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Abstract

We propose a novel approach for learning features from
weakly-supervised data by joint ranking and classification.
In order to exploit data with weak labels, we jointly train a
feature extraction network with a ranking loss and a classi-
fication network with a cross-entropy loss. We obtain high-
quality compact discriminative features with few parame-
ters, learned on relatively small datasets without additional
annotations. This enables us to tackle tasks with specialized
images not very similar to the more generic ones in exist-
ing fully-supervised datasets. We show that the resulting
features in combination with a linear classifier surpass the
state-of-the-art on the Hipster Wars dataset despite using
features only 0.3% of the size. Our proposed features sig-
nificantly outperform those obtained from networks trained
on ImageNet, despite being 32 times smaller (128 single-
precision floats), trained on noisy and weakly-labeled data,
and using only 1.5% of the number of parameters.1.

1. Introduction
With the emergence of large-scale datasets and the ap-

pearance of deep networks with millions of parameters, re-
searchers have started to replace hand-crafted global image
features such as GIST [21] with those obtained from inter-
mediate representations of deep networks trained for clas-
sification on large datasets [44]. Although this has led to a
great improvement over the previous generation of features,
these networks are learned in a fully-supervised manner on
large amounts of data with very costly and time-consuming
annotation. Features learned on one dataset can be used on
another, but naturally not all datasets are equal [32], and
thus features taken from networks trained on ImageNet [7]
will not work as well on datasets with very different vi-
sual characteristics, such as the scene classification dataset
Places [49], and vice versa. While unsupervised feature
learning exists as an alternative to supervised learning, the

1Models available at http://hi.cs.waseda.ac.jp/ esimo/research/stylenet/
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Figure 1: Overview of the proposed feature learning ap-
proach. We train a feature extraction on weakly annotated
data by jointly training a feature extractor network with a
classification network. For training, an anchor image (cen-
ter) is provided in conjunction with a similar image (right)
and a dissimilar image (left) according to a metric provided
on the weak noisy annotations. The classification loss lC
serves to learn useful feature maps while the ranking loss
lR on the triplet of Feature CNN encourages them to learn
a discriminative feature representation.

lack of guidance to what to learn given by explicit labels
makes it a much more complex task [19].

However, images obtained from the Internet usually have
associated metadata which, although often inaccurate, can
be used as weak labels. In this paper, we study how to ex-
ploit data with weak labels in order to obtain high-quality
compact discriminative features without additional annota-
tions. With such features, we tackle tasks in which the im-
ages are more specific and not very similar to those of ex-
isting fully-supervised datasets such as ImageNet or Places.

In this work, we focus on the domain of fashion images,
which have only recently become the focus of research [40].
These images have several characteristics that make them
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Figure 2: We show example images and the mean image from the Hipster Wars [16], Fashion144k [27], Places [49], and
ImageNet [7] datasets. In both fashion-related datasets we can make out a human silhouette, although it is significantly
more diffuse in the Fashion144k dataset due to the much larger pose variation. In the Places dataset mean image we can
see a gradient where the top of the image is clearer, likely corresponding to the sky in many images. While in the ImageNet
mean we see a much more uniform image with a slightly clearer area in the center of the image. Unlike the other datasets,
Fashion144k only has weak labels. With our approach we are able to exploit the Fashion144k for training to evaluate on the
Hipster Wars dataset, outperforming fully supervised approaches that use larger datasets such as ImageNet or Places.

very challenging to tackle with computer vision. On one
hand, they have small local details such as accessories that
only depend on a very small part of the image, making seg-
mentation very challenging [26, 40, 43]. On the other hand,
we still have to consider more global properties such as the
fashion style [16, 27, 34], which depend jointly on the var-
ious items in the image. These difficulties, along with the
fact that the images generally have a 3:4 aspect ratio and
tend to have much brighter colors, cause the features taken
from networks trained on ImageNet or Places to general-
ize poorly to fashion-oriented tasks. While no large fully-
annotated fashion dataset exists, there are many datasets,
such as the Paperdoll [41] and Fashion144k [27] datasets,
that have a large amount of weak labels exploitable for
learning. In this work, we take advantage of these noisy
labels to learn compact discriminative features with deep
networks that can then be used in other challenging fashion-
related tasks, such as style classification [16], in which they
greatly outperform the state-of-the-art and other pretrained
CNN baselines, while having 1.5% the number of parame-
ters and being the size of a SIFT descriptor [20]: 128 floats
and 32× smaller than the best competing approach.

Instead of training networks for classification and us-
ing an intermediate-layer representation as a feature vector,
we propose performing joint classification and ranking as
shown in Fig. 1. The ranking acts as a soft constraint on the
intermediate layer and encourages the model to learn more
representative features guided by the classifier. We perform
ranking by considering three images simultaneously: we
first pick an anchor image and then pick an image that is
similar to the anchor and one that is different. We establish
a similarity metric by exploiting the weak user-provided la-
bels, which are also used as a classification target. By simul-
taneously considering both ranking and classification, we
are able to outperform approaches that use either ranking or
classification alone. Our approach allows us to efficiently

make use of weak labels to learn features on datasets closer
to the target application, as shown in Fig. 2.
In summary, our novel approach for feature learning:
• Exploits large amounts of weakly-labeled data commonly

found on the Internet.
• Learns a compact discriminative representation with few

parameters on relatively small datasets.
• Allows for efficient comparisons by Euclidean distances.
We complement our in-depth quantitative analysis with vi-
sualizations for qualitative analysis. In addition to our
feature extraction network learning approach we present a
novel visualization approach for comparing image similar-
ity between two images by exploiting the change in the ex-
tracted features when partially occluded.

2. Related Work
Fashion: Interest in fashion has been growing in the
computer vision community. Some of the more tradi-
tional problems have been semantic segmentation of gar-
ments [26, 41, 43], image retrieval [12, 15], and classifica-
tion of garments and styles [2, 5, 16, 35, 42]. Attempting to
directly predict more esoteric measurements, such as pop-
ularity [38] or fashionability [27], have also been recently
studied. As defining absolute metrics is rather complicated
in such a subjective domain as fashion, exploiting rela-
tive attributes [17] and learning image similarity [15, 34]
have also been proposed. Many of these approaches rely
on datasets created by crawling the Internet and have large
amounts of exploitable weak labels [27, 39]. Yamaguchi
et al. [39] used these tags to provide priors for semantic
segmentation. Our method is complementary to these ap-
proaches and can provide features for greater performance.
Deep Learning: There has been a flurry of new research
focusing on exploiting deep learning in computer vision.
Much of it focuses on improving classification results on
large datasets such as ImageNet [7] or Places [49]. This



has led from initial models such as Alexnet [18] to more so-
phisticated ones such as the VGG models [29] with up to 19
layers; or the Googlenet models [31], that jointly use convo-
lutions of different sizes in each layer. A more structured
analysis of different networks was presented by Chatfield
et al. [4], where they also analyzed using bottleneck layers
to provide features of different sizes. All these approaches
rely on fully supervised datasets. Xiao et al. [37] extended
learning to partially noisy labels. However, they still require
roughly 50% of the labels to be correct and need to learn an-
other network to correct the noisy labels, while only noisy
labels suffice for our approach.

Deep Similarity: Instead of learning classification net-
works, it is possible to directly learn similarity using deep
neural networks. A popular approach consists of Siamese
networks [3], in which a pair of inputs is used simultane-
ously to train a neural network model. The loss encourages
similar inputs to have similar network outputs and dissimi-
lar inputs to have dissimilar network outputs. This method
has been recently applied with great success to local fea-
ture descriptors [10, 28, 45] and also for obtaining better
representations of product images [1, 34]. It has also been
extended to triplet images for ranking [11, 36] and has been
very successfully applied to face recognition [25] in partic-
ular. We build upon this concept of image triplets for our
ranking loss and show that by combining the ranking with
classification results can be significantly improved.

Weak Data: We can identify two major sources of weak
labels when using deep networks: text [9, 14] and image
tags [22, 23]. Text can generally be found accompany-
ing images and thus can be directly exploited as a form
of weak label. Frome et al. [9] use text accompanying
images to train more semantically meaningful classifiers,
while Karpathy and Fei-Fei [14] use them as a form of weak
annotation of the objects that lie in the image to perform
localization. More recently, it has been seen that detectors
seem to emerge when training deep networks for classifi-
cation [48]. This has been utilized to learn models for se-
mantic segmentation [22, 23]. However, as far as we know,
we are the first to propose leveraging user-provided tags to
learn discriminative features for a specific domain.

3. Method

We present a method for learning discriminative features
from weakly-labeled data by jointly training both a feature
extraction network and a classification network. A ranking
loss on triplets of images is applied on the feature extrac-
tion network whose output is then fed into the classifica-
tion network, where a classification loss is employed. After
training, the feature extraction network can be used to pro-
vide discriminative features for other algorithms without a
need for the classification network.

3.1. Joint Ranking and Classification
We formulate the problem as a joint ranking and classi-

fication problem. A ranking loss on triplets of images is ap-
plied on a feature extraction network, while a classification
loss is employed on a classification network that uses the
output of the feature extraction network. For training, we
assume that we have a set of images with associated weak
labels with large amounts of noise.

For ranking, we take three images as input simultane-
ously, as shown in Fig. 1. One image (center) is the an-
chor or reference image, to which the second image (right)
is similar and the last image (left) is dissimilar. We assume
that we have a similarity metric r(·, ·) between the weak la-
bels of a pair of images. We consider two thresholds τs and
τd that, given this metric, determine when two images are
similar and dissimilar, respectively. Thus, two images I1
and I2, with labels y1 and y2 respectively, will be similar
when r(y1,y2) > τs and dissimilar when r(y1,y2) < τd.
We will define each image triplet as T = (I−, I, I+) where
r(y−,y) < τd and r(y,y+) > τs.

Suppose we have a set T of possible noisy tags, or at-
tributes of an image like red-sweater or even just red. A la-
bel l = (lt)t∈T for an image assigns lt ∈ {0, 1} to each tag
t. If a tag applies to an image (e.g., if the tag is red-sweater
and a red sweater appears in the image), the label for the
image assigns 1 to the tag. Note that we assume these tags
to be noisy and not exact. Let |l| be the number of tags that
label l assigns 1. We propose using the similarity function
between labels a and b defined as “intersection over union”:

r(a, b) =
|a ∧ b|
|a ∨ b|

, (1)

where ∧ and ∨ operate on the labels as tag-wise minimum
and maximum, respectively.

Given an image triplet T , we use the feature extraction
network to obtain a triplet of features Tf = (f−,f ,f+),
where f is a feature vector of each image. We then compute
a distance between two feature vectors and apply a ranking
loss that encourages the distance d+ between the anchor
and the similar image to be smaller than the distance d−
between the anchor and the dissimilar image.

For comparing features, we consider the Euclidean dis-
tance ‖ · ‖2. In contrast with [25], we normalize the dis-
tances instead of normalizing the feature pairs to have uni-
tary norm. This changes the hard constraint into a soft con-
straint, which is essential for being able to learn using a
classification loss and ranking loss simultaneously. We nor-
malize the pair of distances (d−, d+) obtained from the fea-
ture triplet using the softmax operator:

d− =
exp(‖f− − f‖2)

exp(‖f− − f‖2) + exp(‖f+ − f‖2)
(2)

d+ =
exp(‖f+ − f‖2)

exp(‖f− − f‖2) + exp(‖f+ − f‖2)
. (3)



With distances now normalized to the [0, 1] range, we define
a ranking loss lR that maximizes the dissimilar distance d−
and minimizes the similar distance d+:

lR(d+, d−) = 0.5
(
(d+)

2 + (1− d−)
2
)
= (d+)

2 , (4)

which is 0 only when ‖f+ − f‖2 = 0 and ‖f− − f‖2 > 0.
In contrast to [36], the loss is normalized; because of that,
we do not need to use large amounts of weight decay in
order to ensure that the output of the network does not tend
to infinity. In fact, we find that the implicit regularization
provided by dropout and batch normalization are sufficient
and do not rely on weight decay at all.

While the ranking loss lR by itself should be sufficient to
learn discriminative features, we found in practice that it is
critical to complement it with a classification loss. We do
this by employing a separate classification network that uses
the features of the dissimilar image f− and outputs a pre-
diction value X− = (Xt

−)t∈T , X
t
− = (Xt

−,0, X
t
−,1) ∈ R2

for each binary value on each tag. We do not use the anchor
image features f nor the similar image features f+, as they
form a subset of the training images, unlike the dissimilar
images, which are chosen randomly. With y− as the noisy
target label for the input image, we use multi-label cross-
entropy loss for classification:

lC(X−,y−) =
1

|T |
∑
t∈T

l×(X
t
−, y

t
−) , (5)

l×(x, y) = −xy + log (exp(x0) + exp(x1)) . (6)

Finally, we combine both losses to obtain the model loss:

l(d+, d−, X−,y−) = lR(d+, d−) + αlC(X−,y−) , (7)

where α is a weight to balance the different loss functions.
The classification loss lC affects both the feature extrac-

tion network and the classification network, while the rank-
ing loss lR only affects the feature extraction network.

3.2. Feature Extraction Network

We follow the approach of [29] of using 3x3 kernels
for the convolutional filters to keep the number of weights
down for the network and allow increasing the number of
layers. One pixel padding is used to keep the input size and
output size of the convolutional layers constant. In order to
allow efficient learning the entire network from scratch, we
rely on Batch Normalization layers [13]. Dropout [30] is
used to prevent overfitting throughout the architecture.

A full overview of the architecture can be seen in Ta-
ble 1. We note two important differences with commonly
used networks: firstly, it uses a 3:4 aspect ratio for the input
images as they are dominant in the fashion community; and
secondly, it has a very small number of parameters com-
pared to widely-used models. This is due to using only a

Table 1: Feature extraction network architecture. All con-
volutional layers have 1 × 1 padding and all layers besides
the max pooling layer have a 1 × 1 stride, while the max
pooling layers have a 4× 4 stride.

type kernel size output size params

convolution 3× 3 384x256x64 1,792
convolution 3× 3 384x256x64 36,928

dropout (25%) 384x256x64

max pooling 4× 4 96x64x64
batch normalization 96x64x64 128

convolution 3× 3 96x64x128 73,856
convolution 3× 3 96x64x128 147,584

dropout (25%) 96x64x128

max pooling 4× 4 24x16x128
batch normalization 24x16x128 256

convolution 3× 3 24x16x256 295,168
convolution 3× 3 24x16x256 590,080

dropout (25%) 24x16x256

max pooling 4× 4 6x4x256
batch normalization 6x4x256 512

convolution 3× 3 6x4x128 32,896
fully-connected 128 393,344

TOTAL 128 1,572,544

single fully-connected layer with 128 hidden neurons and
decreasing the number of filters before the fully-connected
layer. This allows the model to have high performance
while having only 1,572,544 parameters. In comparison,
the VGG 16 layer network [29] has 134,260,544 parame-
ters when considering only feature extraction.

3.3. Classification Network

Due to the noisy nature of the weak labels, the objective
of the classification network is to aid the learning of the fea-
ture extraction network and not high classification perfor-
mance. It consists of a batch normalization layer, followed
by a rectified linear unit layer, a linear layer with 128 hid-
den units, and finally another linear layer which outputs the
set of predictions X for classification. This network is kept
small to encourage the propagation of gradients into the fea-
ture extraction network and hasten the learning. The ini-
tial batch normalization and rectified linear unit layers help
partially isolate the classification network from the feature
extraction network. When learning with 123 tags, the clas-
sification network has a total of only 48,502 parameters.

3.4. Joint Learning

Both networks are trained jointly using backpropaga-
tion [24]. Instead of using stochastic gradient descent which
is dependent on setting a learning-rate hyperparameter, we
utilize the ADADELTA algorithm [46], which adaptively
sets the learning rate each iteration. No image cropping,



momentum, nor weight decay is used. The only image pre-
processing consists of subtracting the mean from each color
channel and dividing by the standard deviation.

Initialization is critical for learning both networks: even
with batch normalization, we were unable to train both net-
works jointly from scratch. We overcome this issue by
first training the feature extraction network with an ad-
ditional fully-connected layer for classification (Eq. (5)).
Once the optimization has converged, the additional clas-
sification layer is removed from the feature extraction net-
work and the classification network is added with random
weights. Finally, both networks are trained jointly.

Since it is impossible to precompute all the possible val-
ues of the similarity metric r(·, ·) for large datasets, we use
a simple sampling approach for the triplet of images when
using the ranking loss. We initially choose a random anchor
image I . We then randomly sample an image Ir and check
to see if r(I, Ir) > τs or r(I, Ir) < τd. In the first case, Ir
is added as the similar image I+ and in the latter case it is
added as the dissimilar image I− to the image triplet. This
is done until the image triplet is completely formed. If it is
not formed in a set number of iterations, a new anchor im-
age is chosen and the procedure is restarted.

4. Experimental Results
We implement our approach using the Torch7 frame-

work [6]. We train our model on the Fashion144k
dataset [27], and evaluate on the Hipster Wars dataset [16].
We compare our results against publicly available pre-
trained CNNs, and the state-of-the-art style descriptor [41]
baselines. Our approach outperforms all baselines while be-
ing more efficient to compute and compact. We also per-
form additional experiments for the prediction of fashion-
ability and see that we outperform all other approaches in
the accuracy metric. In all cases, our joint classification and
ranking approach outperforms using either classification or
ranking losses alone, and using a Siamese architecture (de-
scribed in the supplemental material).

4.1. Cleaning the Dataset

We train on the Fashion144k dataset [27]. Since the im-
ages have been obtained from chictopia.com without any
sort of filtering, a large amount of images are not repre-
sentative of what we wish to learn: a descriptor for fashion
style. Thus, we would like to clean the data, i.e., take only
the images we consider suitable for training and not others.
An example of images which we wish to classify are shown
in Fig. 3. As it is unreasonable to do the cleaning manually,
we train a classifier after a minor amount (6,000 images) of
annotation that can be done in a couple of hours. We will
show that this gives a significant increase in performance.

We annotate the images based on whether or not they
contain a fully-visible person centered in the image (the

Figure 3: Examples of clean and dirty images from the
Fashion144k dataset [27] are shown in the top and bottom
rows, respectively. While there is much diversity, the clean
images show figures more or less centered with the whole
body visible, whereas dirty images have strong filters, show
close-ups of objects, and/or are severly cropped.

supplemental material contains more details). We use a 1:1
train-to-test split to finetune the VGG 16 Layers Model [29]
pretrained on ImageNet for the binary classification task of
whether or not an image is suitable for training. We are able
to obtain 94.23% accuracy on the 3,000 test images.

As weak annotations, we use the “color” tags provided
by the Fashion144k dataset which consist of color-garment
tags such as red-sweater or blue-boots, the set of which we
denote by T1 and has 3,180 unique tags. We split the tags
into colors and garments, resulting in a total of 123 unique
weakly-annotated tags T2. These tags are the only ones used
when performing classification. However, for the weak
metric (Eq. (1)), we consider the set formed by the union
of the “color” tag set and the split tag set: T = T1 ∪ T2.

We build a clean version of the Fashion144k dataset by
first filtering out entries for which less than three tags in T2

are assigned 1, to reduce the noise. We additionally fil-
ter images using our trained classifier on whether or not
they are suitable. This results in 80,554 training images and
8,948 validation images with a 9:1 train to validation split.

4.2. Training the Model

We train with a batchsize of 32 for classification and 16
when jointly training for classification and ranking, due to
the higher memory usage. We use a similarity threshold of
τs = 0.75 and dissimilarity threshold of τd = 0.01. Exam-
ples of triplets of images T used for learning can be seen in
Fig. 4. When jointly training for classification and ranking,
we set the classification loss weight to α = 0.01 such that
the losses are of comparable magnitude. We initially train
the feature extraction network with a classification loss. We
then use the best performing model evaluated on the vali-
dation set to initialize the weights for the feature extraction
network when using other losses. In particular, we consider
joint classification and ranking loss, only ranking loss, and
Siamese loss. We also compare to using the non-cleaned

http://www.chictopia.com
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Figure 4: Example of triplets of images used for training the
model when using a ranking loss on the cleaned version of
the Fashion144k dataset. For each triplet the anchor image
I is displayed in the center with the dissimilar image I− on
the left and the similar image I+ on the right.

dataset which we denote as “dirty”.

4.3. Hipster Wars Dataset

We evaluate on the Hipster Wars dataset [16], which con-
sists of similar images to the Fashion144k dataset [27] used
to train, but from different sources. The dataset is made up
of pictures of upright people in the center of the image; each
corresponds to one of five styles: hipster, bohemian, goth,
preppy, and pinup. The task is to perform 5-way clothing
style classification. We compare against the state-of-the-
art which is based on a 39,168-dimensional style descrip-
tor [41] that is built by first estimating the 2D pose, which
is trained in a supervised manner, and then extracting fea-
tures for 32 × 32 pixel patches around all the pose key-
points. We also consider publicly available standard pre-
trained networks on ImageNet and Places. All approaches
except ours use fully-supervised noise-free data for training.

We evaluate the features by combining them with a lin-
ear SVM [8] with L2 regularization and L2 loss to pre-
dict the style. We perform 5-fold cross validation to set
the regularization parameter and evaluate 100 times using
random splits with a 9:1 train to test ratio as done in [16].
We consider the top δ = 0.5 images from each style for
classification. Each of the dimensions of the features are
normalized independently using the training set such that
the mean is 0 and the standard deviation is 1, except for
approaches that directly learn embeddings, e.g., Ranking,
Joint, and Siamese models. We report accuracy, precision,
recall, and intersection over union (iou) in Table 2. We can
see that all our models outperform all the other approaches.
By cleaning the data and improving the loss objective from
classification to Siamese, Siamese to Ranking, and finally
Ranking to Joint Classification and Ranking, we are able to
improve performance.

We also consider two other scenarios: no training and
fine-tuning. The results for not training and directly using

Table 2: Comparison with the state-of-the-art on the Hipster
Wars dataset. We evaluate as in [16] by computing the mean
of 100 random splits with a 9:1 train to test ratio. For all the
models we additionally display the number of parameters,
and the dimension of the features. Dirty refers to training
on a non-cleaned version of the Fashion 144k dataset. Our
compact features significantly outperform the others.

feature params dim. acc. pre. rec. iou

Ours Joint 1.6M 128 75.9 75.4 76.5 61.5
Ours Ranking 1.6M 128 74.5 74.2 74.5 59.6
Ours Siamese 1.6M 128 73.3 72.9 74.0 58.2

Ours Classification 1.6M 128 73.5 71.7 74.1 57.3
Ours Joint Dirty 1.6M 128 72.9 72.1 73.1 57.0

Kiapour et al. [16]† ‡ 39,168 70.6 70.6 70.4 54.6

VGG_CNN_M [4] 99M 4096 71.9 72.9 70.9 56.2
VGG 16 Layers [29] 134M 4096 70.1 70.5 69.7 54.8

VGG_CNN_M_1024 [4] 86M 1024 70.4 71.1 69.5 54.2
VGG_CNN_M_128 [4] 82M 128 63.5 62.8 63.5 46.3
VGG 16 Places [49] 134M 4096 57.4 57.6 59.4 41.5

† We were unable to reproduce the results of [16] and instead compare
with the results from the confusion matrix they provide in their paper.
‡ Not directly comparable but in the order of hundreds of thousands.

Table 3: Comparison with deep networks using feature dis-
tances on the Hipsters Wars dataset. For each image in the
dataset, we sort all the remaining images by distance and
consider a top-n match if one of the n nearest images is of
the same class. No training is done at all.

feature dim. top-1 top-2 top-3

Ours Joint 128 63.5 79.9 86.3

VGG_CNN_M [4] 4096 53.2 71.7 81.3
VGG 16 Layers [29] 4096 53.2 71.5 80.4

VGG_CNN_M_128 [4] 128 44.6 64.0 76.2
VGG 16 Places [49] 4096 40.1 61.0 72.0

feature distances is shown in Table 3. Our approach clearly
outperforms other approaches, with a 20% increase in per-
formance with respect to 4096-dimensional features and
50% increase with respect to similar size 128-dimensional
features. If we use a single split instead of using 100 ran-
dom splits and fine-tune the deep networks, we get the re-
sults shown in Table 4. Fine-tuning the deep network sig-
nificantly improves the performance; however, the best per-
forming network is still within 1% of our approach, despite
using a 32× larger internal feature representation.

4.4. Predicting Fashionability

We also evaluate on the much more complicated task of
fashionability prediction on the Fashion144k dataset [27].
This consists of rating how fashionable a person in an im-
age is on a scale of 1 to 10. As this is the dataset used for
training, although with a different objective, we use only



Table 4: Comparison against fine-tuned deep networks on
the Hipster Wars dataset. For the fine-tuned networks, the
numerator is the fine-tuned result and the denominator is the
result of using a logistic regression without fine-tuning.

feature dim. acc. pre. rec. iou

Ours Joint 128 68.4 66.1 67.9 51.0

VGG_CNN_M 4096 68.4/64.6 67.3/64.2 68.8/63.0 51.8/46.8
VGG 16 Layers 4096 63.8/63.3 62.6/62.6 63.5/61.9 46.5/45.4

VGG_CNN_M_128 128 62.6/57.2 60.4/55.1 62.1/56.9 44.5/39.0

Table 5: Results on the Fashion144k dataset for the task of
predicting how fashionable a person is on a scale of 1 to
10. We compare against strong CNN baselines and all vari-
ations of our model. We also consider our model architec-
ture with random weights to observe the effect of learning,
and average the results for 10 random initializations. The
model with random weights performs almost the same as
the VGG_CNN_M_128 model that has been pretrained on
ImageNet. Our model outperforms all models in accuracy.

feature dim. acc. pre. rec. iou

Ours Joint 128 17.0 14.7 15.2 7.1
Ours Classification 128 14.6 12.7 14.5 6.3

Ours Siamese 128 13.9 11.9 24.2 5.8
Ours Random 128 13.0 10.8 11.5 4.9

VGG 16 Layers [29] 4096 16.6 15.1 15.7 8.0
VGG 16 Places [49] 4096 15.8 14.0 14.7 7.3

VGG_CNN_M [4] 4096 13.2 11.8 11.5 6.0
VGG_CNN_M_128 [4] 128 13.2 10.8 11.7 4.8

the images not used in the training set for evaluation. We
use 8,000 images for training and 948 images for testing.
As with the Hipster Wars dataset, we evaluate the features
using a linear SVM with L2 regularization and L2 loss and
set the regularization parameter with 5-fold cross validation.

We compare against deep network baselines in Table 5.
We can see our approach is able to significantly outperform
the 128-dimensional feature network. However, it is out-
performed by some of the 4096-dimensional features from
deep networks. This is likely due to the fact that the fash-
ionability score, while correlated with the style of the outfit,
is greatly affected by non-visible factors such as social con-
nections [38], and thus larger features are beneficial. De-
spite this, our approach outperforms similar networks.

4.5. Visualizing the Style Descriptor

We follow a similar approach to [47] to visualize how the
input image is related to our descriptor. Instead of focusing
on a single neuron, however, we consider the entire style de-
scriptor output by displaying both the norm and projecting
it onto PCA basis. We do this by sliding a 48×48 bounding
box around the input image with the mean color of the input

Ours VGG_CNN_M_128
Input Norm PCA 1 PCA 2 PCA 3 Norm PCA 1 PCA 2 PCA 3

Figure 5: We analyze the relationship between the image
and the style descriptor by moving an occluding box around
the image and display the change in the norm of the descrip-
tor and the change of the first three components on PCA
basis computed on all the vectors extracted on the image.
The positive and negative values are encoded in blue and
red respectively. The norm is normalized so that the mini-
mum value is white and the maximum value is blue, while
the PCA representations are normalized by dividing by the
maximum absolute value. Large descriptor changes corre-
spond to the location of the individual and the PCA modes
refer to the location of different garments. We compare with
a fine-tuned VGG_CNN_M_128 network and see that our
approach focuses on the figure and not the background.

Image 1 Ours VGG Anchor Ours VGG Image 2

similar dissimilar

Figure 6: We analyze how the style of two image matches
by using our descriptor. Blue indicates that the area is dis-
similar between the images using the middle anchor image
as a reference, while red represents similar areas in the im-
age. The distance between the descriptors are shown above
each visualization map. Our approach is capable of find-
ing similarities between the fashion styles in the images.
We compare with a fine-tuned VGG_CNN_M_128 network
which can’t identify the clothing changes in the image.

image and calculating the style descriptor. We compare the
resulting descriptors with the original image descriptor and
visualize the change. In this way, we can localize the parts
of the image that have the greatest effect on the descriptor,
i.e., the parts that our feature extraction network focuses on.
We show examples on the Fashionista dataset [40] in Fig. 5
and see that our style descriptor reacts strongly to different
parts of the body for different individuals.
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Figure 7: Visualization of the fashion style space of the Pinup class from the Hipster Wars [16] dataset using t-SNE [33].

4.6. Matching Styles

Instead of considering only a single image, we can con-
sider pairs of images and match parts of the image using the
style descriptor. This is done in a similar way as visualiz-
ing a single style descriptor, that is, by sliding a 48 × 48
pixel bounding box around the image. The difference is
that we consider two feature descriptors f1 = f(I1) and
f2 = f(I2) corresponding to two different images I1 and
I2 simultaneously. We employ the difference between both
feature vectors to evaluate how well this vector matches the
change of the style descriptor f(·) given an image partially
occluded at pixel location (u, v) with a bounding box mask
B(u, v) by using the dot product:

IM (u, v) = (f(I1 ◦B(u, v))− f1) · (f2 − f1) , (8)

where IM (u, v) is the output map at pixel (u, v), and ◦ is the
Hadamard product or element-wise matrix multiplication.

We show results in Fig. 6 where we can see that our de-
scriptor is effectively capturing the notion of outfit simi-
larity in a reasonable way. Note that this concept of local
outfit similarity was learned automatically from noisy user-
provided tags without any pixel level annotations. On the
other hand, the fine-tuned VGG_CNN_M_128 model gives
similar maps regardless of the image compared to: it is over-
fitting to the Hipster Wars dataset.

4.7. Exploring the Fashion Style Space

Finally, we perform a qualitative analysis of the resulting
style descriptors obtained by visualizing the fashion style

space using t-SNE [33]. The style descriptors can be com-
pared efficiently by using Euclidean distances. We visual-
ize the Hipster Wars “Pinup” class in Fig. 7. Our features
display a remarkable robustness to background changes and
focus on the outfit. They are also able to capture subtleties
such as the transition from pink dresses without patterns to
floral patterns, and group navy dresses with white spots re-
gardless of the background and the wearer’s ethnicity.

5. Conclusions
We have presented a novel approach to weakly-

supervised learning of features consisting of joint rank-
ing and classification. This allows learning compact 128-
dimensional features for more specific types of images that
may be very costly and complicated to annotate. Our
method allows us to learn discriminative features that are
able to outperform both the previous state of the art and
the best-performing model trained on ImageNet while be-
ing the size of a SIFT descriptor. The proposed joint rank-
ing and classification approach consistently improves re-
sults over using either classification or ranking loss alone.
We complement our model with a simple approach to auto-
matically clean the data. In addition to a quantitative anal-
ysis, we present a new approach both to visualize the indi-
vidual descriptor activations and to find similarities between
two style images. Our analysis of the resulting descriptor
shows it is robust to backgrounds and is able to capture fine-
grained details such as flower patterns on pink dresses.
Acknowledgements: This work was partially supported by
JSPS KAKENHI #26108003 as well as JST CREST.
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