
Grammar and Gameplay-aligned RL

for Game Description Generation with LLMs

Tsunehiko Tanaka, Edgar Simo-Serra

Abstract—Game Description Generation (GDG) is the task of
generating a game description written in a Game Description
Language (GDL) from natural language text. Previous studies
have explored generation methods leveraging the contextual
understanding capabilities of Large Language Models (LLMs);
however, accurately reproducing the game features of the game
descriptions remains a challenge. In this paper, we propose
reinforcement learning-based fine-tuning of LLMs for GDG
(RLGDG). Our training method simultaneously improves gram-
matical correctness and fidelity to game concepts by introducing
both grammar rewards and concept rewards. Furthermore, we
adopt a two-stage training strategy where Reinforcement Learn-
ing (RL) is applied following Supervised Fine-Tuning (SFT).
Experimental results demonstrate that our proposed method
significantly outperforms baseline methods using SFT alone.

Index Terms—Large Language Model, Ludii, Game
Description Language, Game Description Generation,
Reinforcement Learning

I. INTRODUCTION

Game Description Language (GDL) [1]–[5] is a domain-

specific language used to represent a wide variety of games in

a unified notation. For instance, the Ludii GDL [5] primarily

models board games and covers more than 1,000 different

game types. Game descriptions written in GDL are highly

machine-readable, making it easy for dedicated game engines

to run simulations. Because GDL descriptions can be automat-

ically evaluated through simulation, they have become widely

used in automated game design research [4], [6]–[8].

Recently, there has been increased interest in Game De-

scription Generation (GDG) [9], [10]. GDG focuses on gener-

ating game descriptions from natural language texts, making

it easier for non-experts to participate in game design. In

GDG tasks, In-Context Learning (ICL) with Large Language

Models (LLMs) [11] has shown great promise. LLMs excel

in understanding textual contexts and can perform tasks with

limited domain knowledge based on a few examples pro-

vided in prompts. For example, Hu et al. [9] demonstrated

that enriching prompts with explanations of GDL notation

and examples of game descriptions improves the accuracy

of generated outputs. Additionally, Grammar-based Game

Description Generation (GGDG) [10] proposed an iterative

decoding method guided by GDL grammar rules, significantly

enhancing grammatical correctness. However, the iterative

improvements in GGDG have restricted grammatical accuracy

and do not consider the actual gameplay behavior and features

obtained through simulation.

The authors are with Waseda University, Tokyo, Japan. (Corresponding
author: Tsunehiko Tanaka, email: tsunehiko@fuji.waseda.jp)

Supervised Fine-tuning

RL Fine-tuning

Reward

Generation
Gam5

Description Grammar

Evaluation

Concept

LLM

Final Model

Fig. 1. Overview of the proposed method. The training process consists of
two stages, starting with Supervised Fine-Tuning followed by Reinforcement
Learning-based Fine -Tuning (RLFT), where rewards based on grammar and
game concepts are utilized.

To address this issue, we propose Reinforcement Learning

fine-tuning of LLMs for GDG (RLGDG), aiming to simulta-

neously enhance grammatical accuracy and fidelity of game

features to the ground truth. Specifically, we design two types

of rewards: (i) a grammatical reward evaluating whether the

generated game description complies with GDL grammar,

and (ii) a conceptual reward evaluating how accurately the

generated game concepts [12], such as board cell usage and

the proportion of states with multiple possible moves, align

with the ground truth. As illustrated in Fig. 1, our proposed

method employs a two-stage training procedure: first, Super-

vised Fine-Tuning (SFT) is conducted, which is then followed

by Reinforcement Learning-based Fine-Tuning (RLFT) [13]–

[15] based on reward optimization. By initially learning the

basic grammar and structure of game descriptions through

SFT, we mitigate unstable outputs in the early stages of RLFT.

Experimental results demonstrate that our proposed framework

outperforms baseline methods not only in grammatical correct-

ness but also in the fidelity of game concepts.

Our main contributions are as follows:

• We propose Reinforcement Learning fine-tuning of LLMs

for GDG (RLGDG) to jointly enhance grammatical ac-

curacy and game feature fidelity.

• Our approach introduces grammatical and conceptual re-

wards to align generated game descriptions with grammar

and actual gameplay features.

• We validate through extensive experiments that our pro-

posed method significantly improves GDG performance.

II. RELATED WORK

A. Game Description Language

Game Description Language (GDL) is a specialized lan-

guage for describing specific games. In 2005, GGP-GDL [1]

was introduced for General Game Playing, aiming to develop

artificial intelligence agents capable of adapting to various

games. Video Game Description Language (VGDL) [2] has

been developed to represent rules and levels of 2D sprite-based

games, currently modeling as many as 195 different games.

Regular Boardgames (RBG) [3] is another language that com-

bines high-level language features with low-level descriptions,

enabling the representation of complex board games. The Ludi

system [4], incorporating evolutionary game design, success-

fully led to the development of the commercially successful

game “Yavalath.” Moreover, Ludii [5] is a system adopting the

“ludemic approach,” allowing the decomposition and descrip-

tion of game components at a conceptual level. This enables

Ludii to represent over 1,000 traditional games, including

board games, card games, dice games, and tile games. Given

the broad representational capability and versatility of Ludii

GDL, we primarily use Ludii GDL for our research.

Game analysis using Ludii is actively progressing, particu-

larly within board game research [12], [16]–[19]. For instance,

methods [16] have been proposed to quantify similarities

between board games using concept values defined in Ludii.

Moreover, Stephenson et al. [17] developed a framework

utilizing Ludii to automatically generate rule descriptions for

board games. In this study, we focus specifically on generating

game descriptions using Ludii GDL.

B. Large Language Models in Games

Since the emergence of ChatGPT [20], large language

models (LLMs) have garnered significant attention, prompting

exploration into diverse applications within the field of game

AI [21], [22]. For example, several methods [23], [24] have

been proposed for generating 2D tile-based game levels by

fine-tuning GPT-2 [11]. Additionally, research is progressing

on prompt-based LLM methods for level generation [25] and

quest generation in role-playing games [26]. Dreamcraft [27]

further demonstrates a technique to create 3D game objects

within Minecraft from textual prompts. Li et al. [28] intro-

duces a virtual pet game that achieves real-time gameplay

even with smaller LLMs by employing a domain-specific

distillation approach.

On the other hand, research has also advanced in automati-

cally generating game rules and descriptions using LLMs and

GDL. GAVEL [29] employs an LLM fine-tuned on Ludii game

descriptions as a mutation operator in evolutionary search,

aiming to create novel games. The objective of GAVEL differs

from our research, which focuses on generating game descrip-

tions that maintain consistency with natural language text. Hu

et al. [9] proposes a method for generating both rules and

levels in VGDL using LLMs. LLMaker [30] improves content

consistency by utilizing function calling, but its creativity is

limited to the scope of the defined functions. GGDG [10]

Description : Tic-Tac-Toe is a game
of alignment popular among
children. It is known from the
nineteenth century in England and
the United States, but may be older. �
Rules : Play occurs on a 3x3 grid.
One player places an X, the other
places an O and players take turns
placing their marks in the grid,
attempting to get three in a row of
their colour.

xQuery:

LLM

(game "Tic-Tac-Toe"H

 (players 2)H

 (equipment {H

 (board (square 3))H

 (piece "Disc" P1)H

 (piece "Cross" P2)H

 })H

 (rulesH

 (play (move Add (to (sites Empty)))@

 (end ("Line3Win")@

 @

)

yGame Description:

Fig. 2. An example of GDG for the game Tic-Tac-Toe. x is text that
explains games in natural language. ŷ is the game description generated by
the LLM in Ludii GDL, a Game Description Language.

utilizes iterative decoding based on the grammar of Ludii GDL

to enhance the grammatical correctness of generated game

descriptions. While these previous studies primarily focus on

novelty or grammatical correctness of game descriptions, our

research differs by emphasizing the improvement of game

characteristics of generated game descriptions, bringing them

closer to the ground truth through reinforcement learning to

enhance LLMs.

C. RL for LLMs

RL-based fine-tuning of LLMs [13]–[15], [31] has been

attracting attention. Reinforcement Learning with Human

Feedback (RLHF) [31] aligns model behaviors with human

preferences by using human feedback as rewards. Recent

methods [13], [14] have explored accuracy-based reward

functions without human feedback, notably improving logical

reasoning tasks such as mathematics and programming. RL-

finetuned models are known to exhibit enhanced reasoning

capabilities [14]. Additionally, advancements in RL algorithms

led to the development of Group Relative Policy Optimization

(GRPO) [32], a variant of Proximal Policy Optimization

(PPO) [33] optimized for fine-tuning LLMs. In this study,

we focus on GDG and define a reward function based on

both grammatical correctness and conceptual relevance to the

game in generated descriptions, employing GRPO to fine-tune

the LLM.

III. PROBLEM SETTING

In this section, we define GDG, the primary task addressed

in this paper. As shown in Fig. 2, the task involves providing

a query x to a large language model (LLM), which then

generates the corresponding game description y. The query x

is a natural language sentence describing the content or rules of

a game. Our goal is to make the game description ŷ, generated

by the LLM, as close as possible to the ground-truth game

description y. The acquisition of query x and ground truth y

is described in Section V-A.

IV. METHODOLOGY

A. Training Procedure

Our training procedure consists of two steps. First, we per-

form SFT using the paired data of queries and corresponding

game descriptions. Then, we conduct RLFT starting from the

SFT-trained model.

SFT in the first step allows LLMs to avoid unstable out-

puts commonly encountered in the initial stages of RL. For

example, to simplify the extraction of generated programs,

we instruct the model to output in a specific format, such

as <program>...</program>. Models without SFT, es-

pecially those with smaller parameter sizes such as 1.5B,

often ignore the format instructions, generating extraneous text

or incorrect formats like ```xml (program)...```. By

resolving these formatting issues through the SFT process, the

subsequent RL step can focus solely on improving the quality

of the game description.

For RLFT, we use GRPO. This algorithm is one of the

prominent RL methods for LLMs and has been adopted in

DeepSeek-R1 [14], an LLM renowned for its strong reasoning

abilities. GRPO extends PPO by using rewards from multiple

sampled output candidates {o1, o2, ..., oG} for each query,

rather than relying on a value function. This approach removes

the necessity of value function approximation, thereby enhanc-

ing training stability. We discuss reward modeling methods for

GRPO in the following subsection.

B. Reward Modeling for GDG

We design two types of rewards: grammar rewards and

concept rewards. By employing both, the model can improve

not only grammatical accuracy but also the fidelity to the

ground truth in the game concept.

a) Grammar rewards: Grammar rewards measure how

much of the output ŷ is grammatically valid according to

the GDL grammar. Using the Earley parser implemented

in Ludii [34], we parse ŷ from the beginning based on the

GDL grammar and obtain the longest grammatically correct

substring ŷvalid. Let Lŷ be the string length of ŷ and Lŷvalid

be the string length of ŷvalid. The grammar reward rg is

calculated as follows:

rg =
Lŷvalid

Lŷ

. (1)

When the length of ŷvalid equals that of ŷ, it reaches its

maximum value 1. This reward scale ranges from 0 to 1,

approaching 1 as the grammatically valid portion increases.

b) Concept rewards: Concept rewards evaluate the simi-

larity between the game features of the predicted output ŷ and

those of the ground truth y. An overview of the calculation

process for the concept reward is shown in Fig. 3. First,

we determine whether the generated game is functional. To

clarify this, we introduce two notions: Compatibility indicates

whether the Ludii game engine can parse and compile the

game without errors, and Functionality indicates whether the

compiled game works well enough to be played. If rules fail

to function properly, such as when a player cannot move their

pieces, the output is considered non-functional. Only compil-

able games can be evaluated for functionality. A functional

game proceeds to the next evaluation step; otherwise, the

reward rc is set to 0. In the next step, we compute the concept

Functionality

Calculate Concept

Number of Players

Failure

Success

1

1

0

2 or more than

rc =0

rc =0.1

rc =1 - Σp

DecisionMoves p1

Balance p4

Completion p5

BoardCoverageUsed p2

Timeout p3

Fig. 3. Overview of the calculation process for the concept reward. First,
functionality is evaluated, and the concept is calculated only for functional
outputs. If the concept can be calculated, penalties pi are computed across
three or five items, depending on the number of players, to derive the final
reward rc.

values for the output ŷ and compare them with the concept

values of y. Concept values represent features of a game

and were introduced in [12]. Although there are hundreds of

concept values, as an initial exploration of incorporating game

concepts into RL, we evaluate the following five items, taking

inspiration from GAVEL [29].

1) DecisionMoves c1: Percentage of terns where there was

more than one possible move.

2) BoardCoverageUsed c2: Percentage of used board sites

on which a piece was placed at some point.

3) Timeout c3: Percentage of games that end via timeout.

4) Balance c4: Similarity between player win rates.

5) Completion c5: Percentage of games that have a winner

(not a draw or timeout).

Each item is cited from the concept definitions of the Ludii

concept search [35]. Items 1, 2, and 3 are measured for all

functional games, while items 4 and 5 are measured only for

games with two or more players. These values are extracted

from automatic playouts under a random policy, based on

[12], [16]. Following prior studies [10], [29], we perform 50

playouts for the ground truth game and 10 playouts for the

predicted game. Let the concept values from the output ŷ be

denoted as ĉ. We compute the penalties for each item using a

Gaussian kernel:

pi = 1− exp
(

−
1

2

(

ĉi−ci
σ

)2
)

, 1 ≤ i ≤ 5, (2)

where σ = 0.3. By employing a Gaussian kernel, the scale

of each penalty is normalized to a range from 0 to 1. The

penalty approaches 1 as the features of the output ŷ deviate

further from those of y. We then use a weighted sum of these

penalties to compute the reward:

rc = 1−

5
∑

i=1

wi pi. (3)

Here, w denotes the weights. When the game is functional

but the game features of ŷ and y differ greatly—that is,

when c1, . . . , c5 are all equal to 1.0—we grant a small reward

of rc = 0.1 for simply functioning. We implement this by

setting every w to 0.18. Furthermore, if the five concept

values cannot be computed—for example, when the game is

functional but the automatic playout calculation exceeds the

timeout limit—we also set rc to 0.1. Note that the timeout is

set to 180 seconds.

Finally, we combine the three rewards as follows:

r = rg + λcrc, (4)

where λc is a scaling parameter, and is set to 1.0.

V. EXPERIMENTS

A. Datasets

We use only game instances from Ludii-1.14 [36] whose

game description y has a token length of 500 or less for

both training and evaluation. Token length is calculated using

the tokenizer of Qwen2.5-1.5B-Instruct [37]. Our evaluation is

performed on 100 randomly selected instances, and the other

410 instances are used for training.

The query x consists of metadata provided by the Ludii

game system [36], specifically description and rules. “Descrip-

tion” gives an overview of the game, while “Rules” detail the

game’s specific rules. Following prior work [10], [29], and to

enhance the dataset’s generality, we use a game description y

in which the game-specific functions defined within each game

are fully expanded. After expansion, the game descriptions

rely exclusively on primitive functions, omitting Ludii’s meta-

language features such as definitions, options, rulesets, ranges,

and constants.

B. Comparison Methods

Here are the methods we compare in our experiments:

• GDG: A baseline approach using LLM’s ICL without

SFT or RL to generate game descriptions. The prompt in-

cludes demonstration examples (x(i), y(i))Ni=1, each con-

sisting of a query and corresponding game description.

We set N = 3.

• GGDG [10]: A baseline method designed to improve

the grammatical correctness of the generated output ŷ

based on Ludii GDL grammar. It builds upon GDG by

iteratively refining ŷ through grammar-based decoding.

• SFT+GDG: A baseline approach where the LLM is fine-

tuned using SFT alone. The model is trained on the

dataset described in Section V-A.

• RLGDG (ours): Our proposed approach, which employs

an LLM first fine-tuned with SFT and then further fine-

tuned with RL. In RLFT, we use the same dataset as the

SFT step, as described in Section V-A.

The GDG and GGDG methods perform few-shot inference us-

ing demonstration examples, whereas SFT+GDG and RLGDG

perform zero-shot inference without demonstration examples.

A conversation between User and Assistant.
The user asks a query, and the assistant
correctly reason through a query to generate
the appropriate Ludii game program. Write
only Ludii game program based on the query in
the given task. The answer should be enclosed
within <program> </program> tags, i.e.,
<program> answer here </program>.

System:

User:

Assistant:

Description : Tic-Tac-Toe is a game of
alignment popular among children. It is known
from the nineteenth century in England and the
United States, but may be older. 5
Rules : Play occurs on a 3x3 grid. One player
places an X, the other places an O and players
take turns placing their marks in the grid,
attempting to get three in a row of their colour.

<programr

(game "Tic-Tac-Toe"n

 (players 2)n

 (equipment {n

 (board (square 3))n

 (piece "Disc" P1)n

 (piece "Cross" P2)n

 })n

 (rulesn

 (play (move Add (to (sites Empty)))^

 (end ("Line3Win")^

 ^

]

</program>

Fig. 4. Our prompts for SFT and RLFT.

C. Implementation Details

We utilize Qwen2.5-1.5B-Instruct [37] as the LLM. This

choice is motivated by two primary reasons: first, we select

an open-source LLM to ensure reproducibility of the research

results. Second, the chosen model size enables practical

fine-tuning with available computational resources. Our

experiments are carried out using two NVIDIA RTX 6000

Ada GPUs.

Both SFT and GRPO methods employ full-parameter

fine-tuning. Specifically, for the SFT method, we set the

sequence length to 768 tokens, batch size to 2, learning rate

to 1e-4, and warmup ratio to 0.03, conducting training for a

total of 3 epochs.

For GRPO, the prompt length is fixed at 256 tokens, and

the completion length at 512 tokens. We use a batch size

of 1, a learning rate of 3e-6, and a warmup ratio of 0.1.

Furthermore, the number of generated outputs per query G

is set to 4. We conduct training for a single epoch, using

a temperature of 0.9 for sampling output candidates. Our

prompts are shown in Fig 4.

The Earley Parser is implemented using the Lark

library [38]. The grammar for parsing Ludii descriptions

strictly adheres to the specifications provided in the Ludii

Language Reference.

VI. EXPERIMENTAL RESULTS

A. Evaluation Metrics

To evaluate the generated game descriptions, we employ

the following metrics based on prior work [10]. For details on

Compilability and Functionality, see Section IV-B.

• Compilability: The proportion of games that can be

successfully parsed and compiled by the Ludii game

engine. This score is normalized to a range from 0 to 100.

• Functionality: The proportion of games considered

playable. This score is normalized to a range from 0 to

100.

• ROUGE-L [39]: A metric used to measure linguistic sim-

ilarity between the generated outputs and ground truth.

Commonly used in program synthesis, higher values

indicate greater similarity. This metric does not account

TABLE I
COMPARISON WITH BASELINE METHODS. THE BEST RESULTS ARE IN

BOLD.

Method Compilability↑ Functionality↑ ROUGE-L↑ NCD↓

GDG 24.3±3.0 23.3±2.4 53.0±0.6 0.74±0.04
GGDG 11.7±0.7 10.3±0.7 29.5±3.1 0.81±0.02
SFT+GDG 54.3±1.2 52.0±1.5 60.9±0.2 0.51±0.01
RLGDG (ours) 71.3±0.9 70.3±1.3 64.0±0.2 0.33±0.01

for grammatical correctness or game-specific features but

solely relies on textual similarity. We report the average

ROUGE-L F1 score calculated across all test data.

• Normalized Concept Distance (NCD): A metric

to measure the similarity of game features between

generated outputs and ground truth. Based on [12], [16],

games are represented as concept value vectors, and

their cosine distance is calculated to determine NCD.

The concept value vector includes semantic features

and behavior data from random playouts, such as the

proportion of board positions used at least once, or the

proportion of turns where at least one legal move exists.

It also includes the five concept rewards described in

Section IV-B. For ground truth games, 50 playouts are

executed, while for generated games, 10 playouts are

performed. For non-functional games where the concept

distance cannot be calculated, NCD is set to 1. The

average NCD is computed to evaluate the quality of GDG.

Experiments are conducted using three different random

seeds following [10], and the mean and standard error for

each metric are reported.

B. Comparison with Baseline Methods

Table I shows the comparative results with baseline meth-

ods. RLGDG outperforms baseline methods across all evalu-

ation metrics. Notable improvements are observed in Compi-

lability and Functionality, demonstrating that RLGDG effec-

tively ensures grammatical correctness and practical playabil-

ity of the generated game descriptions. Additionally, a sig-

nificant improvement in NCD suggests that RLGDG enables

LLMs to better learn game concepts.

GGDG underperforms compared to GDG across all met-

rics. This is likely because GGDG’s iterative improvement

decoding requires handling numerous detailed instructions, a

task challenging for small-scale models with approximately

1.5B parameters. In contrast, RLGDG significantly enhances

performance using the 1.5B-parameter model, suggesting that

it also holds advantages in terms of inference cost efficiency.

C. Ablation Study

Comparison of Reward Modeling. We conduct an ablation

study on the reward modeling of RLGDG, and the results are

presented in Tab. II. The results demonstrate that using both

types of rewards simultaneously yields the best performance

across all evaluation metrics.

Focusing on compilability and functionality, we observe

that grammar reward accounts for a significant proportion of

the performance improvement from SFT+GDG to RLGDG,

specifically 86.5% for compilability and 87.7% for function-

ality. This suggests that the grammar reward contributes to

enhancing grammatical accuracy.

Introducing the concept reward results in an additional im-

provement of 10.8% in NCD compared to RLGDG without the

concept reward. This indicates that the inclusion of the concept

reward not only helps generate compilable and functional code

but also improves the generation of game descriptions that

more precisely capture the ground truth game concepts.

Game Category of Test Games. We investigate the per-

formance comparison across different game categories for

test instances. Following the methodology of previous re-

search (GGDG), we compared five categories: racing games

(board/race), mancala games (board/sow), puzzle games (puz-

zle), line games (board/space/line), and war games, including

capture games (board/war). The test instances used here are

extracted from the instances used in Section 5.b. The results

are summarized in Tab. III. RLGDG outperformes SFT+GDG

in all metrics across all categories.

For comparing categories, SFT+GDG demonstrates the

lowest performance in the puzzle category and the high-

est performance in the board/space/line category across all

metrics. We believe this performance difference arises from

the varying amounts of training data. Table IV summarizes

the number of training instances in each category, and the

average concept distance from the board/space/line category,

which has the most training instances. As the board/space/line

category has the largest number of instances, it is considered

easier for the model to learn from. In contrast, the puzzle

category has the fewest instances, equal in number to the

board/race category. When compared to board/race games,

puzzle games are conceptually farther from board/space/line

than board/race games. Therefore, it is easier for the model to

transfer insights gained from the board/space/line category to

the board/race category than to the puzzle category, leading to

lower performance in the puzzle category.

For comparing methods, RLGDG improves compilability by

66.5%, functionality by 100%, and other metrics compared to

SFT+GDG in the puzzle category. Furthermore, in the board-

/space/line category, where SFT+GDG already demonstrated

high performance, RLGDG further improved performance,

achieving an NCD of 0.14. These results suggest that RLGDG

may overcome the limitations of SFT independently of the

category or the amount of training data.

VII. QUALITATIVE ANALYSIS

Comparison with Baseline Methods. We conduct a qualita-

tive analysis comparing the best-performing baseline method,

SFT+GDG, against our proposed method, RLGDG. Figure 5

shows the generation results for Tic-Tac-Mo, a game that ex-

tends the player count of Tic-Tac-Toe to three players. The re-

sult from SFT+GDG is non-compilable and non-functional due

to the trigger ‘‘End’’ Mover Win. According to the

grammar rules of Ludii GDL, trigger ‘‘End’’ Mover

should only be followed by a then clause. Additionally,

TABLE II
COMPARISON OF REWARD MODELING IN OUR PROPOSED METHOD. THE BEST RESULTS ARE IN BOLD.

Method Grammar Concept Compilability↑ Functionality↑ ROUGE-L↑
Normalized

Concept Distance↓

SFT+GDG [10] 54.3±1.2 52.0±1.5 60.9±0.2 0.51±0.01
RLGDG w/o concept ✓ 69.0±1.7 66.3±1.8 64.0±0.1 0.37±0.02
RLGDG ✓ ✓ 71.3±0.9 70.3±1.3 64.0±0.2 0.33±0.01

TABLE III
COMPARISON OF TEST INSTANCE CATEGORIES.

Method Compilability↑ Functionality↑ ROUGE-L↑ NCD↓

board/race

SFT+GDG 63.0±9.8 59.3±9.8 51.8±2.0 0.45±0.09
RLGDG 81.5±3.7 74.1±7.4 53.4±0.7 0.29±0.06

board/sow

SFT+GDG 36.1±7.3 36.1±7.3 71.1±1.2 0.66±0.07
RLGDG 58.3±16.7 58.3±16.7 71.7±1.6 0.45±0.15

puzzle

SFT+GDG 16.7±4.8 11.1±7.3 40.6±1.5 0.90±0.07
RLGDG 27.8±10.0 22.2±11.1 43.0±2.3 0.80±0.10

board/space/line

SFT+GDG 76.2±3.1 75.0±2.1 73.9±0.5 0.27±0.02
RLGDG 89.3±5.5 88.1±6.6 76.7±0.6 0.14±0.06

board/war

SFT+GDG 66.7±0.0 66.7±0.0 58.8±0.3 0.38±0.00
RLGDG 88.9±0.0 83.3±3.2 64.8±0.6 0.23±0.03

TABLE IV
NUMBER OF TRAINING INSTANCES IN EACH CATEGORY AND THE

AVERAGE CONCEPT DISTANCE FROM THE LARGEST CATEGORY.

Category Number of Instances
Distance from

board/space/line

board/race 13 0.068
board/sow 33 0.081
puzzle 13 0.098
board/space/line 113 0.000
board/war 65 0.059

the description regarding the termination conditions, marked

with a red rectangle, should be placed within end clause of

the rules. In contrast, the result obtained with RLGDG is

compilable and functional, and the output game description

closely matches the ground truth. The only deviation from the

ground truth is the board specification, which is rectangle

1 5, identical to the one from SFT+GDG. Using different

seeds, it can sometimes result in rectangle 3 5, in which

case it perfectly matches the ground truth.

Figure 6 shows the generated results for Yavalath. Yavalath

is a game developed by the Ludi system [4], where the objec-

tive is to align four markers of the same player in a straight

line without first aligning three markers. The results from

SFT+GDG are compilable and functional, with an NCD of

0.012. However, there are primarily three incorrect predictions:

(i) Introduction of phases not described in Yavalath’s rules, (ii)

inclusion of a move called moveAgain, which allows placing

a second marker within the same turn during the Play phase,

although no such rule exists in Yavalath, and (iii) omission of

the termination condition where aligning exactly three markers

in a straight line results in a loss. In contrast, the results from

RLGDG are compilable and functional, achieving an NCD of

0.006, indicating that the resulting game concept is closer to

the ground truth compared to the SFT+GDG results. While the

ground truth includes rules such as (rotate 90 ...) and

(meta (swap)), these instructions were not included in the

input text. Additionally, the number of players is different, but

both two and three-player options are mentioned in the input

text. Thus, the game rules described in the text are sufficiently

covered by the RLGDG output.

Analysis of Failure Cases. As an example of a failure case,

we analyze the generation results for the Knight’s Tour puzzle

from the puzzle category, as illustrated in Fig. 7. In this game,

the knight is moved across a chessboard so that it visits every

square exactly once.

SFT+GDG generates an output that could not be com-

piled. This was because after the expression (if (is

Even (count Moves)), a function returning a boolean

value was expected. However, it was actually followed by

the in-game action (move Add (to (sites Empty))

copy:True).

The output from RLGDG is compilable and functional

but contains errors in the following three aspects: (i) In

the ground truth, the knight’s initial position can be any

available square during the placement phase. However, the

output from RLGDG restricts the knight’s initial placement to

the central square of the board. (ii) The RLGDG output lacks

the termination condition at the end of the game, where a win

occurs if the knight successfully visits all squares exactly once.

(iii) The knight’s movement pattern generated by RLGDG

is incorrect. F indicates moving forward by one step, and R

means rotating 90 degrees to the right. In the RLGDG output,

the sequence FFR turns the knight right after moving forward

two steps. However, the correct movement for the knight

would require an additional forward step, making the correct

sequence FFRF. This error likely arises from the limited

availability of training data related to the puzzle category, as

discussed in Section VI-C.

VIII. DISCUSSION AND CONCLUSION

In this study, we propose Reinforcement Learning-based

fine-tuning of LLMs for Game Description Generation

(RLGDG). Existing approaches have primarily focused on

(game "Tic-Tac-Mo"
(players 3)
(equipment

{
(board (rectangle 1 5))
(piece "Disc" P1)
(piece "Cross" P2)
(piece "Y" P3)

}
)
(rules

(play (move Add (to (sites Empty))
stack:True
(then (if (= (size Stack at:(last To)) 3)

(trigger "End" Mover Win))))
)
(end

{(if (= (count Moves) 9) (result Mover Draw))
(if (< (count Turns) 6) (result Mover Loss))}

)
)

)

SFT+GDG

Not Compilable

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

(game "Tic-Tac-Mo"
(players 3)
(equipment

{
(board (rectangle 1 5))
(piece "Disc" P1)
(piece "Cross" P2)
(piece "Y" P3)

}
)
(rules

(play (move Add (to (sites Empty))))
(end (if (is Line 3) (result Mover Win)))

)
)

RLGDG

Functional

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(game "Tic-Tac-Mo"
(players 3)
(equipment

{
(board (rectangle 3 5))
(piece "Disc" P1)
(piece "Cross" P2)
(piece "Y" P3)

}
)
(rules

(play (move Add (to (sites Empty))))
(end (if (is Line 3) (result Mover Win)))

)
)

Ground Truth

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Input Query

Description: Tic-Tac-Mo is a three player version of Tic-Tac-Toe using "X," "O," and "Y". It is played on a

grid of 3x5.

Rules: Tic-Tac-Mo uses the same rules as Tic-Tac-Toe, but the third player plays with a "y". The first player to

make three in a row wins.

Fig. 5. Comparison of generation results with baseline methods for Tic-Tac-Mo. The part enclosed in red differs from the ground truth.

(game "Yavalath"

(players 3)

(equipment

{

(board (hex 5))

(piece "Marker" Each)

}

)

(rules

(play (move Add (to (sites Empty))))

(end

{

(if (is Line 4) (result Mover Win))

(if (is Line 3) (result Mover Loss))

}

)

)

)

RLGDG

Functional (NCD: 0.006)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

(game "Yavalath"

(players 2)

(equipment

{

(board (rotate 90 (hex 5)))

(piece "Marker" Each)

}

)

(rules

(meta (swap))

(play (move Add (to (sites Empty))))

(end

{

(if (is Line 4) (result Mover Win))

(if (is Line 3) (result Mover Loss))

}

)

)

)

Ground Truth

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(game "Yavalath"

(players 3)

(equipment

{

(board (hex 5))

(piece "Marker" Each)

}

)

(rules

phases:{

(phase "Setup"

(play (move Add (to (sites Empty))))

(nextPhase "Play")

)

(phase "Play"

(play (move Add (to (sites Empty))

(then (if (= 1 (count MovesThisTurn)) (moveAgain))))

)

)

}

(end (if (is Line 4) (result Mover Win)))

)

)

SFT+GDG

Functional (NCD: 0.012)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Input Query

Description: Yavalath was invented by Cameron Browne in 2007. It is played on a hexagonal board with five

spaces per side. It can be played by two or three players.

Rules: Players alternate turns placing pieces on one of the spaces. The first player to place four in a row

without first making three in a row wins.

Fig. 6. Comparison of generation results with baseline methods for Yavalath. The incorrectly predicted parts are enclosed in red.

improving grammatical accuracy; however, our method

simultaneously enhances both grammatical correctness

and conceptual fidelity to game concepts. Specifically, we

introduce grammar and concept rewards and adopt a two-stage

training strategy that applies RL after Supervised Fine-Tuning

(SFT). Experimental results demonstrated that our proposed

method achieved superior performance compared to baseline

methods in terms of both grammatical accuracy and conceptual

fidelity. However, improvements are limited in categories

with insufficient training data. Future research directions for

training data include synthetic data generation [40], data aug-

mentation using evolutionary algorithms [29], and leveraging

larger-scale language models. Moreover, extending the concept

reward from five to the full set of concept values remains a

key target. These studies are expected to generate high-quality

game descriptions from natural language, thereby supporting

designers and engineers in AI-driven game development.

ACKNOWLEDGMENTS

This work was supported by JST, ACT-X Grant Number

JPMJAX23CE, Japan.

REFERENCES

[1] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth,
“General game playing: Game description language specification,” 2008.

[2] T. Schaul, “A video game description language for model-based or
interactive learning,” in Proc. of CIG, 2013.

[3] J. Kowalski, M. Mika, J. Sutowicz, and M. Szykuła, “Regular
boardgames,” in Proc. of AAAI, 2019.

[4] C. Browne, Evolutionary Game Design. Springer, 2011.

[5] É. Piette, D. J. N. J. Soemers, M. Stephenson, C. F. Sironi, M. H. M.
Winands, and C. Browne, “Ludii – the ludemic general game system,”
in Proc. of ECAI, 2020.

[6] T. S. Nielsen, G. A. B. Barros, J. Togelius, and M. J. Nelson, “Towards
generating arcade game rules with vgdl,” in Proc. of CIG, 2015.

(game "Knight's Tour"
(players 1)
(equipment

{
(board (square 8))
(piece "Knight” P1

(move
Leap
{ { F F R } { F L F } }
forward:True
(to if:(is Empty (to)))

)
)

}
)
(rules

(start { (place "Knight" (sites Centre)) })
(play (forEach Piece))
(end (if (no Moves Next) (result Mover Win)))

)
)

RLGDG

Functional

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

(game "Knight's Tour"
(players 1)
(equipment

{
(board (square 8))
(piece "Knight" P1)

}
)
(rules

phases:{
(phase "Placement"

(play (move Add (to (sites Empty))))
(nextPhase "Movement")

)
(phase "Movement"

(play
(move

Leap
(from (last To))
{ { F F R F } { F F L F } }
(to if:(is Empty (to)))
(then (add (to (last From))))

)
)

)
}
(end

{
(if (>= (count Moves) (count Sites "Board")) (result P1 Win))
(if (no Moves P1) (result P1 Loss))

}
)

)
)

Ground Truth

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

(game "Knight's Tour"
(players 1)
(equipment

{
(board (square 8))
(piece "Knight"

P1
(move

Leap
{ { F F R F } { F L F F } }
forward:True
(to if:(is Empty (to)))
(then (if (is Enemy (who at:(to))) (remove (to))))

)
)

}
)
(rules

(start { (place "Knight" (sites Centre)) })
(play

(if
(is Even (count Moves))
(move Add (to (sites Empty)) copy:True)
(forEach Piece)

)
)
(end

(if
(and (= (what at:(last To)) P1) (no Pieces Next))
(result Mover Win)

)
)

)
)

SFT+GDG

Not Compilable

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Input Query

Description: Knight's tour is a puzzle by which a Chess knight

is moved on a board so that is is placed in every square on the

board only once. It has been documented in India, where the

movement of the horse piece in Chaturanga has the same

movement as the Chess knight.

Rules: Played with one knight on a Chess board. The goal is to

move the knight onto every square of the board only once using

its typical move as in Chess.

Fig. 7. Comparison of generation results for Knight’s Tour. Parts of the ground truth that are missing from or incorrectly predicted in the RLGDG output
are indicated by boxes.

[7] A. Khalifa, M. C. Green, D. Perez-Liebana, and J. Togelius, “General
video game rule generation,” in Proc. of CIG, 2017.

[8] T. Maurer and M. Guzdial, “Adversarial random forest classifier for
automated game design,” in Proc. of FDG, 2021.

[9] C. Hu, Y. Zhao, and J. Liu, “Game generation via large language
models,” in Proc. of CoG, 2024.

[10] T. Tanaka and E. Simo-Serra, “Grammar-based Game Description Gen-
eration using Large Language Models,” IEEE Trans. Games., 2024.

[11] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” 2019.

[12] E. Piette, M. Stephenson, D. J. Soemers, and C. Browne, “General board
game concepts,” in Proc. of CoG, 2021.

[13] L. Trung, X. Zhang, Z. Jie, P. Sun, X. Jin, and H. Li, “ReFT: Reasoning
with reinforced fine-tuning,” in Proc. of ACL, 2024.

[14] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma,
P. Wang, X. Bi et al., “Deepseek-r1: Incentivizing reasoning capability
in llms via reinforcement learning,” 2025.

[15] A. Kumar, V. Zhuang, R. Agarwal, Y. Su, J. D. Co-Reyes, A. Singh,
K. Baumli, S. Iqbal, C. Bishop, R. Roelofs et al., “Training language
models to self-correct via reinforcement learning,” 2024.

[16] M. Stephenson, D. J. N. J. Soemers, E. Piette, and C. Browne, “Mea-
suring board game distance,” in Proc. of Computer and Games, 2022.

[17] M. Stephenson, E. Piette, D. J. N. J. Soemers, and C. Browne, “Au-
tomatic generation of board game manuals,” in Proc.of Advances in

Computer Games, 2021.

[18] M. Stephenson, D. J. N. J. Soemers, E. Piette, and C. Browne, “General
game heuristic prediction based on ludeme descriptions,” in Proc. of

CoG, 2021.

[19] D. J. N. J. Soemers, Éric Piette, M. Stephenson, and C. Browne, “The
ludii game description language is universal,” 2024.

[20] OpenAI, Nov 2022. [Online]. Available: https://openai.com/blog/chatgpt

[21] R. Gallotta, G. Todd, M. Zammit, S. Earle, A. Liapis, J. Togelius, and
G. N. Yannakakis, “Large language models and games: A survey and
roadmap,” in arXiv preprint arXiv:2402.18659, 2024.

[22] M. U. Nasir and J. Togelius, “Practical pcg through large language
models,” in Proc. of CoG, 2023.

[23] G. Todd, S. Earle, M. U. Nasir, M. C. Green, and J. Togelius, “Level
generation through large language models,” in Proc. of FDG, 2023.

[24] S. Sudhakaran, M. González-Duque, M. Freiberger, C. Glanois, E. Na-
jarro, and S. Risi, “MarioGPT: Open-ended text2level generation through
large language models,” in Proc. of NeurIPS, 2023.

[25] F. Abdullah, P. Taveekitworachai, M. F. Dewantoro, R. Thawonmas,
J. Togelius, and J. Renz, “The 1st ChatGPT4PCG competition,” 2024,
pp. 1–17.

[26] S. Värtinen, P. Hämäläinen, and C. Guckelsberger, “Generating role-
playing game quests with gpt language models,” IEEE Trans. Games.,
vol. 16, no. 1, pp. 127–139, 2024.

[27] S. Earle, F. Kokkinos, Y. Nie, J. Togelius, and R. Raileanu, “Dreamcraft:
Text-guided generation of functional 3d environments in minecraft,” in
Proc. of FDG, 2024.

[28] J. Li, Y. Li, N. Wadhwa, Y. Pritch, D. E. Jacobs, M. Rubinstein,
M. Bansal, and N. Ruiz, “Unbounded: A generative infinite game of
character life simulation,” in Proc. of ICLR, 2025.

[29] G. Todd, A. Padula, M. Stephenson, É. Piette, D. J. Soemers, and
J. Togelius, “Gavel: Generating games via evolution and language
models,” in Proc. of NeurIPS, 2024.

[30] R. Gallotta, A. Liapis, and G. Yannakakis, “Consistent game content
creation via function calling for large language models,” in Proc. of

CoG, 2024.
[31] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,

C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language mod-
els to follow instructions with human feedback,” in Proc. of NeurIPS,
2022.

[32] Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang,
Y. Li, Y. Wu et al., “Deepseekmath: Pushing the limits of mathematical
reasoning in open language models,” 2024.

[33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[34] J. Earley, “An efficient context-free parsing algorithm,” Commun. ACM,
vol. 13, no. 2, p. 94–102, 1970.

[35] Digital Ludeme Project, “Ludii concept search.” [Online]. Available:
https://ludii.games/searchConcepts.php

[36] ——, “Ludii portal.” [Online]. Available: https://ludii.games/index.php
[37] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu,

F. Huang, H. Wei et al., “Qwen2. 5 technical report,” 2024.
[38] Digital Ludeme Project, “Lark parser.” [Online]. Available: https:

//github.com/lark-parser/lark
[39] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”

in Proc. of Text Summarization Branches Out, 2004.
[40] Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi,

and H. Hajishirzi, “Self-instruct: Aligning language models with self-
generated instructions,” in Proc. of ACL, A. Rogers, J. Boyd-Graber, and
N. Okazaki, Eds., Jul. 2023.

