolution input images

and a fixed missing region in the center of the image, while

our approach automatically detects gaps and completes them

in the entire image and not limited to a predefined mask.

4.3. User Study

We also present the result of a user study using 20 images,

in which we perform both relative and absolute evaluations.

Half of the images are old scanned images that have deterio-

rated, causing gaps, while the other half consist of synthetic

images with random gaps. Some of the scanned images can

be seen in Fig. 4. The synthetic images are all 480 × 480

pixels and have 5 to 15 randomly generated square holes with

10- to 50-pixel side. For the real scanned data, we manually

label input masks on all the gaps for the approaches that

require them. A total of 18 users participated in the study.

Table 2. Comparison with the state of the art with relative evaluation.

We show the percentage of the time the approach on the left column

is preferred to the approach on the top row.

vs [1] [5] Ours Ours (Masked)

[1] - 26.4 6.1 1.4

[5] 73.6 - 4.2 5.3

Ours 93.9 95.8 - 53.9

Ours (Masked) 98.6 94.7 46.1 -

We compare against the approaches of PatchMatch [1] and

Image Melding [5] which both require the masks as user

input. We additionally compare our approach when using the

masks to our approach without using the masks, i.e, when it

jointly detects and completes the gaps. We did not compare

against Pathak et al. [14] due to its limitations in image size.

We first perform a relative evaluation in which we show

users two images and ask them which one looks completed

better. For each of the 20 images, we evaluate all the possible

pairwise comparisons of the four approaches: PatchMatch [1],

Image Melding [5], Ours, and Ours (Masked). The results

are shown in Table 2. We can see that our approach is

almost unilaterally chosen over the state of the art. Except

for the comparison with [1], our approach performs better

when not using the masks than when using them. This is an

(a) Input (b) PatchMatch [1] (c) Image Melding [5] (d) Ours (e) Ours (Masked)

Figure 5. Comparison with the state of the art. (a) Input images with the mask overlaid in magenta. (b) Results of PatchMatch [1]. (c)

Results of Image Melding [5]. (d) Our results without using the input mask, i.e., jointly detecting the gaps and completing them. (e) Our

results when using the input mask. Whereas the previous works cannot correctly complete missing regions in the input image, our results

show precise completion. Moreover, previous approaches require manually specifying the missing region shown as the magenta mask in (a),

while our approach can both detect the gaps and complete them automatically.

Input

[14]

Ours

Figure 6. Comparison with the deep learning approach of Pathak

et al. [14], which can only handle small fixed-sized (128 × 128

pixel) input images and only completes the fixed square at the center

shown in magenta in the input images—two limitations not shared

by our approach. The comparison shows that our approach can

inpaint accurately without the mask as an input, while [14] adds

additional elements to the image and is unable to conserve the

thickness of the lines.

Table 3. Comparison with the state of the art using absolute evalu-

ation. Each of the approaches is scored on a scale of 1 to 5. The

highest values are highlighted in bold.

[1] [5] Ours Ours (Masked)

Scanned data 2.1 2.7 3.9 3.8

Synthetic data 2.8 2.9 4.6 4.6

Mean 2.5 2.8 4.2 4.2

interesting result that might mean our method also cleans the

non-gap lines, and in strong contrast with the state of the art

approaches that require the mask as input.

We additionally perform an absolute evaluation in which

we show each of the users the input and output for a particular

method (without the input mask) and ask them to rate the

quality of line completion on a scale of 1 to 5. We show the

results of this evaluation in Table 3 and Fig. 7. We can see

that our approach with and without the mask obtains roughly

the same score, which is significantly higher than that of the

state of the art. There is also a difference between the results

[1] [5] Ours OM
0

1

2

3

4

5

R
a
ti
n
g

Figure 7. Box plot of the results of the absolute evaluation. Though

there is no significant difference between our approach and our

approach using masks (OM), our approach is significantly better than

the state of the art methods PatchMatch [1] and Image Melding [5].

Input Output

Ours (Masked): 4.17

Image Melding [5]: 2.17

Figure 8. Two examples of images used in the absolute evaluation

user study and their mean score. The top row shows a scanned

image with the result and the score by our method (with mask),

while the bottom row shows a synthetic image with the result and

the score by Image Melding. Note that the users were not told what

method was used to generate the output image.

for the 10 real scanned images and the 10 synthetic images.

This may be attributed to the complexity of the real line

drawings, in addition to the deteriorations from the scanning

process. Examples of pairs of images shown to the users and

their average scores are shown in Fig. 8.

4.4. Computation Time

We compare the running times of the existing methods

in Table 4, using Intel Core i7-5960X CPU at 3.00GHz

Table 4. Comparison of computation time for different approaches.

We evaluate for different resolution sizes and size of the input mask

to be inpainted. We note that the computation time of our approach

only depends on the input image resolution.

Ours

Size (px) Mask [1] [5] CPU GPU

512 × 512 20% 0.148s 138s

512 × 512 40% 0.311s 199s 0.334s 0.006s

512 × 512 60% 0.534s 257s

1024 × 1024 20% 0.588s 535s

1024 × 1024 40% 1.161s 822s 1.278s 0.021s

1024 × 1024 60% 1.920s 1125s

2048 × 2048 20% 2.337s 2195s

2048 × 2048 40% 4.547s 3403s 4.953s 0.083s

2048 × 2048 60% 7.698s

with 8 cores and NVIDIA GeForce TITAN X GPU. Unlike

PatchMatch [1] and Image Melding [5], the computation

time of our approach depends only on the input size, and not

on the size of the area to be completed. Using the CPU, our

approach takes roughly the same time as PatchMatch when

completing 40% of the image. When using the GPU, our

approach is 60 times faster.

4.5. Visualization and Model Optimization

In order to try to understand what the model is learning

on its own, we visualize the intermediate feature layers of the

model. As each layer by itself is hard to interpret, we perform

PCA on all the “pixels” of each of the intermediate layers.

This is in contrast to direct visualization approaches such

as [21]. We then visualize the different components of the

PCA to interpret results. We show the results of this process

for two different images in Fig. 9 for a model with the same

architecture but more filters than the one used in the rest of

the results and shown in Table 1. We observe an interesting

phenomena: whereas early layers contain identifiable spatial

patterns in nearly all the PCA components, later layers show

such patterns in only the initial PCA components.

This led us to believe that, while it is important to have

the initial layers have many filters in order to detect the gaps,

the model does not need many filters in the latter layers to

inpaint the line segments. We used this feedback during the

development of the model and could reduce the number of

filters significantly, which led to a speed up of the model

and a reduction of the memory used, without decreasing the

performance. We do not modify the number of layers, so that

each output pixel is still computed using a large region of

the input image. This is particularly important for inpainting,

as the area to be inpainted is highly influenced by the region

around it. This leads to layers with very few filters towards

1 2 3

64 96 128

1 2 3

128 256 512

1 2 3

64 96 128

layer3
layer7

layer11

1 2 3

64 96 128

1 2 3

128 256 512

1 2 3

64 96 128

Input Output

Figure 9. Visualization of the output of different internal layers of the network. We show projections onto the different principal components

of the internal representations for two different images corresponding to an early layer (layer 3), a middle layer (layer 7), and a final layer

(layer 11). Layers 3 and 11 are 1/4 and layer 7 is 1/16 of the size of the input image. We show the output of the convolutional layers and scale

the values so they fit in the [0, 1] range for visualization purposes. We observe that while early and middle layers do conserve the structured

input data in most principal components, later layers seem to concentrate all the information into the first few principal components. We use

this information when deciding on the number of filters in each layer of the neural network.

(a) Ground truth (b) Input (c) Output

Figure 10. Limitations of our approach. The masked area on the

input is shown as reference and is not used by our model. When

complex structures with many lines and intersections must be

completed, there is an inherent ambiguity to which lines must be

connected. This can lead to realistic, although incorrect completions

as shown in this example.

the end of the model. However, these layers can be thought

as more of sharpen type filters, rather than feature extraction

layers like the initial layers. Although we managed to reduce

the memory usage by roughly 30% and the computation time

to nearly half, it is likely further tuning of the architecture

would give even better improvements. Nevertheless, the

improvement in a single iteration using our visualization

approach is significant.

4.6. Limitations

Though our model performs well at completing various

line patterns, it can be confused by very complex structures.

For example, in an image many lines intersect in a small

region and that intersection is missing, it may fail to complete

the gap correctly. Figure 10 shows one such example. In

such a case, our model may confuse the correspondence

between the line ends. Very large missing regions are also

challenging because recognition of the structure is difficult.

Improvement of the model loss or dataset may enable it to

recognize larger regions and more complex line structures.

5. Conclusions

In this paper, we have proposed a novel data-driven ap-

proach for detecting and completing the missing regions in

images of line drawings using a deep convolutional neural

network. Our method automatically detects gaps and com-

pletes them with correct thickness and curvature without

any user interaction. The network model is fully convolu-

tional and therefore can handle input images of any size. We

train the model efficiently with only a small dataset. Experi-

ments and comparisons show accurate completion in various

examples surpassing the previous approaches, which is cor-

roborated by a quantitative user study in which over 90% of

the users prefer our approach to previous approaches. In the

future, we may improve this completion method and apply

to more complex patterns by enlarging the dataset and by

further improving the model architecture.

Acknowledgements This work was partially supported by

JST CREST Grant No. JPMJCR14D1.

References

[1] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman.

PatchMatch: A randomized correspondence algorithm for

structural image editing. ACM Transactions on Graphics

(Proc. of SIGGRAPH 2009), 28(3):24:1–24:11, 2009.

[2] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image

inpainting. In Proceedings of the 27th Annual Conference

on Computer Graphics and Interactive Techniques, pages

417–424, 2000.

[3] T. F. Chan and J. Shen. Nontexture inpainting by curvature-

driven diffusions. Journal of Visual Communication and

Image Representation, 12(4):436–449, 2001.

[4] A. Criminisi, P. Perez, and K. Toyama. Object removal

by exemplar-based inpainting. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2003.

[5] S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and

P. Sen. Image Melding: Combining inconsistent images using

patch-based synthesis. ACM Transactions on Graphics (Proc.

of SIGGRAPH 2012), 31(4):82:1–82:10, 2012.

[6] I. Drori, D. Cohen-Or, and H. Yeshurun. Fragment-based

image completion. 22(3):303–312, 2003.

[7] S. Esedoglu and J. Shen. Digital inpainting based on the

mumford–shah–euler image model. European Journal of

Applied Mathematics, 13(04):353–370, 2002.

[8] H. Huang, K. Yin, M. Gong, D. Lischinski, D. Cohen-Or,

U. M. Ascher, and B. Chen. “Mind the gap”: tele-registration

for structure-driven image completion. ACM Transactions on

Graphics, 32(6):174–1, 2013.

[9] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

In Proceedings of the International Conference on Machine

Learning, 2015.

[10] N. Komodakis and G. Tziritas. Image completion using

efficient belief propagation via priority scheduling and dy-

namic pruning. IEEE Transactions on Image Processing,

16(11):2649–2661, 2007.

[11] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015.

[12] D. Mumford and J. Shah. Optimal approximations by

piecewise smooth functions and associated variational prob-

lems. Communications on Pure and Applied Mathematics,

42(5):577–685, 1989.

[13] H. Noh, S. Hong, and B. Han. Learning deconvolution

network for semantic segmentation. In Proceedings of the

IEEE International Conference on Computer Vision (ICCV),

2015.

[14] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. Efros.

Context encoders: Feature learning by inpainting. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[15] T. Schoenemann, F. Kahl, and D. Cremers. Curvature regu-

larity for region-based image segmentation and inpainting: A

linear programming relaxation. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV), 2009.

[16] J. Shen, S. H. Kang, and T. F. Chan. Euler’s elastica and

curvature-based inpainting. SIAM Journal on Applied Mathe-

matics, 63(2):564–592, 2003.

[17] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Summariz-

ing visual data using bidirectional similarity. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2008.

[18] E. Simo-Serra, S. Iizuka, K. Sasaki, and H. Ishikawa. Learn-

ing to Simplify: Fully Convolutional Networks for Rough

Sketch Cleanup. ACM Transactions on Graphics (Proc. of

SIGGRAPH 2016), 35(4), 2016.

[19] Y. Wexler, E. Shechtman, and M. Irani. Space-time completion

of video. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(3):463–476, 2007.

[20] M. D. Zeiler. Adadelta: an adaptive learning rate method.

arXiv preprint arXiv:1212.5701, 2012.

[21] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In Proceedings of the European

Conference on Computer Vision (ECCV), 2014.

