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Abstract
Markerless 3D human pose detection from a single im-

age is a severely underconstrained problem because differ-

ent 3D poses can have similar image projections. In or-

der to handle this ambiguity, current approaches rely on

prior shape models that can only be correctly adjusted if

2D image features are accurately detected. Unfortunately,

although current 2D part detector algorithms have shown

promising results, they are not yet accurate enough to guar-

antee a complete disambiguation of the 3D inferred shape.

In this paper, we introduce a novel approach for esti-

mating 3D human pose even when observations are noisy.

We propose a stochastic sampling strategy to propagate

the noise from the image plane to the shape space. This

provides a set of ambiguous 3D shapes, which are virtu-

ally undistinguishable from their image projections. Dis-

ambiguation is then achieved by imposing kinematic con-

straints that guarantee the resulting pose resembles a 3D

human shape. We validate the method on a variety of situa-

tions in which state-of-the-art 2D detectors yield either in-

accurate estimations or partly miss some of the body parts.

1. Introduction

Recovering the 3D human pose from a single image

is inherently an ill-posed problem because many different

body configurations may have very similar image projec-

tions. The problem becomes even more challenging if we

consider realistic situations in which image features, such

as the body silhouette, limbs or 2D joints, cannot be accu-

rately detected, either due to self occlusions or to the pres-

ence of distracting backgrounds. This is the scenario we

contemplate, and which we will tackle in a two step pro-

cess: first we will consider an off-the-shelf detector [37] to

estimate the positions of 2D body parts. As shown in Fig. 1

the output of this algorithm is a set of bounding boxes for

each body part, whose center may contain relatively large
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Figure 1: 3D human pose estimation from noisy observa-

tions. Top: The left image shows the bounding box results

of a body part detector and green dots indicate the true po-

sition of the joints. Note, in the middle, how the bound-

ing box centers do not match the joint positions. Using the

heat map scores of the classifier we represent the output of

the 2D detector by Gaussian distributions, as shown on the

right. Bottom: Using the distribution of all the joints we

sample the solution space and propose an initial set of am-

biguous poses. By simultaneously imposing geometric and

kinematic constraints that ensure the anthropomorphism,

we are able to pick an accurate 3D pose (shown in magenta

on the right) very similar to the ground truth (black).

deviations from the true positions. In a second stage, we

will propose a methodology to filter out these artifacts and

estimate an accurate 3D body pose.

In order to robustly retrieve 3D human poses we propose

a new approach in which noisy observations are modeled as

Gaussian distributions in the image plane and propagated

forward to the shape space. This yields tight bounds on

the solution space, which we explore using a probabilistic

sampling strategy that guarantees the satisfaction of both
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Figure 2: Flowchart of the method presented in this paper for obtaining 3D human pose from single images.

geometric and anthropomorphic constraints. To favor effi-

ciency, the exploration is performed hierarchically, starting

from relatively lax and computationally efficient constraints

up to highly restrictive and costly ones, until one single

shape sample is retained. As we will show in the exper-

imental section, our methodology outperforms approaches

that optimize using only geometric constraints.

Overall, we believe our work bridges the gap between

current high level 2D detectors [2, 9, 31, 35, 37], and low

level geometry-based approaches for 3D pose and shape es-

timation [10, 18, 19, 20, 26, 33]. The former have shown

impressive results in the 2D detection of body parts under

harsh conditions, although their resulting accuracy is not

optimal. The latter have been proven robust to retrieve pose

and shape when accurate observations of the image features

are provided. Our approach lies in between both method-

ologies and estimates the best fitting pose by taking into

account not only geometric and kinematic constraints, but

also the uncertainty in the observations in a unified process.

2. Related Work

Monocular 3D human pose estimation has generated a

wide body of literature [16, 23]. It is a highly ambiguous

problem that requires introducing additional knowledge to

restrict the size of the solution space. A common approach

is to represent the set of pose configurations by a linear

combination of deformation modes learned from training

data [4, 5, 27]. More sophisticated dimensionality reduction

methods have been proposed to represent non-linearities,

such as Isomap [34], Gaussian Mixtures [14], spectral em-

bedding [32] or Gaussian Processes [6, 13, 15, 36, 38].

However, most of these approaches require precise initial-

izations and are meant to work in conjunction with temporal

priors in a tracking framework.

In order to retrieve 3D human pose from one single im-

age, most approaches rely on discriminative techniques that

learn mappings from image features, such as silhouettes, to

3D poses [1, 8, 21, 22, 25, 30]. Support vector machines,

nearest neighbors, regression, mixture of experts, or random

forests are some of the techniques used for this purpose.

While allowing efficient solutions, these methods typically

require large training sets to represent the variability of ap-

pearance of different people and viewpoints.

Drawing inspiration from [3, 29] we propose retrieving

3D poses from the 2D body part positions estimated by

state-of-the-art detectors [2, 9, 31, 35, 37]. Although these

detectors require a much reduced number of training sam-

ples, as they individually train each of the parts, they have

shown impressive results in a wide range of challenging sce-

narios. However, their solutions have an associated uncer-

tainty which, combined with the inherent ambiguity of the

single view 3D detection, may lead to large errors in the es-

timated 3D shape. This is addressed in [29] by restricting

the method to highly controlled settings, and in [3] by im-

posing temporal consistency. Other approaches [10, 26, 33]

guarantee the single frame solution, but simplify the 2D de-

tection process by either manually clicking the position of

the 2D joints or directly using the ground truth values ob-

tained from motion capture systems.

In contrast, the approach we propose naturally deals with

the uncertain observations of off-the-shelf body part detec-

tors by modeling the position of each body part using a

Gaussian distribution that is propagated to the shape space.

This sets bounds on the solution search space, which we

exhaustively explore to seek for the 3D pose configuration

that best satisfies geometric (reprojection and length) and

kinematic (anthropomorphic) constraints. To the best of our

knowledge, [7] is the only approach that has previously

considered noisy observations, but only those related to the

root node and not to all the nodes, as we do. In addition, the

mentioned work imposes temporal constraints, while we are

able to estimate the 3D pose using one single frame.

3. Methodology
Figure 2 outlines our approach, which can be split into

three major parts: 2D part detection, stochastic exploration

of ambiguous hypotheses and disambiguation. The 2D

body part estimation is based on the state-of-the-art detec-

tor [37] which is adapted to our usage by obtaining infor-

mation from the classifier heatmaps to provide local 2D

Gaussian inputs. Following [19], this uncertainty is prop-

agated from the image plane to the shape space, thus re-

ducing the size of the search space. We then use stochastic

sampling to efficiently explore this region and propose a set

of hypotheses that satisfy both reprojection and length con-

straints. This set of hypotheses must then be disambiguated



by using some additional criteria. We show that only mini-

mizing the reprojection and length errors does not generally

give the best results and propose a new method based on

coordinate-free geometry to help disambiguate while ensur-

ing anthropomorphic-like shapes.

3.1. 2D Body Part Detection
For body part detection we used [37] which learns a

mixture-of-parts tree model encoding both co-occurrence

and spatial relations. Each part is modeled as a mixture of

HOG-based filters that account for the different appearances

the part can take due to, for example, viewpoint change or

deformation. Since the parts model is a tree, inference can

be efficiently done using dynamic programming, even for a

significant number of parts. The output of the detector is

a bounding box for each body part, which we convert to a

Gaussian distribution by computing the covariance matrix

of the classification scores within the box. This is done be-

cause the method we propose below to estimate the 3D pose

takes as input probability distributions.

3.2. Estimating Ambiguous Solutions
The Gaussian distributions of each body part will be

propagated to the shape space and used to propose a set of

3D hypotheses that both reproject correctly onto the image

and retain the inter-joint distances of training shapes. How-

ever, due to the errors in the estimation of the 2D part loca-

tion, there is no guarantee that minimizing these errors will

yield the best pose estimate. We will show that this requires

applying additional anthropomorphic constraints.

The approach we use to propagate the error and propose

ambiguous solutions is inspired in [19], originally applied

to non-rigid surface recovery. However, note that dealing

with 3D human poses has an additional degree of complex-

ity, because most joints can only be linked to two other

joints. In contrast, when dealing with triangulated surfaces,

each node is typically linked to six nodes. Therefore, the set

of feasible human body configurations is much larger than

the set of surface configurations. This will require using

more sophisticated machinery such as integrating kinematic

constraints within the process.

3.2.1 Linear Formulation of the Problem

We represent the 3D pose by a vector x = [pT
1, · · · ,p

T
nv
],

where pi are the 3D positions of the skeleton joints. The

body part detector estimates the 2D position ui of each joint

pi with an associated covariance matrixΣui
. Our goal is to

retrieve the 3D joint positions from these observations. This

can be seen as the solution of a linear system. Assuming the

matrix of internal parametersA to be known, the projection

of pi onto ui may be written as wi[u
T
i 1]T = Api, where

wi is a projective scalar. This provides 2 linear constraints

on x. We can then express the projection of all joints by

Mx = 0 , (1)

α1

α
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Figure 3: Exploration of the solution space. The figure plots

the distribution of samples on the modal weights space and

how the covariance matrix is progressively updated using

the CMA algorithm. The two distributions represent both

hypotheses of the directions the pose can be facing. In addi-

tion, the graph depicts the initial and the final configurations

obtained with the CMA, and an optimal solution computed

by directly projecting the ground-truth pose onto the PCA

modes. The Best Candidate corresponds to the solution es-

timated by our approach. Note that although the CMA does

not converge close to the optimal solution, some of the sam-

ples accumulated through the process lie very close, and

thus, are potentially good solutions.

where M is a 2nv × 3nv matrix obtained from the known

values ui and A. Although minimizing this system may

yield to correctly reprojected solutions, there is no guar-

antee that they resemble a real 3D human pose. This is

because M is rank deficient. We need therefore to in-

clude additional constraints. As in most state-of-the-art ap-

proaches [4, 5, 27], we will assume we can model the 3D

pose as a linear combination of a mean 3D pose x0 and nm

deformation modes Q = [q1, · · · ,qnm
]

x = x0 +

nm
∑

i=1

αiqi = x0 +Qα , (2)

where α = [α1, . . . , αnm
]T are the unknown weights that

define the current 3D pose. These modes can be obtained

by applying Principal Component Analysis (PCA) over a

set of pose configurations obtained from the training data.

Combining Eqs. (1) and (2), we finally obtain

MQα+Mx0 = 0 . (3)

3.2.2 Propagating the Uncertainty to the Shape Space

We must now propagate the 2D Gaussian distributions

found on the camera plane to the α-subspace of modal

weights. Following [19], the mean of this subspace can be

computed as the least-squares solution of Eq. (3),

µα = (BTB)−1BTb , (4)

whereB = MQ is a 2nv×nm matrix and b = −Mx0 is a

2nv vector. The components ofB and b are linear functions

of the known parameters ui, Q and A. The same can be
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Figure 4: Exploring the space of articulated shapes. The first two plots represent the 2D projection and 3D view of the shape

samples we generate. The color of the 3D samples indicates the cluster to which they belong. The four graphs on the right

represent the medoids of the clusters, which are taken to be the final set of ambiguous candidate shapes.

done for the 2nv×2nv covariance matrixΣu built using the

covariancesΣui
of each body part. Its propagation yields a

nm × nm matrix Σα on the modal weights space,

Σα = JBΣuJ
T
B , (5)

where JB is the nm × 2nv Jacobian of (BTB)−1BTb.

3.2.3 Proposing Ambiguous 3D Poses

The Gaussian distribution N (µα,Σα) represents a region

of the shape space containing 3D poses that will most likely

project close to the detected 2D joint positions ui. We will

now sample this region and propose a representative set of

hypotheses. Note however, that the mean µα computed in

Eq. (4) is unreliable, as it is computed from the ui’s which

are not necessarily the true means of the distributions. We

therefore do not draw all samples at once. Instead, we pro-

pose an evolution strategy in which we draw successive

batches by sampling from a multivariate Gaussian whose

mean and covariance are iteratively updated using the Co-

variance Matrix Adaptation (CMA) algorithm [12] so as to

simultaneously minimize reprojection and length errors.

More specifically, at iteration k we draw ns random sam-

ples {α̃k
i }

ns

i=1 from the distributionN (µk
α
,M2Σk

α
), where

M is a constant that guarantees a certain confidence level

(we set M = 4 in all experiments). Each sample α̃k
i is as-

signed a weight πk
i proportional to εlr = εl · εr , the product

of the length and reprojection errors:

εl =
∑

i,j∈N

∥

∥

∥
l̃ij − ltrainij

∥

∥

∥
σ−1
ij , (6)

εr =

nv
∑

i

√

(ũi − ui)TΣ
−1
ui

(ũi − ui), (7)

where ltrainij is the mean distance in all training samples be-

tween the i-th and j-th joints, σij is the standard deviation,

l̃ij is the length between joints i and j in the sample α̃k
i ,

and the ũi’s are their corresponding 2D projections.

Given the weights πk
i for all samples, we then update the

mean and covariance of the distribution following the CMA

strategy. The mean vector µk+1
α

is estimated as a weighted

average of the samples. The update of the covariance matrix

Σk+1
α

consists of three terms: a scaled covariance matrix

from the preceding step, a covariance matrix that estimates

the variances of the best sampling points in the current gen-

eration, and a covariance that exploits information of the

correlation between the current and previous generations.

For further details, we refer the reader to [12].

After each iteration a subset of the samples with smaller

weights is retained and progressively accumulated for addi-

tional analysis. Note that instead of trying to optimize the

error function, we use the error function with the CMA op-

timizer as a way to explore the solution space. When a spe-

cific number of samples (104 in practice) has been obtained,
the problem then becomes how to disambiguate them to find

one that represents an anthropomorphic pose.

Orientation Ambiguity. As the detector input does not

provide information on the orientation of the subject, we

consider the possibility of the pose facing both directions by

swapping the detected parts representing the left and right

side of the body. This leads to two different distributions

which we can then sample from. Figure 3 shows an example

of how the solution space is explored. Note that although

the CMA algorithm converges relatively far from the opti-

mal solution with minimal reconstruction error, some of the

samples accumulated through the exploration process are

good approximations. This is the key difference between

using a plain CMA, which just seeks for one single solu-

tion, and our approach, that accumulates all samples and

subsequently uses more stringent –although computation-

ally more expensive– constraints to disambiguate.

Hypotheses Clustering. After exploring the solution space,

we have obtained a large number of samples that represent

possible poses that have both low reprojection and length

errors. However, since many of these samples are very sim-

ilar, we reduce their number using a Gaussian-means clus-

tering algorithm [11]. As shown in Fig. 4, we then consider

the medoid of each cluster to be the candidate ambiguous

shape. With this procedure, we can effectively reduce the

number of samples from 104 to around 102.

3.3. Hypotheses Disambiguation

The set of ambiguous shapes has been obtained by im-

posing relatively simple but computationally efficient con-
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Sample #1 Sample #2

Error Value (εlr) 6.883 6.885

SVM Output 2.8e-04 -7.6e-03

Reconst. Err. (mm) 199.9 214.9

Aligned Err. (mm) 56.4 167.7

Figure 5: The anthropomorphism factor obtained from the

OCSVM can be used to choose more human-like models.

In the top figures, the black lines represent the ground truth

while the colored lines represent the different poses. Note

that although Shape #1 is far more human-like than Shape

#2, both the error given by εlr = εl · εr and the reconstruc-

tion error are almost the same. In contrast, the output of the

SVM (+1: anthropomorphic; -1:non-anthropomorphic) in-

dicates that Shape #1 resembles more a human-like pose. A

good way to validate anthropomorphism is by aligning the

pose to the ground truth and measuring the reconstruction

error after alignment.

straints based on reprojection and length errors. In this sec-

tion we will describe more discriminative criteria based on

the kinematics of the anthropomorphic pose to further dis-

ambiguate them until obtaining a single solution.

For this purpose, we will first propose using a

coordinate-free kinematic representation of the candidate

shapes, based on the Euclidean Distance Matrix. Given the

3D position of the nv joints, we define the nv × nv matrix

D such that, dij = ‖pi−pj‖. It can be shown that this rep-
resentation is unique for a given configuration. In addition,

as it is a symmetric matrix with zero entries at the diagonal,

it can be compactly represented by the nv(nv −1)/2 vector

dKin = [d12, · · · , d1nv
, d23, d24, · · · , d(nv−1)nv

]T. (8)

Given this unique representation of the pose kinematics, we

then propose the treatment of the anthropomorphism as a

regression problem. Specifically, we want to be able to

calculate how different a 3D pose is from a set of train-

ing poses. We deal with this problem by using a one-class

Support Vector Machine (OCSVM). The scores computed

with this classifier can then be used to distinguish between

clusters to determine the most anthropomorphic one.

In order to be able to properly determine the degree

of anthropomorphism, and given that we have a limited

amount of training data, we need to reduce the size of our

pose representation and avoid the curse of dimensionality.

For this purpose, we will use again PCA, and we will not

directly train the classifier on the whole Euclidean distance

vector, but with a linear projection β of it.

One important thing to note is that the projection of the

distance vectors dKin to the subspace β implies a loss of in-

formation that can lead to non-anthropomorphic forms be-

ing projected close to anthropomorphic forms. In order to

account for this effect, it is important to remove the clus-

ters with the worst error value εlr. As shown in Fig. 5,

this increases the likelihood that the results returned by the

OCSVM correspond to an anthropomorphic form.

4. Experimental Results

We evaluated the algorithm on two different datasets: the

HumanEva dataset [28], which provides ground truth, and

the TUD Stadmitte sequence [3], which is a challenging ur-

ban environment with multiple people, but without ground

truth for a quantitative evaluation.

Regarding the 2D part detector, we used one of the pre-

trained models included with the software [37], trained on

the PARSE dataset [24]. In using these models, we had

to deal with an additional source of error, due to the fact

that the ground truth joint positions defined in the PARSE

dataset and in the HumanEva are not exactly the same. Yet,

our approach was robust to this inherent bias.

4.1. Evaluation on the HumanEva dataset

We quantitatively evaluated the performance of our

method, using the walking and jogging actions of the Hu-

manEva dataset. For training the PCA and SVM, we used

the motion captured data, independently for each action, for

subjects “S1”, “S2” and “S3”, and used the “validation” se-

quences for testing.

To speed up evaluation, every 5th frame was used instead

of the entire sequence and the average result of 3 repetitions

was computed. In order to evaluate our algorithm and not

the off-the-shelf 2D part detector, we filtered out the frames

where the 2D detector largely failed. This was automati-

cally done by dropping the frames in which there was at

least a single part located at more than 80 pixels away from

its ground truth.

Fig. 6 shows the distribution of the results on the “S2

walk” sequence. In Fig. 6-Left we plot the average recon-

struction error of our approach (OA), and compare it against

the reconstruction error of Opt: the best approximation we

could achieve using PCA; BRec: sample with minimum re-

construction error among all samples generated during the

exploration process; BRep: the sample with minimum re-

projection error; BLen: the sample with minimum length er-

ror; and BErr: the sample that minimizes εlr = εl · εr. Note
that neither minimizing the reprojection error, the length er-

ror nor εlr guarantees retrieving a good solution. We ad-

dress this by also maximizing the similarity with anthropo-

morphic shapes. By doing this, the mean error per joint of
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Figure 6: Left: Reconstruction errors on the HumanEva

dataset for the sequence “S2 walk”. Right: Same errors

after rigid alignment of the shapes with the ground truth

poses. It is more representative of the anthropomorphism of

the pose compared to the plain reconstruction error, which

only considers the distance between the joints of the re-

trieved pose and the ground truth. See text for a detailed

description of the labels.

the shapes we retrieve is around 230mm. Yet, most of this

error is due to slight depth offsets which are hard to control

due to the noise in the input data. In fact, if we perform a

rigid alignment between these shapes and the ground truth

ones, the error is reduced to about 100mm (Fig. 6-Right).

Fig. 7 depicts the results of another experiment to show

the robustness to noise of our approach. For this purpose,

simulated 2D detections with increasing degrees of noise

were used to determine how the 2D error propagates to the

3D pose estimation. It can be seen that despite adding large

amounts of noise, the 3D pose estimations remain within

reasonable bounds.

Finally, numeric results comparing with the state-of-the-

art are given in Table 1. Note that this comparison is for

guidance only, as different methods train and evaluate dif-

ferently. For instance, although [6] yields significantly bet-

ter results, it relies on strong assumptions, such as back-

ground subtraction, which both our approach and [3, 7] do

not consider. Therefore, we believe that to truly position

our approach, we should compare ourselves against [3, 7].

In fact, the performance of all three methods is very similar,

but we remind the reader that [3, 7] impose temporal con-

sistency along the sequence, while we estimate the 3D pose

using just one single image. A few sample images of the

results we obtain are shown in Fig. 8.

4.2. Testing on Street Images

We have also used the TUD Stadtmitte sequence [3] to

test the robustness of the algorithm. We consider the sce-

nario with multiple people to detect. This sequence is espe-

cially challenging for 3D reconstruction as the camera has a

long focal distance, which amplifies the propagation of the

2D errors to the 3D space.

Since we are dealing with real street images, walking

pedestrian poses frequently do not match our limited train-

ing data: pedestrians may either carry an object or have their

hands in their pockets, as seen in Fig. 9. Furthermore, the
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Figure 7: Influence of the 2D detection error on the 3D pose

estimation. The size of the Gaussians inputed to our al-

gorithm is maintained constant with σ = 15 on a single

frame of the walking sequence of the HumanEva dataset.

The mean of the Gaussians defining the 2D body part lo-

cations is offset from the ground truth by Gaussian noise

of increasing standard deviation. We can see that our algo-

rithm is able to handle large amounts of noise. The values

plotted are the average of 100 repetitions.

Walking

S1 S2 S3

OA 99.6 (42.6) 108.3 (42.3) 127.4 (24.0)

2D Input 14.1 (7.5) 19.1 (8.1) 26.8 (8.0)

[3] - 107 (15) -

[7] 89.3 108.7 113.5

[6] 38.2 (21.4) 32.8 (23.1) 40.2 (23.2)

Jogging

S1 S2 S3

OA 109.2 (41.5) 93.1 (41.1) 115.8 (40.6)

2D Input 18.3 (6.3) 18.1 (6.0) 20.9 (6.1)

[6] 42.0 (12.9) 34.7 (16.6) 46.4 (28.9)

Table 1: Comparing the results on the HumanEva dataset

for the walking and jogging actions with all three subjects.

All values are in mm with the standard deviation in paren-

theses if applicable. 2D values are in pixels. Absolute error

is displayed for [3, 7], while our approach (OA) and [6] are

relative error values. [3, 7] do not provide jogging data.

2D body part detector generally fails to find the correct po-

sition of the hands (and consequently the arms) because of

these occlusions. Despite these difficulties, our method is

usually able to find the correct pose.

Analyzing typical failure cases, we can see they all de-

rive from important misdetections. Specifically, a com-

mon mistake that our method has trouble recovering from is

when the pedestrian is crossing both legs with the feet close

together. This occlusion causes the detector to mismatch the

feet, and can cause the 3D pose to be estimated facing the

opposite direction. More major 2D body part detector fail-

ures, such as mixing two nearby pedestrian parts together,

can also cause the 3D pose estimation to fail. However,

since the output of the OCSVM indicates the anthropomor-

phism of the estimation, we can use this value to automati-

cally detect failures.
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Figure 8: Detection Results. Leftmost two columns: Raw image with 2D ground truth projection, and the 2D detection

results with the associated average pixel distance from ground truth. Rightmost four columns: Optimal PCA: projection of

the ground truth on the PCA; Best Reconstruction: the sample with lowest reconstruction error; Best Error: the sample with

the lowest error εlr = εl · εr; and Our Approach: the solution obtained. Below each solution we indicate the corresponding

reconstruction error (in mm). Note that minimizing εlr does not guarantee retrieving a good solution.

5. Discussion and Conclusions

In this work we have addressed the ill-posed problem of

computing the human 3D pose from a single image, tak-

ing as input the noisy predictions of a state-of-the-art 2D

body part detector. The uncertainty in the 2D part detec-

tion is propagated from the image plane to the 3D shape

space, where kinematic constraints are used to disambiguate

among the set of feasible 3D shapes. We have found our

method to tolerate errors in the 2D localization of the parts

of up to 30 pixels. Our results obtained on the HumanEva

dataset compare well to those of recent tracking-based ap-

proaches that use temporal consistency. Furthermore, we

have shown that our method improves significantly if we

perform an alignment step, to focus the evaluation on the

body pose estimation task rather than on 3D localization.

Finally, satisfactory qualitative results have been obtained

on an independent, challenging dataset (TUD).

Future work includes training on a large variety of

databases, and testing on more independent and “wild” sit-

uations. Using the output of our algorithm to feed-back and

improve the performance of the 2D detector and exploiting

recent non-rigid descriptors [17] is also part of future re-

search.
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