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Fig. 1. Example of interactive rough sketch inking. On the le� we show an input rough sketch and on the right our user interface with the completed line

drawing. The le� of the user interface shows the canvas with user edits overlaid; green indicates smart eraser edits, light red shows inker brush edits, and dark

red shows inker pen edits. On the right of the user interface we see the final result. This example was done using a mouse, and not any specialized illustration

hardware. The image is copyrighted by Krenz Cushart and is part of the Krenz’s Artwork Sketch Collection 2004-2013.

We present an interactive approach for inking, which is the process of turn-

ing a pencil rough sketch into a clean line drawing. The approach, which

we call the Smart Inker, consists of several “smart” tools that intuitively

react to user input, while guided by the input rough sketch, to efficiently

and naturally connect lines, erase shading, and fine-tune the line drawing

output. Our approach is data-driven: the tools are based on fully convolu-

tional networks, which we train to exploit both the user edits and inaccurate

rough sketch to produce accurate line drawings, allowing high-performance

interactive editing in real-time on a variety of challenging rough sketch im-

ages. For the training of the tools, we developed two key techniques: one is

the creation of training data by simulation of vague and quick user edits; the

other is a line normalization based on learning from vector data. These tech-

niques, in combination with our sketch-specific data augmentation, allow

us to train the tools on heterogeneous data without actual user interaction.

We validate our approach with an in-depth user study, comparing it with

professional illustration software, and show that our approach is able to re-

duce inking time by a factor of 1.8×, while improving the results of amateur

users.
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1 INTRODUCTION

“1. The inker’s main purpose is to translate the penciller’s graphite

pencil lines into reproducible, black, ink lines.

2. The inker must honor the penciller’s original intent while adjusting

any obvious mistakes.

3. The inker determines the look of the finished art.”

— Gary Martin, The Art of Comic Book Inking [1997]

Although the role of computers in illustration has grown signifi-

cantly in the last decade, pencil and paper sketching still remains the

dominant way most illustrators brainstorm or begin new projects.

Once a rough sketch is completed, it is usually inked, either digitally

or by pen, to obtain a line drawing which is amenable to color-

ing, toning, or direct usage. The digital inking process consists of

redrawing all the lines, while at the same time fixing mistakes or

tweaking details, to obtain a digital line drawing. The process is

usually done by employing costly digital pen tablets, and requires

concentration for drawing accurate lines. In this work, we present

a digital inking process, which allows for semi-automatic real-time

interactive creation of line drawings, while not requiring accurate
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Fig. 2. Examples of our three proposed tools. The first two rows depict the

inker pen tool (dark red), while the middle two rows depict the inker brush

tool (light red), and the last two rows depict the smart eraser tool (green).

strokes, allowing amateurs to accurately ink complex pencil draw-

ings in minimal time. An example is shown in Fig. 1.

Our approach consists of three “smart” tools that intuitively react

to user input, while guided by the input rough sketch, to efficiently

and naturally connect lines, erase shading, and fine-tune the line

drawing output. The tools are: an inker pen, for precise correction

or addition of lines; an inker brush, for quick addition of lines; and a

smart eraser, which erases lines while considering their connectivity.

We will show that this approach allows amateur artists and naïve

users to quickly and accurately ink complex scenes, on average 1.8×

faster than conventional approaches. An overview of the different

tools is shown in Fig. 2, where it can be seen that inaccurate edits

can be used for effective inking.

These tools are designed in a data-driven way, trained by train-

ing data and simulated user edits without explicitly hard-coding

their behaviour. They are fully convolutional networks that take

two kinds of inputs: the image of the input rough sketch and the

user input. The ability to combine the two is similar to the recently

proposed interactive neural network approaches [Sangkloy et al.

2017; Zhang et al. 2017] for image colorization, where the user

can iteratively adjust the output by adding more user hints. When

training with pairs of greyscale and color images, user hints are

automatically generated by sampling from the ground truth image

color. While these simple hints work well for interactive image col-

orization, where information is dense, it does not work for sparse

inputs such as rough sketches and line drawings. Furthermore, ink-

ing requires more precise user edits than the hints used in image

colorization. Because of these limitations, we propose a novel user

edit simulation approach. An overview is shown in Fig. 3.

To train the networks, we require two novel techniques to create

training data. One is the simulation of vague and quick user edits.

The other is a line width normalization, which allows for training

the model with a larger heterogeneous dataset in which the width

of the lines is not consistent among samples.

For the latter, we developed a framework for learning a line nor-

malization operator directly from data using neural networks. Unlike

standard morphological operators which can be used for the line

normalization task, our approach allows processing images without

converting them to binary images as a pre-processing stage, and

outputs smooth anti-aliased figures. We show that for complex line

art this obtains much better performance than standard morpho-

logical operators. Our learned line normalization operator plays a

fundamental role in the training of our network. The same frame-

work can also be used as a post-processing step to tweak the final

line width of the line drawings.

Our model is also inspired by recent developments in sketch

simplification, in which using an encoder-decoder architecture fully

convolutional network has allowed for fast and accurate sketch

simplification of complex rough sketches [Simo-Serra et al. 2016].

We modify the model to allow for interactive editing, and simplify

its design in order to reduce the computation time to roughly 37%

of the original model.

A common issue creating line drawings with neural networks is

blurry outputs. By using our line normalization framework, in com-

bination with a simple weighted L1 loss, we are able to obtain crisp

results without having to resort to post-processing techniques [Simo-

Serra et al. 2016] nor complex optimization frameworks [Simo-Serra

et al. 2018]; this is rather critical for the interactive inking setting,

as it allows for more natural and direct interaction.

We perform an in-depth evaluation of the different components

of our approach, and provide results on a large number of chal-

lenging real world rough sketches drawn by professional artists.

Additionally, we perform a user study in which we compare our

approach with professional inking software, and show that, for am-

ateur artists, our approach obtains better results an average of 1.8×

faster than conventional approaches, and furthermore, users find

our approach easier to use.

Our contributions are as follows: (1) An inking approach that

allows for real-time interactive editing of high resolution rough

sketches without the need of post-processing, with intuitive data-

driven inking tools. (2) A framework for training such tools by simu-

lating user edits and modifying the input rough sketch images. (3) A

line width normalization technique for training with heterogeneous

raster line sketches. (4) A study showing that amateur users are able

to ink rough sketches 1.8× faster while improving the results.
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Fig. 3. An overview of our approach for training data-driven inking tools based on simulating user edits and modifying the input rough sketch images.

Input [Simo-Serra et al. 2018]

User Edit Our Interactive Approach

Fig. 4. Our approach can be used to iteratively improve results in a simple

fashion, enabling it to handle foreground-background intersections which

are common in rough sketch drawings. The smart eraser strokes drawn by

the user are shown in green. In this skull and bones example, the bones that

intersect the skull can be erased in a few seconds as it is not necessary to

be very accurate with the smart eraser tool: it will automatically extend to

fully erase intersecting lines.

2 BACKGROUND

Initial line drawing processing techniques have focused on the pro-

cessing of vector images. With the availability of individual stroke

data, it is possible to assist the user in creating line drawings by

using geometric constraints [Igarashi et al. 1997], fitting Bézier

curves [Bae et al. 2008], or heuristically merging strokes [Grimm

and Joshi 2012]. However, all these approaches rely on having the

data and order of the individual strokes, which is not possible when

drawing with pencil drawn rough sketches, greatly limiting their

applicability. Other works have relaxed the requirement that the

drawing order is available, and have been applied to simplify vector

images [Fišer et al. 2015; Lindlbauer et al. 2013; Liu et al. 2015; Or-

bay and Kara 2011; Shesh and Chen 2008]. Furthermore, approaches

to directly convert raster images to vector images using optimiza-

tion processes have been developed [Chen et al. 2013; Favreau et al.

2016; Hilaire and Tombre 2006; Noris et al. 2013], but generally have

to rely on an initial pre-processing step to convert the input rough

sketch to a binary image. The quality of this pre-processing step

becomes a critical bottleneck for the performance of this algorithm.

Additionally, the optimization step itself is very costly, and does

not allow for real-time processing. Our approach is able to handle

rough raster sketches directly without pre-processing and allows

for editing in real-time.

Recently, an interactive vectorization approach for natural images

related to our approach has been developed [Xie et al. 2017]. This

approach exploits the rich gradients, color information, and contour

maps of the natural images, and allows editing of the vector output

by performing merge and split operations on closed contour regions

based on detected edges. While exploiting the properties of natural

images gives good results, the proposed approach no longer becomes

applicable to rough sketch images. In contrast, our approach is data-

driven and based on simulating user edits focusing on rough sketch

images.

Approaches based on neural networks have been proposed for

the sketch simplification task [Simo-Serra et al. 2018, 2016] on raster

rough sketch images. These approaches focus on fully automatic

processing, and on simple rough sketch input images with little

or no pencil shading nor areas that require editing. In contrast, in

this work, we tackle the inking task. The difference is that, in gen-

eral, the input rough sketch has mistakes or areas that are meant

to be corrected, and thus are not amenable for fully automatic ap-

proaches. Although we also base our approach on a neural network,

we propose a novel approach for simulating user edits that allows

our model to be used interactively to ink rough sketches in real-

time. An example is shown in Fig. 4, in which the foreground and

the background are drawn in an overlapping manner and makes

fully automatic approaches fail. Although it is possible to edit the

output directly with an illustration software, this requires accurate

edits, while our approach works directly with rough and vague user

inputs, automatically connecting lines and erasing connected areas.
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In this work, we need line normalization for efficient learning and

to avoid blurred output lines. Here, we would like to make the width

of all the lines in the training set the same, without changing the un-

derlying line structure, so that the learning process is not distracted

by various thickness of the lines. We do this by learning morpho-

logical operators from data. Morphological operators have many

usages in image processing, from character recognition [Ahmed

and Ward 2002] to segmentation of retinal blood vessels [Mendonca

and Campilho 2006]. Most algorithms employed are based on theo-

retical principals to determine how to simplify small image patches,

and are applied iteratively until convergence [Jang and Chin 1990;

Lam et al. 1992; Zhang and Suen 1984]. However, these theoreti-

cal principles do not necessarily correspond to human perception,

and can lead to unnatural results. While skeletonization approaches

can be applied for line normalization, they are based on look-up

tables for 3 × 3 binary image patches and are also generally limited

to outputting binary images, although there also exists research on

directly handling greyscale images [Chatbri and Kameyama 2014;

Dyer and Rosenfeld 1979]. We will show how our line normaliza-

tion framework is able to conserve the underlying line structure,

allowing for high performance, while producing anti-aliased out-

puts. These improvements will allow robust training of our inking

network by normalizing the training line drawings.

Recently, neural networks have been used for interactive coloriza-

tion of images [Sangkloy et al. 2017; Zhang et al. 2017]. In these

works, a greyscale image and a user hint image are concatenated and

inputted to a neural network which colorizes the greyscale image

following the user hints. Afterwards, the user edits the hint image

based on the output, and processes the input greyscale image again

with the newly modified hint image. This alternation is done in an

iterative fashion, and gives the user a certain degree of control over

the resulting image colorization. The colorization model is trained

by showing it parts of the ground truth image colors as user hints.

We build our framework on this approach. However, unlike natural

images, line drawings and rough sketches are too sparse to allow for

such simple training approaches as showing regions of the ground

truth as user hints. We propose a novel approach for simulating user

edits for training data. To represent three categories of user edits,

we design three tools, inker pen, inker brush, and smart eraser, that

the users would have at their disposal for interactive inking, and

simulate the use of these tools so that the neural networks can learn

the relationship between the user interaction and intended edits.

Unlike their simple counterparts in standard illustration software,

these tools represent user intention, rather than a precise edit, and

use the input rough sketch to interpret the user manipulation. Thus,

they consider the rough sketch region and are able to connect and

smooth lines or erase connected line segments in a coherent man-

ner. We provide in-depth evaluation of our approach and show that,

unlike simple user hint approaches, our approach allows for natural

and high performance inking of challenging rough sketch images.

The user study shows that 80% of the users find our approach easier

to use than professional inking software, and they are able to ink

the rough sketches roughly 1.8× faster.

Input [Zhang and Suen 1984] Ours

Fig. 5. Results of normalizing the line width of a raster line drawing in

comparison with standard morphological operators [Zhang and Suen 1984].

We can see that our approach is able to accurately thin the lines while anti-

aliasing without deforming or distorting the different strokes composing

the line drawing.

3 LINE NORMALIZATION

In order to normalize heterogeneous line data for training Smart

Inker, we propose a data-driven framework to normalize the stroke

width of raster line drawings from vector data.

3.1 Framework

The standard approach to normalize the width of line drawings is

based on morphological operators, which operate on binary im-

ages. These are based on look-up tables for 3 × 3 binary pixel

patches [Zhang and Suen 1984], and it is not feasible to scale them

up to larger and more complex patterns. Furthermore, binary image

outputs are generally not desired for most applications. For this rea-

son, we propose to learn the heuristics directly from large amounts

of vector data, using very simple convolutional neural networks.

Our framework consists of using vector data and manipulating

the line width to create input and output training pairs, which

are amenable for training the convolutional neural networks. In

particular, we focus on line normalization usage case, in which

the line width of the target output image is fixed for all strokes.

This can be implemented with traditional morphological operators

as skeletonizing the lines to one pixel width, then dilating them

to the desired thickness. Examples of our framework used for line
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QuickDraw TUD-Berlin KanjiVG Synthetic

Fig. 6. Line width normalization network training examples. Top row shows

inputs and bo�om row shows ground truth images. These are used to train

the line width normalization network in a supervised fashion.

normalization in contrast with existing approaches are shown in

Fig. 5.

3.2 Models

We propose two fully convolutional network models: a wide model

with 9 layers, and a nimble model with 5 layers. The wide model is

designed for pre-processing large datasets offline, while the nimble

model is meant to be used as part of the per-sketch data augmen-

tation performed during training as shown in Fig. 3. For all layers

except the last of each model, we use batch normalization [Ioffe and

Szegedy 2015] with a Rectified Linear Unit transfer function [Nair

and Hinton 2010]. For the last layer of each model, we use a Sigmoid

transfer function to ensure that the output is in the [0, 1] range.

We base our wide model on a fully convolutional network with 9

layers. The first layer uses a 9 × 9 pixel kernel, while the rest of the

layers use 3 × 3 pixel kernels. The number of convolutional filters

used is constant throughout the entire network and is set to 64. This

allows the network to compute each output pixel from a 25 × 25

pixel region of the input.

The nimble model follows a similar approach, although it is re-

duced to 5 layers and only uses 32 convolutional filters throughout

the network. As with the wide model, the first layer uses a 9 × 9

pixel kernel while the rest use 3 × 3 pixel kernels. The model com-

putes each output pixel from a 17 × 17 pixel region of the input.

3.3 Training

We train these models using mixed sources of data. In particular,

we use the TUD-Berlin dataset [Eitz et al. 2012], the QuickDraw

dataset [Ha and Eck 2018], the KanjiVG dataset1, and synthetic

shapes.

For all datasets, we align all the vector drawings to the top-left

corner and uniformly scale them to have a maximum size of 255.

We resample all the strokes with 1 pixel spacing and then simplify

them using the Ramer-Douglas-Peucker algorithm [Douglas and

Peucker 1973; Ramer 1972] with an epsilon value of 2.0.

We sample from the various datasets with different frequency.

In particular, the synthetic shapes are only 1/3 as likely to be used

in comparison with the other datasets, which are used with equal

1http://kanjivg.tagaini.net/

probability. Instead of using a single drawing per training sample,

we use a variable number depending on the level of detail of vector

images in each dataset, which we heuristically determined by visual

inspection of the average image complexity. They are also rotated

and positioned randomly in training raster image. In particular, for

the TUD-Berlin dataset, we only render one vector image between

200 and 500 pixels in resolution. For the QuickDraw dataset, we

render up to two vector images between 200 and 500 pixels in

resolution. For the KanjiVG dataset, we render up to three vector

images between 50 and 300 pixels in resolution.

Training is done with the ADADELTA variant of stochastic gra-

dient descent [Zeiler 2012], and all models are trained to normalize

the line strokes to a constant width of 2 pixels. We train the wide

model with inputs that have lines of variable thickness between 0.5

and 10 pixels, while the nimble model is trained with variable thick-

ness between 0.5 and 3 pixels. The input patches are all generated to

be 512× 512 pixels, and we train with a batch size of 8. We use early

stopping is used to avoid overfitting, and train for 20, 000 iterations.

Example training data used for line normalization can be seen in

Fig. 6.

3.4 Extensions

We note that this framework is trivially extensible to other morpho-

logical operators, such as dilation or erosion. In those cases, instead

of generating fixed width line strokes, the width can be set relative

to the input width, allowing training of models that, for example,

increase or decrease the line width by a fixed amount.

4 INTERACTIVE ROUGH SKETCH INKING

We base our inking model, which we denote Smart Inker, on a

convolutional neural network with extensive modifications in or-

der to allow interactive editing and high real-time performance. In

order to train the model for interactive editing, we propose a frame-

work for simulating user edits in which we also modify the input

rough sketch training images, nudging the model to make use of

the simulated edits.

4.1 Interactive Inking

From an algorithmic point of view, inking can be seen as a mapping

of the input rough sketch Ir to the output ink line drawing image Ii ,

where Ir , Ii ∈ R
w×h are greyscale images with widthw and height

h. Instead of approximating this mapping directly, we consider the

mapping of a pair (Ir ,E) of rough sketch and user inputs to Ii .

In the greyscale images, pure white pixels have the value 1 and

pure black pixels have value 0. We also represent the user input

by a greyscale image E ∈ Rw×h , which is amenable to be used

with convolutional operations, while being expressive enough to

represent many different types of user edits.

We define three different basic editing tools: inker pen, inker brush,

and smart eraser. The inker pen is used to ink lines, the inker brush is

used to connect incomplete strokes, and the smart eraser is to erase

unnecessary lines. Unlike standard tools, these will be trained with

data in order to generate clean line drawings. We set each “pixel” of
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Table 1. Overview of the model architecture. We abbreviate Convolution

with “Conv.” and Sub-Pixel Convolution with “Sub-Conv.”. We specify layer

irregularities in the notes column. When the same layer is repeated several

times consecutively, we indicate this with the number of times in parenthesis.

Layers are grouped by internal resolution.

Layer Type Output Resolution Notes

Input 2 ×W × H Rough sketch and user edit

Conv. 128 ×W/2 × H/2 9 × 9 kernel, refl. pad, stride 2

Conv. (×4) 128 ×W/2 × H/2

Conv. 256 ×W/4 × H/4 Stride 2

Conv. (×3) 256 ×W/4 × H/4

Conv. 512 ×W/8 × H/8 Stride 2

Conv. (×2) 512 ×W/8 × H/8

Conv. (×6) 256 ×W/8 × H/8

Dropout 256 ×W/8 × H/8 20% spatial dropout

Sub-Conv. 64 ×W/4 × H/4

Conv. 64 ×W/4 × H/4

Sub-Conv. 16 ×W/2 × H/2

Conv. 16 ×W/2 × H/2

Sub-Conv. 4 ×W × H

Conv. 1 ×W × H No BN, sigmoid

E to be a particular tool or to perform no action:

E(u,v) =




0 if no action

ϕp if inker pen tool

ϕb if inker brush tool

ϕe if smart eraser tool

, (1)

where ϕp ,ϕb , and ϕe are real number hyper-parameters. We note

that, unlike using standard illustration tools as a post-processing

stage, we will train our inking model to learn to incorporate these

tools in the learning process, allowing the model to adjust the output

to match the user edits in a “smart” fashion.

We consider the usage scenario in which the user first performs

inking on a rough sketch in fully automatic fashion before iteratively

and interactively correcting the output of the model.

4.2 Smart Inker Model

Our model consists of a fully convolutional encoder-decoder net-

work with 24 layers that decreases the resolution in three stages

down to 1/8 of the original size. Afterwards, the output is restored

to the original size in three stages with sub-pixel convolutions [Shi

et al. 2016], which allow doubling the resolution at each stage. Fol-

lowing the standard practices in convolutional networks, after each

convolutional layer we apply Batch Normalization (BN) [Ioffe and

Szegedy 2015], followed by a Rectified Linear Unit (ReLU) trans-

fer function [Nair and Hinton 2010]. The convolutional layers use

3× 3 pixel kernels with 1× 1 pixel 0-value padding to keep the inter-

nal resolution constant. As an exception, the first layer uses a 9 × 9

pixel kernel with 4 × 4 pixel reflection padding to avoid artefacts in

the input caused by using 0-value padding. We also employ spatial

Table 2. Comparison of computation time on a machine with a Intel(R)

Core(TM) i7-6800K CPU (3.40GHz) and GeForce GTX 1080 GPU with

LtS [Simo-Serra et al. 2016]. The average timing of 100 trials is shown.

Approach Parameters 10242px 15122px 20482px 25602px

LtS 44,551,425 238.8ms 562.4ms 984.7ms 1.59s

Ours 12,795,169 89.9ms 225.5ms 382.7ms 592.9ms

dropout [Tompson et al. 2015] before the first sub-pixel convolution

layer, which is an extension of dropout [Srivastava et al. 2014] in

which instead of randomly 0-valuing pixels, entire feature maps are

randomly set to 0. This avoids nearby pixel values being used to

fill in 0-value pixels that is typical due to the heavy correlation of

neighbour values. An overview of the model is shown in Table 1.

The closest work to this model is that of [Simo-Serra et al. 2016]

which consists of a 23 layer convolutional network. While our pro-

posed model is similar in architecture, we would like to point out

several major differences. First and most importantly, we consider

as input both a rough sketch and user edit maps, which can be seen

as a two channel image instead of a single channel greyscale image.

Instead of using up-convolutions, we use sub-pixel convolutions

which allow for faster computation and higher accuracy. Finally, we

would like to note that we have optimized the entire model archi-

tecture to significantly increase the computational efficiency of the

model while making no compromises on accuracy. An overview of

computational efficiency can be seen in Table 2 in which our model

obtains roughly 3× faster performance on a GPU, which results crit-

ical in allowing real-time usage of our model.

4.3 Simulating User Edits

One of the most important aspects of training Smart Inker is simu-

lating realistic user edits. Unlike traditional software tools, which

use an imperative design approach in which each tool is explicitly

defined, here we have to define the inputs and outputs of a task, and

train the model to learn the input to output mapping. In particular,

we simulate edits for the three different proposed tools in a way to

encourage the model to respect them when inking rough sketches.

Furthermore, when simulating, we do not only generate the edit

map E, but also manipulate and edit the input rough sketch Ir . An

overview of the entire algorithm for simulating edits can be seen in

Algorithm 1 and examples of simulated edits can be seen in Fig. 7.

For a rough sketch and a line drawing pair (Ir , Ii ), we randomly

simulate the different type of tools to generate a user edit map E. In

particular, we simulate four different actions: inker pen tool, inker

brush tool, simple eraser, and advanced eraser. Both the simple

eraser and the advanced eraser simulated actions correspond to

our smart eraser tool. In order not to be fully dependent on the

edits, with 10% probability we use a fully zero (no-action) edit map

E. Otherwise, we create a number of additive edits (inker pen tool

and inker brush tool) following a binomial distribution
(NL

σL

)
and a

number of subtractive edits (smart eraser tool) following a binomial

distribution
(NE

σE

)
. For each additive edit there is a 50% possibility of

it being a simulated inker pen tool edit and 50% possibility of it being

a inker brush tool edit. In the case of the smart eraser tool, each

edit has 50% chance of being a simple eraser edit and 50% chance of

ACM Transactions on Graphics, Vol. 37, No. 4, Article 98. Publication date: August 2018.
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Full Inker Pen Inker Brush Simple Eraser Advanced Eraser

Fig. 7. Training examples with simulated user edits. In the top row we show the rough sketch input, and in the bo�om row we show a linear combination of

the simulated user edit and the input ground truth. We can see how, for the inker brush and advanced eraser simulation, not only is the user edit being

simulated, but the input rough sketch is also being modified. This forces the model to learn to exploit the user edits and not rely solely on the input when

inking. In particular, when simulating the inker brush tool we can so�en or erase parts of the input, while when simulating the advanced eraser will copy parts

of the rough sketch to simulate superfluous lines.

being an advanced eraser edit. In general, as the user edit simulation

must be done a large amount of times during the training procedure,

we prioritize keeping the simulation as simple and fast as possible.

4.3.1 Inker Pen Simulation: The inker pen tool is one of the eas-

iest to simulate. Initially the ground truth line drawing is binarized

using a threshold τL and a random point is sampled on a “line” pixel

as an initial seed. From this seed, we perform a directional dilation

operation using the inverse of the binary line drawing as a mask

and add the result times ϕp to the user edit map. The directional

dilation operation is implemented as a recursive function which

accumulates the image gradient vector, and only propagates the

dilation to pixels with relatively similar image gradients directions.

In particular, we dilate randomly between 50 and 90 pixels. An over-

view of this algorithm can be seen in Algorithm 2. After the dilation,

the lines are randomly distorted by either one-pixel dilation or ero-

sion operation 30% of the time, and used to update the user edit

map. This decreases the sensitivity to line width.

4.3.2 Inker Brush Simulation: While the inker pen tool is useful

for accurately inking lines, it is overly dependent on the accurate

strokes and not very suitable for amateur users. In order to also

appeal to non-professionals, we propose a inker brush tool, which

also allows completing lines, but unlike the inker pen tool, it com-

pletes lines in a fuzzy manner. Instead of relying on accurate user

strokes, the inker brush leverages sloppy inaccurate user strokes

to correct or add new lines based on the rough sketch input. We

train the model to use this tool by first skeletonizing the ground

truth line drawing thresholded by τL . We then choose a random

point on the line drawing skeleton, and dilate this point randomly

between 10 to 30 pixels using a version of the line drawing that

has been randomly dilated between 3 and 7 pixels as a mask. This

allows us to obtain a large fuzzy line centered on a single point. We

then randomly translate the fuzzy line randomly by 0 to 2 pixels

both horizontally and vertically, and add the result times ϕB to the

user edit map. We found that just generating inaccurate fuzzy lines

led to the network relying solely on the input rough sketch and

ignoring the fuzzy lines due to their inaccuracy. For this reason, we

also randomly erode the dilated non-translated line stroke by 0 to

5 pixels, apply a Gaussian filter with a random standard deviation

between 0 and 1, and randomly interpolate the input rough sketch

with this new mask. This causes part of the input rough sketch to

whiten out and no longer allows the network to rely on the input,

which has been partially erased, forcing the network to reconstruct

the output based on the simulated inker brush tool input and nearby

lines.

4.3.3 Simple Eraser Simulation: Simple simulation of the eraser

tool is analogous to the inker pen tool, but for white space. First the

ground truth line drawing is binarized using a threshold τE , and a

random white coordinate is sampled. Afterwards, this coordinate is

dilated between 10 and 50 pixels using the white space as a mask to

create an initial eraser candidate, which is then randomly eroded

between 0 and 20 pixels such that the boundary doesn’t exactly

match the mask. The result times ϕe is added to the user edit map.

4.3.4 Advanced Eraser Simulation: One issue with generating

simple eraser user edits is that, when the model performs very well,

it will have a tendency to ignore the eraser edits, and only focus

on exploiting the rough sketch and additive edits. In order to force

the model to heed the eraser edits, we randomly select a square

patch between 20 to 40 pixels from the input rough sketch and
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Algorithm 1 Overview of the training data generation procedure

using simulated user edits.

1: function simulate_user_edit

2: Input: Ø

3: Ouput: rough sketch Ir , ground truth Ii , simulated edit E

4: Ir , Ii ← sample_training_data()

5: Ir , Ii ← data_augmentation(Ir , Ii )

6: E ← zero_matrix()

7: if 10% chance then ⊲No user edit

8: return Ir , Ii ,E

9: end if

10: for j = 1 to NL do

11: if σL chance then

12: I ′i ← threshold(Ii ,τL)

13: if 50% chance then ⊲Simulate Inker Pen Tool

14: u,v ← random_line_coordinates(I ′i )

15: E ′ ← dir_masked_local_dilation((u,v), 1 − I ′i )

16: E ′ ← random_dilation_erosion(E ′)

17: E ← E + ϕpE
′

18: else ⊲Simulate Inker Brush Tool

19: I ′i ← skeletonize(I ′i )

20: u,v ← random_line_coordinates(I ′i )

21: I ′i ← dilation(I ′i )

22: E ′ ← masked_local_dilation((u,v), 1 − I ′i )

23: E ← E + ϕb random_translation(E ′)

24: E ′ ← erosion(E ′)

25: E ′ ← gaussian_blur(E ′)

26: Ir ← Ir ⊙ E
′
s − E

′
s + 1

27: end if

28: end if

29: end for

30: for j = 1 to NE do

31: I ′i ← threshold(Ii ,τE )

32: if σE chance then

33: if 50% chance then ⊲Simulate Simple Eraser

34: u,v ← random_whitespace_coordinates(I ′i )

35: E ′ ← masked_local_dilation((u,v), I ′i )

36: E ′ ← erosion(E ′)

37: E ← E + ϕeE
′

38: else ⊲Simulate Advanced Eraser

39: I ′i ← random_image_patch(Ii )

40: I ′i ← erosion(I ′i )

41: u,v ← random_whitespace_coordinates(I ′i )

42: Ir ← min(Ir , translate_to((u,v), I
′
r ))

43: E ← E + ϕe random_polyline((u,v))

44: end if

45: end if

46: end for

47: return Ir , Ii , clamp(E,−1, 1)

48: end function

copy it to a random white space coordinate from a version of the

ground truth line drawing eroded randomly by 0 to 20 pixels, which

avoids significant overlap with the input rough sketch. At the same

location, we render a vector polyline with a random thickness value

Algorithm 2 Overview of the recursive function used to locally

dilate an image centered on a point (u,v) trying to conserve a con-

stant image gradient while restricting the dilation to an image mask.

1: function dir_masked_local_dilation

2: Input: image gradient (∂u I , ∂v I ), mask M , image coordi-

nates (u,v), dilation amount d , dilated image D, accumulated

gradient (Au ,Av )

3: Ouput: dilated image D

4: if d < 0 then

5: return D

6: end if

7: θA ← get_angle(Au ,Av )

8: Au ← Au + ∂u I
u,v

9: Av ← Av + ∂v I
u,v

10: θ ← get_angle(Au ,Av )

11: if angle_difference(θ ,θA) ≥ τA then

12: return D

13: end if

14: for all (i, j) ∈ adjacent_pixels(u,v) do

15: D ← dir_masked_local_dilation((∂u I , ∂v I ),M, (u,v),d−

1,D, (Au ,Av ))

16: end for

17: return D

18: end function

between 3 and 10 pixels, which we use to update the user edit map

such that the strokes overlap the copied input rough sketch patch.

This forces the model to learn to properly erase marked areas of the

image.

4.4 Interface

We build our interface as a combination of a GPU-based back-end

with a simple web front-end as shown in Fig. 1-right. The user is

presented with a both a large input area and output area. Following

traditional inking practices [Martin et al. 1997], we display the rough

sketch in blue with the output overlaid on top on the left. The user is

then able to edit directly this image and the result is propagated to

the output which is also displayed on the right. By having the front-

end communicate asynchronously with the back-end, in addition to

presenting a model that can process 1512 × 1512 images in 0.2s, we

ensure the user is able to interactively edit large rough sketches in

real-time.

5 TRAINING

We train our model on pairs of rough sketches and line drawings,

in addition to using simulated user edits. We use line normalization

networks for both offline and on-the-fly data normalization, which

in combination with a weighted L1 loss, allows obtaining crisp line

drawing outputs, thus avoiding post-processing and allowing for

more intuitive interactive editing by the user.
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Fig. 8. Example of paper textures used to augment the training dataset by

multiplying the per-pixel values with the input rough sketches.

5.1 Dataset

We have collected a new dataset of 288 rough sketches and line draw-

ing pairs following the “inverse dataset construction” approach [Simo-

Serra et al. 2016] drawn by six different illustrators. Unlike previous

works, we collect much more complicated rough sketches that in-

clude large amounts of pencil shading and imperfections. These im-

ages are significantly more challenging than previous approaches,

which is necessary when learning with simulated user edits. Some

example patches extracted from the training dataset can be seen in

Fig. 7.

5.2 Offline Data Normalization

One issue we found when creating a much larger and challenging

dataset was that the thickness of the line drawings varies signifi-

cantly between illustrator, and even between drawings, and leads

to blurring in the outputs as we will show. For this purpose, we em-

ploy the line normalization model and normalize the dataset before

initializing the training procedure. In particular, we use the wide

model from §3.2, trained to normalize lines to 2 pixel width with

anti-aliasing. First, we resize all the training images such that the

total number of pixels is no more than 15122, then we process them

with the line normalization model to obtain a more consistent and

coherent dataset which minimizes the blurring in the output.

5.3 Per-Sketch Data Augmentation

Given the limited number of training samples, we perform large

amounts of on-the-fly sketch-specific data augmentation to improve

the generalization of our model. Following standard practices, we

randomly rotate both the input and output training image pairs, in

addition to random horizontal flipping and scaling. In particular, for

each image, the amount of scaling is determined by the triangular

probability distribution:

P(x ; s0) =

{
2(x−s0)
(1−s0)2

for s0 ≤ x ≤ 1,

0 otherwise.
, (2)

where s0 is the training patch size divided by the shortest edge of

the image, and x = 1 would represent the original image resolution.

We also randomly modify the contrast of the input rough sketch

between 0.8 and 1.2 with 1 being the original contrast. Each rough

sketch input has a 15% chance of being modified with random noise

chosen from either a normal distributionN(−0.05, 0.15) or uniform

distribution U(−0.1,−0.2) that is filtered with a Gaussian kernel

with σ = 0.5 to improve the robustness to input images.

103

104

105

103

104

105

103

104

105

103

104

105

Input LtS Baseline Ours

Fig. 9. Comparison of different models trained with and without the line

normalization pre-processing and our weighted loss. We compare our full

approach with LtS [Simo-Serra et al. 2016] without post-processing and a

baseline that is exactly the same as our approach, except that it uses the

MSE loss and no line normalization network. In the bo�om row we show

the histograms of the greyscale pixel values. Both the LtS and Baseline

model show heavy blur in comparison to our approach. The top image

is copyrighted by David Revoy (www.davidrevoy.com) and licensed under

CC-by 4.0.

In order to further increase robustness to the types of papers used

in rough sketching, we augment the rough sketches by combining

them with images of different types of paper. In particular, we use

62 different images of different types of paper, and for each train-

ing sample, with 15% probability, randomly perform the following

transformation:

Ir ⊙

(
Ip

b
+

b − 1

b

)
, (3)

where Ip is the paper texture, and b ∼ U(1, 2). We note that, just

like the rough sketches, we augment the paper textures Ip with

random rotation, flipping, contrast adjustments and scaling. Figure 8

shows some examples of the different paper textures we use during

training.

Finally, as we perform significant scaling as part of our on-the-fly

data augmentation approach, we also use a small line normalization

network (nimble model from §3.2) to renormalize the scaled line

drawings back to 2 pixel line width after scaling. We use this smaller

network as a fixed on-the-fly preprocessing stage during training,

which improves the output of our model by further reducing blur-

ring, as there is no ambiguity in the output line width, i.e., all lines

are of 2 pixel width.

5.4 Objective Function

We train the Smart Inker model S by minimizing

θ∗ = argmin
θ

EIr , Ii ,E∼D [L (S(Ir ,E;θ ), Ii ) ] , (4)

where D is our simulate user edit function (Algorithm 1), and θ are

the model parameters.
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Rough Sketch Automatic Output User Edits Ours

Fig. 10. �alitative examples of our interactive inking approach. The second image from the top is copyrighted by David Revoy (www.davidrevoy.com) and

licensed under CC-by 4.0, and the bo�om image is copyrighted by Eisaku Kubonouchi.

As an objective function, we employ the weighted L1 loss:

L(y,y∗) =
�� (y − y∗

)
⊙
(
1 + γ

(
1 − y∗

) ) �� , (5)

where γ is a weighting hyper-parameter that controls how much

importance is given to lines over white space.

We find that our weighted L1 loss, in combination with the line

normalization, allows us have clean anti-aliased outputs. This al-

lows us to avoid additional post-processing of the output, which is

important to giving more intuitive direct control to the user when

performing interactive editing. A comparison with the standard

training approach is shown in Fig. 9. Optimization is done using

the ADADELTA [Zeiler 2012] variant of stochastic gradient descent,

which does not need an explicit learning rate parameter.

6 EXPERIMENTS

We train our model with a batchsize of 27 with 512 × 512 pixel

patches. We simulate a number of user edits taken from the binomial

distribution
(NL

σL

)
=

(NE

σE

)
=

( 4
0.4

)
, which generates an average of

1.6 additive and 1.6 subtractive edits per image. When simulating

the edits, we use thresholds of τL = 0.5 and τE = 0.95. The user edit
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map pixel values are set to be in the [−1, 1] range, and, in particular,

ϕp = 1, ϕb = 0.5, and ϕe = −1. We train using Eq. (5) with γ = 2.

6.1 Interactive Editing

We show qualitative examples of user editing in Fig. 10. We note that

as our interactive framework encourages fuzzy and inaccurate edits,

the tools are set by default to provide large generous strokes. We

can see that even very challenging rough sketches can be converted

to clean line drawings.

6.2 Analysis of Data-Driven Tools

We perform an analysis of different usage cases of our proposed

tools and show example results in Fig. 2. We can see how using the

inker pen tool it is possible to correct ambiguous strokes or add

novel complex lines to the drawing. The inker brush tool allows for

simple and fast editing without using accurate strokes, and is able

to correct mistakes in the original rough sketches. The smart eraser

takes into account the context and allows removing the ambiguity

of multiple rough sketch lines while conserving important strokes.

6.3 User Study

We quantitatively evaluate our approach with a user study, com-

paring with a Professional Tools (PT) for inking. In particular, we

compare against Clip Studio Paint Ex, a professional illustration

software package containing many advanced features such as jitter

reduction, and optimized for pen tablet usage. We use a total of 10

diverse rough sketches and ask users to ink them into reproducible,

black lines. Furthermore, we ask them to honor the original intent

of the rough sketch while adjusting obvious mistakes. We point out

it is not necessary to reproduce the pencil shading. The inking is

done using a Wacom MobileStudio Pro 16, which is a professional

mobile pen computer designed for illustration. We measure the time

it takes for the participants to ink each rough sketch and have them

answer a survey at the end. Each participant inks each rough image

only once, inking half of the images with each tool. The order and

what rough image they ink is randomized per user such that all

images are inked the same number of times by each tool. A total of

10 people participated in the user study and were remunerated for

their participation. Of the participants, 7 were female and 3 were

male. Only 3 participants had significant experience in drawing, 3

had some drawing experience, and 4 were amateurs. The partici-

pants took on average 2.8 hours to complete the user study.

We compare the user’s interaction time for both our approach

and Professional Tools (PT) and show the results in Fig. 11-left. We

compare the median values with the Mann-Whitney U test [Mann

and Whitney 1947], a non-parametric statistical test, and obtain a

p-value of 2.589 × 10−7, indicating that our approach is indeed 1.8×

faster than the Professional Tools (PT) on average. We show several

examples from the user study in Fig. 12. In the first row we show

the most complex image in the user study, in which users are able to

ink the rough sketch 7.2× faster with our approach. In the second

row we see a much more challenging rough sketch in which it is not

clear what lines should be erased or kept. In this case, the interaction

times are very similar, although we can see that our approach is
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Fig. 11. Some results from our user study. On the le� we show the inter-

action time for both the Professional Tools (PT) and our approach, and on

the right we show the tool the users found easiest. The median value is

highlighted in red, and outliers are shown in dark gray.

able to output higher quality inking results in comparison with the

amateur user.

In our survey, we find that 8 of the 10 users find our approach

easiest to use, while one user finds both approaches to be the same,

and one prefers the Professional Tools (PT) as shown in Fig. 11-right.

Half of the users find that our approach was easy to use, while the

other half was neutral, and half believe their results are good with

our approach while the other half considers their results to be fair.

Of the three tools we propose, the users find the inker brush tool

to be the easiest to use and the inker pen tool to be the hardest to

use, although even then, 4 users find the inker pen tool easy to use

and 6 consider it fair to use. All users believe that with practice they

would be able to master Smart Inker and that it would be beneficial

to add to professional illustration software.

For a complete report of the user study, please refer to the sup-

plemental material.

6.4 Effectiveness of the User Edit Simulation

We compare with hint approaches similar to those used in recent

colorization approaches [Sangkloy et al. 2017; Zhang et al. 2017],

in which instead of our user simulated edits, we train the model

by showing patches of the ground truth as hints. For each ground

truth patch, we provide randomly either the line or the white space

as a hint. In particular, we show it patches between 10 to 30 pixels

in width and height. The rest of the approach remains the same as

ours. We note that this approach is only able to learn the inker pen

tool and smart eraser tool, as the inker brush tool is not represented

in the ground truth line drawing. We show examples in Fig. 13. We

find that the line tool does not automatically adjust the line width,

and that the model is unable to learn to user the eraser tool. In fact,

it learns that quite often the eraser tool hints are delineated by lines,

which leads the model to often draw a line “halo” around the eraser

edits. Our approach does not have this issue.

6.5 Comparison with Existing Automatic Approaches

We compare against recent approaches on challenging scanned

rough sketches in a fully automatic approach without using interac-

tive editing. In particular, we compare against [Favreau et al. 2016],

LtS [Simo-Serra et al. 2016], and [Simo-Serra et al. 2018]. Results are
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Fig. 12. �alitative examples of images inked by users in our user study. We show the time taken by the different users, the input rough sketch, two inking

done with Professional Tools (PT) with an example from an amateur and expert user, and finally two different examples of inking with our approach. The

bo�om image is copyrighted by Krenz Cushart and is part of the Krenz’s Artwork Sketch Collection 2004-2013.

Input Automatic User Edit Baseline Ours

Fig. 13. Comparison with a baseline which is trained using parts of the

ground truth line sketches as hints. Top row shows an example with the

inker pen tool, while bo�om row shows an example of the smart eraser tool.

shown in Fig. 14. For the approach of [Favreau et al. 2016], we pre-

processed the images in order to obtain the results shown. We find

that the approach of LtS, even with post-processing, tends to pro-

duce outputs that are fairly hard to make out for complicated rough

sketches. The approach of [Simo-Serra et al. 2018] appears to per-

form better, but still performs slightly worse than our approach. Of

the four approaches, only ours allows for interactive editing which

we find important to obtain higher quality results.

6.6 Vectorization

It is common to use vector instead of raster representations when

handling line drawings. We compare the results of using standard

vectorization software directly on the rough sketch input and the

inking results of our approach in Fig. 15. The vectorization of the

rough sketch results in a noisy and dirty vector output, while the

vectorized output of our approach remains a clean line drawing.

6.7 Changing the Line Width

We also show an illustrative example of how our line normaliza-

tion framework can be used to change the line width in Fig. 16. In

particular, we thicken the line by two pixels using a wide model

(§3.2) and compare with standard binary dilation. We can see that

our approach is able to accurately thicken the line while conserving

the underlying structure and anti-aliasing the output.

7 LIMITATIONS AND DISCUSSION

We have proposed a semi-automatic real-time interactive framework

for the inking of rough sketches. While our approach allows for

faster inking, up to 7.2× improvement on complicated images, and

improvements for amateur users, we found that for simple images

with few lines, such as shown in Fig. 17, there is no statistically

significant difference in interaction time. Our model is best suited

for complicated images that take a long time to ink by hand.

One important aspect of our approach is that each output pixel is

computed using a 241× 241 pixel region of the input image and user

edit. Although the input pixels spatially located near the output

pixels are given more importance due to the nature of concatenating

convolution operators, there are still cases in which the user edits

affect regions of the output line drawing that the user did not intend

to manipulate. In Fig. 18 we can see a case in which the user intends

to connect the bottom line with the inker brush. Although they are

successful at connecting the bottom line, the line above is partially

erased. While this can be solved with additional edits, it can lead

to mistakes and frustrate users. Additional training data might be a

way to minimize this issue.

Finally, while our model is able to provide good general inking

results, providing improvements for amateur users, and permits
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Rough Sketch [Favreau et al. 2016] [Simo-Serra et al. 2016] [Simo-Serra et al. 2018] Ours

Fig. 14. Comparison against recent fully automatic sketch simplification approaches. We note that for the approach of [Favreau et al. 2016] we performed

significant hyper-parameter tuning and used tone curves to clean up the rough sketch input in order to obtain the shown outputs. Of all the approaches, only

ours allows for interactive editing. The top image is copyrighted by Krenz Cushart and is part of the Krenz’s Artwork Sketch Collection 2004-2013, and the

bo�om image is copyrighted by David Revoy (www.davidrevoy.com) and licensed under CC-by 4.0.

Input Ours

Input (Vectorized) Ours (Vectorized)

Fig. 15. Comparison of using Adobe© Live Trace to vectorize directly on a

rough sketch and on the output of our approach. Top row shows the input

image and the output of our approach. Bo�om row shows the vectorized

results using Adobe© Live Trace. Image is copyrighted by David Revoy

(www.davidrevoy.com) and licensed under CC-by 4.0.

Input [Zhang and Suen 1984] Ours

Fig. 16. Example of changing the line width of an image processed by our

inking approach by making it 2 pixels wider. The area in red shown in the

first row zoomed in on the second row.

detailed control of the output, professional users might not be com-

pletely satisfied with the results as it might not be expressive as

being inked by hand. In this case, post-processing the result of our

approach by hand with professional inking software, or if time per-

mits, inking from scratch by hand, would allow for more minute
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www.davidrevoy.com
www.davidrevoy.com


98:14 • Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa

PT Ours
0

100

200

300

400

500

Ti
m

e 
(s

)
Fig. 17. Example of a rough sketch in which our approach takes roughly

the same time as Professional Tools (PT) to ink, taken from our user study.

On the right we show the timing results.

Input User Edit Ours

Fig. 18. Visualization of the non-local nature of the user edits.

control of the inking result. We believe a logical next-step would be

tight integration with professional inking software, in order to pro-

vide the best of both worlds. In this setting, incorporating pressure

sensitivity of the user input would also likely be beneficial.
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