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Grammar-based Game Description Generation

using Large Language Models
Tsunehiko Tanaka, Edgar Simo-Serra

Abstract—Game Description Language (GDL) provides a stan-
dardized way to express diverse games in a machine-readable
format, enabling automated game simulation, and evaluation.
While previous research has explored game description genera-
tion using search-based methods, generating GDL descriptions
from natural language remains a challenging task. This paper
presents a novel framework that leverages Large Language
Models (LLMs) to generate grammatically accurate game de-
scriptions from natural language. Our approach consists of two
stages: first, we gradually generate a minimal grammar based
on GDL specifications; second, we iteratively improve the game
description through grammar-guided generation. Our framework
employs a specialized parser that identifies valid subsequences
and candidate symbols from LLM responses, enabling gradual
refinement of the output to ensure grammatical correctness.
Experimental results demonstrate that our iterative improvement
approach significantly outperforms baseline methods that directly
use LLM outputs. Our code is available at https://github.com/
tsunehiko/ggdg

Index Terms—Large Language Model, Ludii, Game Descrip-
tion Language, Grammar, Game Description Generation

I. INTRODUCTION

A Game Description Language (GDL) [1]–[5] is a domain-

specific language that expresses a wide range of games in

a unified notation. For example, Ludii GDL [5] models over

1,000 games, primarily board games, as shown in Fig. 1. Game

descriptions represented in GDLs are highly machine-readable,

making it easy to simulate gameplay using dedicated game

engines. Given the amenability of GDLs for automatic game

evaluation, they have been extensively used in research on

automated game design. In particular, search-based methods

such as evolutionary algorithms [4], MCTS [6], [7], and

random forests [8] have proven successful in generating game

descriptions. Most research primarily focused on mutating

existing games based on fitness functions to generate novel

games. However, the task of generating game descriptions

from natural language texts has not yet been sufficiently

explored, and has the potential to lower the bar of entry

to game design to non-specialists. In this research, we use

Large Language Models (LLMs) [9], [10], which excel at

understanding textual context, to generate game descriptions

from natural language text in a two-stage process to enforce

grammatical correctness.

LLMs are language models with an enormous number of

parameters, pre-trained on vast amounts of text data. These

models possess the ability to solve various tasks without

additional training [11], [12], and this ability can be elicited
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𝒙 ∶	

Description : Tic-Tac-Toe is a game of alignment popular among children. 
It is known from the nineteenth century in England and the United States, 
but may be older. 
Rules : Play occurs on a 3x3 grid. One player places an X, the other 
places an O and players take turns placing their marks in the grid, 
attempting to get three in a row of their colour.

𝒚 ∶	

(game "Tic-Tac-Toe"
(players 2)
(equipment

{
(board (square 3))
(piece "Disc" P1)
(piece "Cross" P2)

}
)
(rules

(play (move Add (to (sites Empty))))
(end (if (is Line 3) (result Mover Win)))

)
)

Fig. 1. An example of Ludii game description for the game “Tic-Tac-Toe”.

x is text that explains games in natural language. y is a game description in
Ludii GDL, a Game Description Language.

by including the task context in the prompt, a technique

known as In-Context Learning (ICL) [13]. Hu et al. [14]

applied this capability to game description generation by

incorporating explanations for GDL notations and examples

of game descriptions in the prompt context. Their results have

shown that more accurate game descriptions can be generated

by appropriately refining the prompt context. However, LLMs

may still generate grammatically incorrect game descriptions.

Such grammatically inaccurate game descriptions cannot be

correctly parsed and loaded by game engines, making it

difficult to evaluate them through gameplay simulation. To

generate higher-quality games, it is important first to ensure

that LLMs can produce grammatically correct GDL game

descriptions.

This paper presents a method for LLMs to generate more

grammatically accurate game descriptions. We propose an

approach to iteratively improve LLMs’ initial responses using

the GDL grammar. Our generation framework consists of two

stages: (i) generating the minimal grammar required for game

descriptions, and (ii) iteratively improving the game descrip-

tion based on this minimal grammar. First, we use LLMs to

generate the minimal grammar required to produce the game

description, making use of the GDL grammar. Next, a parser

based on the minimal grammar determines grammatically

valid subsequences and a set of candidate symbols that could

follow these subsequences from the LLMs’ responses. LLMs
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Fig. 2. An overview of our framework for grammar-based game description generation. We generate the game description y from a natural language

query x using Large Language Models (LLMs). First, we generate the grammar Ĝ[y] required to construct y in the Rule Decoding stage, and then generate

ŷ based on Ĝ[y] in the Game Description Decoding stage. The core of our framework is iteratively decoding by leveraging the grammar of game description
languages (GDLs) to improve the initial response from LLMs. We make use of Ludii GDL as our GDL, which can model a larger variety of games and is a
context-free grammar.

then re-infer the missing parts based on these subsequences

and candidate symbols, gradually generating grammatically

accurate game descriptions. Experimental results demonstrate

that our framework is more effective in generating game

descriptions compared to a baseline that directly uses the

LLMs’ initial responses as an output.

Our contributions can be summarized as follows:

• We propose a framework for generating game descrip-

tions from natural language text by using LLMs and

GDLs.

• Our framework incorporates GDL grammar into the gen-

eration process and iteratively improves the grammatical

correctness of the LLM’s output.

• We propose iterative improvement decoding methods

specialized for grammar generation and game description

generation, respectively.

• We demonstrate the effectiveness of our framework

through extensive experiments on game description gen-

eration.

II. RELATED WORK

A. Game Description Language

A Game Description Language (GDL) is a domain-specific

language for games. GGP-GDL [1] was introduced in 2005

and has become the standard in General Game Playing, where

artificial agents are developed to play a wide variety of games.

After GGP-GDL, various types of GDLs have been developed.

VGDL [2] is a language that represents both the levels and

rules of 2D sprite-based games, and it models 195 games.

RBG [3] models complex board games by combining low-

level and high-level languages. Ludii [5] is a game system

developed based on the ludemic approach, which decomposes

games into conceptual units of game-related information. Ludii

models more than 1,000 traditional games, including board

games, card games, dice games, and tile games. Ludii’s gram-

mar is a Context-Free Grammar (CFG) in Extended Backus-

Naur Form (EBNF) style [15]. Due to its ability to generalize

and model more games, as well as its capacity to express

complete game descriptions in CFG, we use Ludii GDL as our

GDL. Note that our approach can be applied to other GDLs

that follow CFG, e.g., the rule section of VGDL.

Diverse analyses of games using Ludii, especially focusing

on board games, have been conducted [16]–[20]. For exam-

ple, the distance between board games using concept values

extracted from Ludii has been proposed in [16]. Stephenson

et al. [17] have presented a framework for automatically

generating board game manuals using Ludii. Unlike these

works, we add a new perspective to the analysis by focusing

on game description generation using grammar.

B. Automated Game Design

Automated game design [21], [22] is one of the core themes

in the field of game AI. As AI technology rapidly advances,

various aspects of how AI can be utilized in automated game

design have been discussed, including the design process [23],

design patterns [24], and creative machine learning [25]. Deep

learning-based ML is often used in the domain of proce-

dural content generation for level design [26]–[31]. Several

studies [32], [33] propose methods to generate a game by

integrating multiple elements such as visuals, audio, narrative,

levels, rules, and gameplay. Generating games using new rep-

resentations such as answer set programming [34] and game

graphs [35] has also been explored. Word2World [36] uses

LLMs to design from stories to playable games procedurally.

These approaches design games without including GDLs.

Automated game design for generating game designs in the

GDL format has been explored [4], [6]–[8], [37]. The Ludi sys-

tem [4], which was the precursor to the ludemic approach used

in later Ludii [5], employed evolutionary game design and

generated the commercially viable game Yavalath. Thorbjørn

et al. [6] explored the approach to generate VGDL [2] for

arcade games using evolutionary algorithms. GVG-RG [7]

proposes a framework for generating appropriate game rules

for given game levels. Cicero [37] is a mixed-initiative tool

that assists in prototyping 2D sprite-based games using VGDL.

Thomas et al. [8] aimed to acquire a fitness function that

guides game design generation using adversarial random forest

classifiers. These approaches generate novel games based on

existing games, but our approach differs in that it generates

game descriptions from natural language text.

C. Large Language Models in Games

Since the advent of ChatGPT [38] in late 2022, Large

Language Models (LLMs) have attracted significant attention,
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and various ways of using LLMs in automated game design

have been explored [39], [40]. Several studies [26], [27]

have fine-tuned GPT-2 [41] models to generate 2D tile-based

game levels. Prompt-based approaches for LLMs have also

been proposed for level generation [28]. Other researchers

have trained GPT models to generate quests for role-playing

games [42]. Dreamcraft [43] is a method that uses LLMs to

generate 3D game objects for Minecraft from text prompts. In

addition to generation, researchers have focused on evaluating

LLMs. Studies have assessed how well prompt-based level

generation methods replicate and generalize [44], and have

evaluated the capabilities of LLMs in mixed-initiative game

design [45].

GAVEL [46] uses LLMs fine-tuned on Ludii’s game de-

scriptions as mutation operators in evolutionary search. While

GAVEL aims to generate games with high novelty, our goal is

to generate game descriptions that align with natural language

text. LLMGG [14] generates both the rules and levels of

games represented in VGDL using LLMs. In LLMGG, LLMs

take a part of the VGDL [2] representation or examples of

other games as prompts, which generate a complete VGDL-

based game in one step. The authors discuss that incorrect

game levels and rules not included in the VGDL grammar

are generated. In contrast, our approach involves multi-step

generation, and the necessary grammar rules to build a game

description are generated as intermediate representations in

the middle steps. Moreover, since the game description is

iteratively generated based on these grammatical rules, this

approach prevents inaccurate syntax and improves consistency.

D. Program Synthesis

In program synthesis, the task of generating programs

from natural language is called semantic parsing. Semantic

parsing has benefited from advancements in LLMs. Several

efforts [11], [12] have already explored generating code in

general-purpose programming languages such as Python us-

ing LLMs. To improve the accuracy of the generated pro-

grams, constrained decoding [47]–[49] has also been studied.

Grammar-constrained decoding [50]–[52] restricts the output

space of LLMs to a space described by a grammar, enabling

the generation of structured outputs like programs. Our frame-

work includes decoding for grammar generation, in addition

to grammar-constrained decoding for game descriptions.

Evolutionary algorithms that use LLMs as evolutionary

operators [53]–[56] are also gaining attention in program

synthesis. Quality-diversity algorithms utilizing LLMs have

been proposed for controllable program synthesis, such as

neural architecture search [57]. These studies open up the

possibility that using LLMs can also improve GDL generation.

In domain-specific language (DSL) generation, a prompting

method [58] has been proposed that introduces grammar as

an intermediate product while LLMs iteratively reason to

solve tasks, also known as a chain-of-thought reasoning [59].

However, in [58], the evaluation targets simple and short DSLs

such as SMCalFlow [60] and GeoQuery [61], and the use

of LLMs in the approach is limited. We aim to make more

effective use of LLMs in our approach and evaluate it with

	𝑮 𝒚 :	
game ::= "(game" string players equipment rules_rules ")"
string ::= "Tic-Tac-Toe" | "Disc" | "Cross"
players ::= "(players" int ")"
equipment ::= "(equipment" "{" item item item "}" ")"
item ::= container | component
container ::= container_board_board
container_board_board ::= "(board" graph ")"
graph ::= basis
basis ::= square
square ::= "(square" dim ")"
dim ::= int
component ::= component_piece
component_piece ::= "(piece" string role_type ")"
role_type ::= P1 | P2 | MOVER
rules_rules ::= "(rules" play end ")"
play ::= "(play" moves ")"
moves ::= decision
decision ::= move
move ::= "(move" move_site_type moves_to ")"
move_site_type ::= ADD
moves_to ::= "(to" sites ")"
sites ::= "(sites" sites_index_type ")"
sites_index_type ::= EMPTY
end ::= "(end" end_rule ")"
end_rule ::= end_if
end_if ::= "(if" boolean result ")"
boolean ::= booleans_is_is
booleans_is_is ::= "(is" LINE int ")"
result ::= "(result" role_type result_type ")"
result_type ::= WIN

Fig. 3. Minimal Backus-Naur Form (BNF) grammar G[y] for Tic-Tac-

Toe. Redundant rules are omitted for simplicity.

complex and lengthy DSLs that represent game design, such

as Ludii [5].

III. PROBLEM SETTING

In this section, we define our problem setting. We first

describe the generation of games written in GDLs. We next

review in-context learning in the game description generation.

Notations used in this paper are summarized in Tab. I.

A. Game Description Generation

Let G be the GDL grammar, and let L(G) represent the

set of game descriptions generated by G. We call the task

of inputting a natural language query x that describes the

content and rules of a game, and generating a corresponding

game description y ∈ L(G), game description generation. Our

goal is to make the generated game description ŷ as close as

possible to the ground truth y.

In this paper, we use Ludii GDL as our GDL as it is one

of the main references in GDL research. Additionally, Ludii’s

grammar is a CFG in EBNF style, which allows us to generate

complete game descriptions based on a CFG. An example of

Ludii game description generation is shown in Fig. 1. From

this point forward, unless otherwise specified, G represents

Ludii’s grammar.

B. In-Context Learning

In-Context Learning (ICL) [13] is an efficient method that

provides pretrained LLMs with a few task-specific examples

to obtain more precise and accurate results. This approach

does not require additional training or fine-tuning; instead,

it relies on the LLM’s ability to identify and apply patterns
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TABLE I
GLOSSARY OF NOTATIONS USED IN THIS PAPER.

Notation Description

G GDL grammar (Ludii grammar in this paper)
L(G) Set of game descriptions generated by G
x Texts explaining the rules of a game
y A game description (ground truth)
G[y] Minimal grammar extracted from G containing only the grammar rules necessary to generate game description y

(x(i), y(i))N
I=1 Demonstrations of game description generation to be included in LLMs’ prompts

Ĝ[y]valid Set of grammar rules in the predicted Ĝ[y] that are included in G

NU Set of non-terminal symbols defined in G[y] but not defined in Ĝ[y]valid
GNU

Set of grammar rules in G defining NU

G[y]NU
Minimal set of rules extracted from GNU

necessary to generate y

ŷvalid Part of ŷ that conforms to Ĝ[y]
Ωcandidate Set of candidate terminal symbols to follow ŷvalid
ω Terminal symbol selected from Ωcandidate by generators such as LLMs
·̂ All hat notations indicate symbols are predictions
·′ All prime notations indicate that the symbols are in the LLM’s output space.

Among these, the one that maximizes the generation probability receives the hat notation.

from the provided examples. In ICL, LLM is conditioned on

N demonstrations (x(i), y(i))N
i=1 followed by a test example

query x, and generates y as PLLM(y|(x(i), y(i))N
i=1, x). Recent

studies [62], [63] have reported that the few-shot performance

on complex reasoning tasks can be improved by inserting

intermediate reasoning steps between x(i) and y(i) in the

demonstrations.

The effectiveness of ICL depends on how effectively the

solution to a task can be conveyed through demonstrations.

Intuitively, providing more demonstrations to the LLM seems

to be beneficial. However, the context length, which is the

maximum length that the LLM can capture, is determined

during pre-training. Therefore, it is not possible to input a

number of demonstrations that exceed this context length. For

example, when applying Llama3 [9], one of the leading open-

source LLMs, to Ludii’s game descriptions, the context length

can easily be exceeded. In particular, the average token length

of Ludii’s game descriptions using the Llama3-8B-Instruct

tokenizer is 2,458. The context length of Llama3-8B-Instruct

is 8,192, which limits the number of Ludii demonstrations

that can be input to a few at most. This limitation when using

complex examples such as those described in Ludii is common

to many LLMs. Game descriptions generated based on such

limited context lack grammatical accuracy and cannot make

the games functional and will be discussed in Sec. VI.

IV. METHODOLOGY

In this section, we explain our approach to iteratively

improve the initial responses of the LLM. To evaluate the

game description and improve its grammatical accuracy, we

introduce the minimum grammar G[y] ⊆ G required to

construct y. This minimum grammar G[y] is expected to

provide more context to LLMs when included in the prompt,

thereby enhancing In-Context Learning (ICL). As shown in

Fig. 2, our generation process consists of two stages: First,

we input the query x of the test example into an LLM to

generate the minimum grammar Ĝ[y] required to construct

y. Ĝ[y] is then evaluated, and the parts that conform to the

Ludii grammar G are extracted. The LLM then generates the

missing rules. Next, based on Ĝ[y], the LLM generates the

game description ŷ. ŷ is evaluated, and the parts that conform

to Ĝ[y] are extracted. The LLM then infers the rest. Evaluation

and LLM generation are repeated at each stage. In this section,

we first introduce the minimum grammar G[y], then explain

the two-stage generation, and finally describe the decoding

process for each stage in detail.

A. Grammar-based Game Description Generation

G[y] is the minimal grammar that extracts only the rules

necessary to generate y from all the rules of G. An example

of G[y] for tic-tac-toe is shown in Figure 3. G[y] is a

subset of the full grammar G, where y ∈ L(G[y]) and

∀r ∈ G[y], y /∈ L(G[y]\{r}). For any rule r in G[y], removing

r makes it impossible to generate y (y /∈ L(G[y]\ r)). G[y] is

minimal in the sense that it contains exactly the rules required

to generate y, with no superfluous rules. A parser based

on this minimal grammar can determine grammatically valid

subsequences and the set of candidate symbols that follow

them from the LLM’s responses. The LLM then generates

the rest of the game description based on the subsequences

and candidate symbol groups. Intuitively, it is expected that

repeating this parsing and generation process will result in a

more grammatically accurate game description than the initial

response from the LLM. This iterative improvement method

is explained in Sec. IV-B.

From the perspective of ICL, providing more context to

LLMs is expected to have a positive impact. It is known that

providing GDL grammar to LLMs can improve the quality

of generated game descriptions, especially in terms of gram-

matical accuracy [14]. However, the token length of Ludii’s

grammar using the Llama3-8B-Instruct tokenizer is 15,442,

which is longer than the context length of most LLMs. The

straight-forward approach of including all the GDL grammar

in the prompt as proposed in LLMGG is not feasible without

significant more computation power. The average token length

of G[y] using the Llama3-8B-Instruct tokenizer is 1,031, which

can be added to the prompt within the context length limit for

several games. In this case, each demonstration consists of
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You are an expert game designer for the Ludii game system. You are about to be given some 
examples of BNF grammar rules for a query and the corresponding Ludii game programs …

𝒙(𝟏):	

Description : Tic-Tac-Toe is a game of alignment popular among children. It is known from the 
nineteenth century in England and the United States, but may be older. 
Rules : Play occurs on a 3x3 grid. One player places an X, the other places an O and players 
take turns placing their marks in the grid, attempting to get three in a row of their colour.
	𝑮% 𝒚 𝟏 :	

game ::= "(game" string players equipment rules_rules ")"
string ::= "Tic-Tac-Toe" | "Disc" | "Cross"
players ::= "(players" int ")"

𝒚(𝟏) ∶	

(game "Tic-Tac-Toe"
(players 2)
(equipment {

(board (square 3))
(piece "Disc" P1)
(piece "Cross" P2)

} )
(rules

(play (move Add (to (sites Empty))))
(end (if (is Line 3) (result Mover Win)))

)
)

𝒙 ∶	

Description : Tower of Hanoi was invented by Édouard Lucas in 1883. The game equipment 
consists of three rods in a row and a series of disks of different sizes which fit on the rods.
Rules : A player moves one disk at a time to an empty rod or on a rod where it rests on a larker 
disk. The goal is to place all of the disks on one rod in decreasing size with the largest on the 
bottom and the smallest on top.

	𝑮% 𝒚 :	

game ::= "(game" string players equipment rules_rules ")"
string ::= “Tower of Hanoi" | "Counter3" | "Counter6" | "Counter9" | "items:" "{" string
players ::= "(players" int ")"
place ::= "(place" STACK string string string "}" int ")"

LLM Prompt

LLM Output

You are an expert game designer for the Ludii game system. You are about to be given some examples 
of BNF grammar rules for a query and the corresponding Ludii game programs …

𝒙(𝟏):	

Description : Tic-Tac-Toe is a game of alignment popular among children. It is known from the 
nineteenth century in England and the United States, but may be older. 
Rules : Play occurs on a 3x3 grid. One player places an X, the other places an O and players take turns 
placing their marks in the grid, attempting to get three in a row of their colour.
	𝑮% 𝒚 𝟏 :	

game ::= "(game" string players equipment rules_rules ")"
string ::= "Tic-Tac-Toe" | "Disc" | "Cross"
players ::= "(players" int ")"

𝒚(𝟏) ∶	

(game "Tic-Tac-Toe"
(players 2)
(equipment {

(board (square 3))
(piece "Disc" P1)
(piece "Cross" P2)

} )
(rules

(play (move Add (to (sites Empty))))
(end (if (is Line 3) (result Mover Win)))

)
)

𝒙 ∶	

Description : Tower of Hanoi was invented by Édouard Lucas in 1883. The game equipment consists of 
three rods in a row and a series of disks of different sizes which fit on the rods.
Rules : A player moves one disk at a time to an empty rod or on a rod where it rests on a larker disk. The 
goal is to place all of the disks on one rod in decreasing size with the largest on the bottom and the 
smallest on top.
	𝑮% 𝒚 :	

game ::= "(game" string players equipment rules_rules ")"
string ::= “Tower of Hanoi" | "Counter3" | "Counter6" | "Counter9" | "items:" "{" string
players ::= "(players" int ")"
place ::= "(place" STACK string string string "}" int ")"

LLM Prompt

LLM Output

𝒚(:	

(game "Tower of Hanoi"
(players 1)
(equipment {

(board (rectangle 1 3))
(piece "Counter3" P1)
(piece "Counter6" P1)
(piece "Counter9" P1)

Rule Decoding stage Game Description Decoding stage

Instruction

Demo 1

Demo 2 ~ N

Test 

Example

Write only BNF grammar rules based on the query in the given task. …

Write only Ludii game program based on the query in the given task. …

Fig. 4. An example of grammar-based game description generation result. We generate game descriptions in two stages: first we generate the required
grammar, and then generate the game description based on the grammar. The prompt includes demonstrations for in-context learning and the test example

query x, and the demonstration contains the grammar G[y(i)]. In the first stage, the minimal grammar Ĝ[y] that composes y is generated. In the second

stage, game description ŷ is generated based on the generated Ĝ[y]. The red arrow indicates that Ĝ[y] generated in the first stage is included in the prompt
for the second stage.

(x(i), G[y(i)], y(i)). G[y(i)] is obtained by parsing y(i) with G
and collecting the rules necessary to derive y(i).

The generation process consists of two stages. In the first

stage, a few demonstration examples and a test example query

x are input to the LLM as a prompt to generate the minimal

grammar Ĝ[y] necessary to compose y. The grammar G′ that

maximizes the following probability is selected as Ĝ[y],

PLLM(G′|(x(i), G[y(i)], y(i))N
i=1, x). (1)

In the second stage, the generated Ĝ[y] is added to the prompt

to generate the game description ŷ, and the y′ that maximizes

the following probability is selected as ŷ:

PLLM(y′|(x(i), G[y(i)], y(i))N
i=1, x, Ĝ[y]). (2)

We show an overview of the two-stage generation process in

Fig. 4.

Additionally, in the second stage, although y is conditioned

on the grammar Ĝ[y], the generated game description may not

adhere to Ĝ[y]. This is because the LLM just selects the words

with the highest likelihood, and does not necessarily comply

with the conditions set by the prompt. Similarly, Ĝ[y] may

not be a subset of the original grammar G. Therefore, in the

next subsection, we propose decoding methods to improve the

consistency of the minimal grammar Ĝ[y] with the original

grammar G, and the consistency of the game description ŷ
with the grammar Ĝ[y].

B. Grammar-based Iterative Decoding

In order to overcome issues of inconsistent grammars,

we propose decoding methods that iteratively improve the

generated grammars. In particular, our decoding methods are

divided into two types, one specialized for the grammar Ĝ[y],
and one for the game description ŷ. When decoding the

grammar Ĝ[y], undefined non-terminal symbols are extracted

in one step, and rules to define them are then generated in the

next step, in what we call the Rule Decoding stage. Similarly,

when generating the game description ŷ, we use the Earley

parser [64] to obtain the longest valid continuation that adheres

to the grammar Ĝ[y] in one step, and then complete the

remaining parts following the valid continuation in the next

step. We refer to this as Game Description Decoding stage.

a) Rule Decoding Stage: Our rule decoding stage it-

eratively applies rule decoding while aiming to ensure that

the generated Ĝ[y] is a subset of the original grammar G.
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Generated	𝑮# 𝒚 :	

game ::= "(game" string players equipment rules_rules ")"

string ::= "Tower of Hanoi"

equipment ::= "(equipment" "{" item item item item "}" ")"

item ::= container | component

rules_rules ::= "(rules" start play end ")”

item ::= item

start :: = ”END”

𝑮# 𝒚 𝒗𝒂𝒍𝒊𝒅:	

game ::= "(game" string players equipment rules_rules ")"

string ::= "Tower of Hanoi"

equipment ::= "(equipment" "{" item item item item "}" ")"

item ::= container | component

rules_rules ::= "(rules" start play end ")”

𝑵𝑼:	

players, container, component, start, play, end

𝑮𝑵𝑼
:	

players ::= "(players" int ")” | "(players" "{"? players_player+ "}"? ")”

container ::= container_board_board | deck | dice | other_hand

component ::= "(component" string role_type "{"? ("{"? step_type+ 

"}"?)+ "}"? direction_facing moves int+ int ")” | component_card | die 

| domino | component_piece | tile

𝑮#[𝒚]𝑵𝑼:	

players ::= "(players" int ")"

container ::= container_board_board

component ::= component_piece

LLM

LLM

Initial Prediction Rule Decoding

Prompt

Extract valid rules
using original grammar 𝑮

Extract 
undefined non-terminals

Obtain rules 

from original grammar 𝑮

F
in

is
h

Fig. 5. Processing flow of Rule Decoding stage. The Rule Decoding stage

starts from the minimal grammar Ĝ[y] necessary to compose y generated

by the LLM, and improves it iteratively. From the grammar Ĝ[y], the set

of rules included in the original grammar G is extracted as Ĝ[y]valid.

Next, undefined non-terminal symbols NU are extracted from Ĝ[y]valid.
The rules GNU

concerning NU are obtained from the original grammar G

and input to the LLM along with Ĝ[y]valid. The LLM then generates rules

ĜNU for the undefined non-terminal symbols. Finally, Ĝ[y] is updated by

combining GNU
with Ĝ[y]valid.

𝒚"𝒗𝒂𝒍𝒊𝒅:	

(game "Tower of Hanoi"

(players 1)

(equipment

{

(board

Earley Parser (𝑮&[𝒚]) 
board :: = rectangle | square

LLM

LLM

Initial Prediction Game Description Decoding

Generated	𝒚#:	
(game "Tower of Hanoi"

(players 1)
(equipment

{
(board  (triangle 1))
(piece "1" P1)
(piece "2" P1)
(piece "3" P1)

𝛀𝒄𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆:	

rectangle, square

𝝎:	
rectangle

LLM

F
in

is
h

Fig. 6. Processing flow of Game Description Decoding stage. The
Game Description Decoding stage starts from the initial game description ŷ
generated by the LLM, and then enhances the results iteratively. Using an

Earley parser [64] based on Ĝ[y], the longest valid subsequence ŷvalid and
the subsequent terminal symbol candidates Ωcandidate are obtained. The
LLM then selects the candidate ω from Ωcandidate that is most suitable as
the successor to ŷvalid. ω is appended to the end of ŷvalid, and the LLM
generates the remaining part of the game description ŷ that follows. The
generated ŷ replaces the previous ŷ from the earlier step.

In our rule decoding stage, the generation process is multi-

step, where each step iteratively improves the grammar Ĝ[y].
The goal of each step is to define the non-terminal symbols

that were not defined in the grammar Ĝ[y] generated in the

previous step. We illustrate our rule decoding process in Fig. 5.

Initially, Ĝ[y] is generated using the LLM in the same way as

in Eq. (1). From Ĝ[y], only the valid grammar rules Ĝ[y]valid
are retained, which are included in the original grammar G.

Among Ĝ[y]valid, the set of undefined non-terminal symbols

NU is extracted. Undefined non-terminal symbols are rules

that are used on the right-hand side of rules in Ĝ[y]valid but are

not defined. They can be automatically and easily extracted by

identifying symbols not appearing on the left-hand side of any

rules. The set of grammar rules for the undefined non-terminal

symbols GNU
is extracted from the original grammar G. GNU

is added to the prompt, and the LLM selects only the necessary

rules from GNU
based on the query x. The right-hand side of

the rules in GNU
includes options that are unnecessary for

constructing y. The role of the LLM is to select the minimum

necessary choices to construct y from these options, and to

predict the minimal grammar G[y]NU
= G[y] \ Ĝ[y]valid. The

rules that maximize the following probability are selected:

PLLM(G′[y]NU
|(x(i), G[y(i)], y(i))N

i=1, x, Ĝ[y]valid, GNU
).
(3)

The generated Ĝ[y]NU
is combined with Ĝ[y]valid to update

Ĝ[y]. This process is repeated until there are no more non-

terminal symbols or a predetermined limit of updates is

reached.

b) Game Description Decoding stage: The game de-

scription decoding stage consists of iterative application of

game description decoding to generate game descriptions that

more accurately adhere to the grammar Ĝ[y]. In each step, it

aims to complete the parts of ŷ generated in the previous step

that cannot be parsed. Initially, ŷ is generated using the LLM

in the same way as in Eq. (2). An Earley parser [64] is then

employed using Ĝ[y]. The Earley parser explores the program

from left to right, extracting the longest valid subsequence

and the subsequent candidate terminal symbols. Using the

generated ŷ, the Earley parser obtains the valid subsequence

ŷvalid and the set of candidate terminal symbols Ωcandidate.

Because multiple options for rules are often generated during

the rule decoding stage, the LLM selects the optimal terminal

symbol ω from Ωcandidate. The ω that maximizes the following

probability is then chosen:

PLLM(ω|(x(i), G[y(i)], y(i))N
i=1, x, Ĝ[y], ŷvalid,Ωcandidate).

(4)

The selected candidate is appended to the end of ŷvalid, and

the LLM generates the remaining part of the game description

ŷ. Next, the y′ that maximizes the following probability is

generated:

PLLM(y′|(x(i), G[y(i)], y(i))N
i=1, x, Ĝ[y], ŷvalid + ω). (5)

The generated ŷ updates ŷ from the previous step. This process

is repeated until the entire generated ŷ becomes parsable by

the Earley parser or until a predetermined number of updates

is reached.
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Valid BNF grammar rules 𝑮" 𝒚 𝒗𝒂𝒍𝒊𝒅:	

 game ::= "(game" string players equipment rules_rules ")"
string ::= "Tower of Hanoi"
equipment ::= "(equipment" "{" item item item item "}" ")"
item ::= container | component
rules_rules ::= "(rules" start play end ")”

Undefined non-terminal symbols 𝑮𝑵𝑼
:	

players ::= "(players" int ")” | "(players" "{"? players_player+ "}"? ")”
container ::= container_board_board | deck | dice | other_hand

…

Reference grammar rules for the undefined non-terminal symbols 𝑵𝑼:
players, container, component, start, play, end 

Generate the remaining BNF grammar rules for the undefined non-terminal symbols.
Since the reference_grammar_rules are very verbose, choose only the necessary options on 
the right side of each generated rule from the reference_grammar_rules.

LLM Prompt for Rule Decoding

Partial program based on the BNF grammar rules 𝒚'𝒗𝒂𝒍𝒊𝒅:	
(game "Tower of Hanoi"

(players 1)
(equipment {

(board

Choose only the most suitable terminal symbol (a single symbol) from terminal_candidates to 
follow the program in the given task.	
𝛀𝒄𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆:	 rectangle, square 

LLM Prompt for Game Description Decoding

For Candidate Terminal Symbol

Partial program based on the BNF grammar rules 𝒚'𝒗𝒂𝒍𝒊𝒅 +𝝎:	

(game "Tower of Hanoi"

(players 1)

(equipment {

(board rectangle

Generate the continuation of partial_program based on the query and the BNF grammar rules 
provided in the given task. Be sure to include partial_program.

For Remaining Parts of Description

Fig. 7. Our prompts for grammar-based iterative decoding.

V. EXPERIMENTS

A. Datasets

The game descriptions we use for evaluation are obtained

from the publicly available Ludii website [65]. In Ludii, each

game is assigned a category (e.g., “Tic-Tac-Toe” is catego-

rized under “Board/Space/Line”, and “Tower of Hanoi” under

“Puzzle/Planning”). From the same category, one test example

and three demonstration examples are extracted as a single

instance, leveraging the known benefit of using semantically

similar examples to improve ICL performance [66]. Note that

only examples where the token length of the game description

y is 300 or less are used. The token length is calculated

using the tokenizer of Llama3-8B-Instruct [9]. The evaluation

dataset is constructed from 100 randomly selected instances

from all categories, and the same set of instances is used in

all evaluations. Each example consists of a natural language

instruction x, a Ludii game description y, and the minimal

grammar G[y] required to construct y. The instruction x is

composed of the metadata “Description” and “Rules” provided

by the Ludii game system (see Fig. 1 for an example). To

improve the generality of the dataset, we use game descriptions

where the unique functions defined within each game are

expanded as y. The extended version is instantiated with

primitive options and rulesets to avoid using the Ludii game

system’s meta-language features (definitions, options, rulesets,

ranges, constants, etc.). A similar process is adopted in [46].

For more details of the Ludii language, please refer to the

Ludii language reference [67]. The grammar G[y] is automat-

ically extracted by the parser using the Lark library [68], which

is explained in the next subsection.

B. Methods

We compare the following methods:

• Random: A baseline method that generates the grammar

Ĝ[y] necessary for constructing the game description

y. Based on Ĝ[y], the method randomly samples the

next expressions following “(game” to generate the game

description.

• Game Description Generation (GDG): A baseline

method that directly predicts the game description y from

the demonstration examples and the query x without

using the predicted grammar Ĝ[y].
• Grammar-based Game Description Generation

(GGDG, ours): Our proposed method, which first

generates the grammar Ĝ[y] required to construct the

game description y and subsequently generates ŷ based

on Ĝ[y]. This method employs both rule decoding and

game description decoding.

• SFT+GDG: A baseline method that predicts the game

description from a query using an LLM with supervised

fine-tuning (SFT). For SFT training data, pairs of query x
and game description y are created from games available

on the Ludii portal [65] that are not included in the

evaluation dataset.

• SFT+GGDG (ours): A method that combines our pro-

posed GGDG with SFT. For rule decoding, an LLM with

SFT applied to query x and grammar G[y] pairs is used.

For game description decoding, the same LLM model as

in SFT+GDG is used, trained with SFT on query x and

game description y pairs.

Since the model acquires knowledge of Ludii through SFT,

demonstration examples are not used, i.e., zero-shot inference.

C. Implementation Details

We use a parser built with a Python library called Lark [68]

to extract the grammar rules of the Ludii game description. The

Ludii grammar in the Lark parser employs the rules listed in

the Ludii language reference. In our grammar-based iterative

decoding, we set an upper limit on the number of iterations

to suppress the number of LLM calls. Based on the ablation

study in Sec. VI-C, the iteration limit is set to 20 for rule

decoding and 10 for game description decoding. Our prompts

for grammar-based iterative decoding are shown in Fig 7.

We use the Llama3-8B-Instruct [9] model as our LLM. We

chose an open-source LLM to ensure research reproducibility.

Unlike commercial APIs, our approach is not affected by API

changes or model updates. Llama3 is the latest series of open-

source LLMs provided by Meta. The Llama3 series includes

pre-trained models with 8B and 70B parameters. Compared to

other models of similar size, the Llama3 series demonstrates

superior performance across various benchmarks. To ensure
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TABLE II
COMPARISON WITH BASELINE METHODS. THE BEST RESULTS ARE IN BOLD.

Method Compilability↑ Functionality↑ ROUGE↑
Normalized

Concept Distance↓

Random 1.3±0.7 1.0±0.6 9.8±0.8 0.97±0.02
GDG 27.0±1.2 26.3±0.7 63.5±0.6 0.75±0.01
GGDG (ours) 64.0±1.5 56.7±2.3 60.5±0.6 0.46±0.03
SFT+GDG 59.7±2.4 58.0±0.6 64.0±0.5 0.44±0.01
SFT+GGDG (ours) 72.0±2.1 70.3±1.8 63.8±0.7 0.33±0.02

that our framework is practical in environments with limited

computational resources, such as local deployments, we select

the smaller 8B model. Since the Llama3 models are pre-trained

to accept sequences of up to 8,192 tokens, it is necessary to

keep the prompts within this context length. To address this,

we set the number of demonstration examples to three. We

use two NVIDIA RTX 6000 Ada GPUs for our experiments.

For SFT models, we apply SFT to Llama3-8B-Instruct using

low-rank adaptation (LoRA) [69]. We set the SFT sequence

length to 4096, LoRA alpha and r to 16, and train the model

for 3 epochs with a learning rate of 1e-4 and a warmup ratio

of 0.03.

VI. EXPERIMENTAL RESULTS

A. Evaluation Metrics

To evaluate the generated game descriptions, we use the

following metrics:

• Compilability: The proportion of games that can be

parsed and compiled by the Ludii game engine. If a game

cannot be compiled, it is not evaluated in the functionality

metric. The score is normalized from 0 to 100.

• Functionality: The proportion of playable games. Al-

though a game may compile without errors, it is still

considered non-functional if conditions make it un-

playable—such as when piece movements rely on unde-

fined positions. The score is normalized from 0 to 100.

• ROUGE [70]: This is an evaluation metric commonly

used in program synthesis to measure the degree of

linguistic match between the generated game description

and the ground truth game description [71]. It ranges from

0 to 100, with higher values indicating a greater degree

of match. The calculation of this metric does not consider

syntactic correctness but instead focuses on the similarity

between texts. We use the F1 score of ROUGE-L. This

value is calculated for each piece of test data, and the

average of all data is reported.

• Normalized Concept Distance (NCD): NCD measures

how closely a predicted game matches its ground truth

in Ludii. Following [16], [18], games are represented

as concept-value vectors derived from semantic features

and from behavioral data obtained through automated

playouts using a random policy. For example, these values

include attributes such as the proportion of turns with

at least one legal move and the proportion of the board

used at least once. The cosine distance between these

vectors gives NCD. Similar to [46], we run 50 playouts

for the ground truth and 10 for the predicted games due to

computational costs. Since non-functional games cannot

compute their concept distance, their distance is set to 1.0.

NCD is averaged over all test data, serving as a quality

measure for game description generation.

We conducted experiments with 3 different seeds, and each

value in the results shows the mean and standard error across

the seeds.

B. Comparison with Baseline Methods

Table II shows the comparison results with baseline meth-

ods. GGDG outperforms GDG with Compilability +37.0,

Functionality +30.4, and NCD -0.29, demonstrating that our

rule decoding and game description decoding effectively im-

prove the grammatical accuracy of generated game descrip-

tions. In ROUGE, GGDG scores -3.0 lower than GDG.

Since ROUGE evaluates the level of reproduction in linguistic

expressions, it may undervalue different description methods

generated by GGDG that provide the same playable expe-

rience. For example, the ending rule for Tic-tac-toe can be

defined as either “win by aligning three pieces” or “lose when

the opponent aligns three pieces” – while these expressions

have the same meaning as rules, they would result in a lower

ROUGE score.

While GGDG shows a +4.3 advantage in Compilability

compared to SFT+GDG, it performs worse in Functionality

(-1.3), ROUGE (-3.5), and NCD (-0.02). This suggests that

although GGDG can generate grammatically accurate game

descriptions, it still faces challenges compared to SFT in sat-

isfying functionality requirements and reproducing the game

quality of the ground truth. SFT+GGDG achieves the best

scores across Compilability (72.0), Functionality (70.3), and

NCD (0.33) metrics, demonstrating that SFT has a comple-

mentary effect on GGDG.

Regarding the baseline results, random generation methods

can hardly produce grammatically valid game descriptions.

While GDG shows high ROUGE scores, it performs poorly

on other metrics. This suggests that although LLMs alone

can generate game descriptions that are superficially similar

in linguistic expression, without accessing Ludii’s grammar

through our decoding methods, they struggle to generate

grammatically and functionally accurate game descriptions.

Additionally, SFT+GDG shows improved performance across

all metrics compared to GDG, indicating that providing the

model with Ludii knowledge through SFT further enhances

grammatical accuracy.
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TABLE III
ABLATION STUDY OF OUR PROPOSED METHOD. “ORACLE GRAMMAR” INDICATES CASES WHERE GRAMMAR G[y] EXTRACTED FROM GAME

DESCRIPTION y IS USED INSTEAD OF GRAMMAR Ĝ[y] PREDICTED BY THE LLM. “GRAMMAR” INDICATES THE INCLUSION OF GRAMMAR IN THE QUERY

DURING GAME DESCRIPTION GENERATION. THE BEST RESULTS ARE IN BOLD.

Method Grammar
Rule

Decoding
Game Description

Decoding
Compilability↑ Functionality↑ ROUGE↑

Normalized
Concept Distance↓

GDG 27.0±1.2 26.3±0.7 63.5±0.6 0.75±0.01
GGDG w/o RD, GDD ✓ 48.3±0.3 43.3±1.2 61.6±0.1 0.59±0.01
GGDG w/o GDD ✓ ✓ 52.0±3.6 47.3±2.3 61.3±0.2 0.55±0.02
GGDG ✓ ✓ ✓ 64.0±1.5 56.7±2.3 60.5±0.6 0.46±0.03

Oracle Grammar

GGDG w/o RD, GDD ✓ 54.0±1.7 49.3±0.7 61.7±0.2 0.53±0.01
GGDG w/o RD ✓ ✓ 62.0±1.5 57.3±2.2 64.5±0.5 0.46±0.02

TABLE IV
COMPARISON OF THE ITERATION LIMITS FOR RULE DECODING.

GAME DESCRIPTION DECODING IS NOT USED (I.E., GGDG W/O GDD).
THE BEST RESULTS ARE IN BOLD.

Iteration Compilability↑ Functionality↑ ROUGE↑ NCD↓

10 50.0±1.0 44.7±2.0 61.5±0.1 0.58±0.02
20 51.3±3.5 46.7±2.4 61.3±0.2 0.55±0.02

30 47.7±2.7 44.0±3.5 62.1±0.2 0.58±0.03

TABLE V
COMPARISON OF THE ITERATION LIMITS FOR GAME DESCRIPTION

DECODING. THE NUMBER OF ITERATIONS FOR RULE DECODING IS FIXED

AT 20. THE BEST RESULTS ARE IN BOLD.

Iteration Compilability↑ Functionality↑ ROUGE↑ NCD↓

5 60.0±3.2 53.7±2.8 61.1±0.2 0.50±0.02
10 64.0±1.5 56.7±2.3 60.5±0.6 0.46±0.03

20 64.7±0.3 57.3±1.9 60.6±0.2 0.47±0.01

C. Ablation Study

GGDG Components. We conduct an ablation study on

GGDG and summarize the results in Tab. III. We confirm that

adding more techniques improves the scores for Compilability,

Functionality, and NCD. Among the improvements from GDG

to GGDG, grammar accounts for the largest share, comprising

57.6% of Compilability, 55.9% of Functionality, and 55.2% of

NCD improvements. This is followed by game description de-

coding, which accounts for 32.4% of Compilability, 30.9% of

Functionality, and 31.0% of NCD improvements, demonstrat-

ing their substantial impact. Furthermore, the improvement in

Functionality and ROUGE scores when using oracle grammar

suggests that there is still room for improvement in grammar

generation through rule decoding.

Iteration Limit for Decoding. We investigate the impact of

iteration limits in our decoding approach. First, Tab. IV shows

the results of rule decoding. When the iteration limit is set to

30, we find that the Compilability and Functionality scores

are the lowest. This may be because increasing the iteration

limit leads to the inclusion of unnecessary rules, potentially

degrading performance. When the iteration limit is set to

20, Compilability, Functionality, and NCD scores show the

best results. Therefore, we set the iteration limit to 20 for

subsequent experiments.

Tab. V shows the results of game description decoding.

TABLE VI
COMPARISON OF GAME CATEGORIES IN DEMONSTRATION EXAMPLES.

“SAME” CATEGORY INDICATES THAT EXAMPLES ARE FROM THE SAME

CATEGORY AS THE TEST INSTANCE, WHILE “CROSS” CATEGORY

INDICATES THAT THEY ARE FROM DIFFERENT CATEGORIES. THE BEST

RESULTS ARE IN BOLD.

Method Compilability↑ Functionality↑ ROUGE↑ NCD↓

Cross Category

GDG 5.3±0.3 3.7±0.7 46.0±0.0 0.97±0.00
GGDG 36.0±0.6 24.6±0.3 42.3±0.1 0.79±0.00

Same Category

GDG 27.0±1.2 26.3±0.7 63.5±0.6 0.75±0.01
GGDG 64.0±1.5 56.7±2.3 60.5±0.6 0.46±0.03

When the iteration limit is set to 5, we find that the Compilabil-

ity and Functionality scores are the lowest. This is likely due

to insufficient iterations for improving the game description.

When the iteration limit is set to 10 or 20, we observe minimal

differences across most metrics. When the iteration limit is 10,

NCD is lowest at 0.46 and the computational cost is also low,

therefore we set the iteration limit to 10 in other experiments.

Game Category of Demonstration Examples. We investigate

how the category of demonstration examples affects game per-

formance. In our proposed method, we use instances from the

same category as the test instances for demonstration exam-

ples (Same Category). We compare this with using instances

from different categories (Cross Category), and summarize the

results in Tab. VI. In Cross Category, demonstration examples

are randomly selected from all games except for the category

of the test instance. We find that obtaining demonstration

examples from the same category as test instances significantly

improves performance across all evaluation metrics.

D. Impact of Game Characteristics and Model Configurations

Game Description Length. We investigated the impact of

game description length on performance. We compared three

groups based on token length: 0-300, 300-500, and 500-1,000.

Token lengths were calculated using the Llama-3-8B-Instruct

tokenizer. The results are summarized in Tab. VII. For 0-300

and 300-500 tokens, GGDG outperforms GDG in Compilabil-

ity, Functionality, and NCD metrics, demonstrating its ability

to generate more grammatically accurate game descriptions.

Meanwhile, GGDG showed declining performance across all
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TABLE VII
COMPARISON OF TEST GAME LENGTHS. 300 - 500 INDICATES THAT THE

EVALUATION IS PERFORMED ON GAMES WITH GAME DESCRIPTION TOKEN

LENGTHS BETWEEN 300 AND 500.

Method Compilability↑ Functionality↑ ROUGE↑ NCD↓

0 - 300

GDG 27.0±1.2 26.3±0.7 63.5±0.6 0.75±0.01
GGDG 64.0±1.5 56.7±2.3 60.5±0.6 0.46±0.03

300 - 500

GDG 41.0±2.1 39.0±1.0 59.7±0.2 0.68±0.01
GGDG 54.3±2.2 48.7±1.3 59.4±0.5 0.59±0.01

500 - 1000

GDG 36.0±2.3 32.7±2.6 49.9±0.3 0.74±0.02
GGDG 33.3±1.2 29.7±0.9 47.3±0.6 0.77±0.00

TABLE VIII
COMPARISON OF TEST INSTANCE CATEGORIES.

Method Compilability↑ Functionality↑ ROUGE↑ NCD↓

board/race

GDG 10.0±5.8 10.0±5.8 58.2±0.2 0.90±0.06
GGDG 60.0±5.8 60.0±5.8 58.8±0.2 0.42±0.05

board/sow

GDG 38.9±5.6 38.9±5.6 78.8±1.0 0.75±0.06
GGDG 55.6±5.6 55.6±5.6 81.3±0.9 0.51±0.06

puzzle

GDG 7.4±1.9 7.4±1.9 51.3±0.5 0.98±0.02
GGDG 61.1±6.4 59.3±6.7 52.1±0.7 0.57±0.12

board/space/line

GDG 26.9±0.9 24.4±0.5 64.2±0.3 0.78±0.00
GGDG 68.7±0.9 63.7±1.3 62.4±0.4 0.42±0.02

board/war

GDG 57.7±4.4 57.7±4.4 71.0±0.1 0.45±0.04
GGDG 71.8±7.1 62.8±9.0 71.8±0.3 0.41±0.09

metrics as token length increased, dropping from 64.0 to

33.3, Functionality from 56.7 to 29.7, ROUGE from 60.5 to

47.3, and NCD worsening from 0.46 to 0.77. For 500-1,000

tokens, GDG slightly outperformed GGDG across all metrics.

These results suggest that GGDG struggles with long game

descriptions. We discuss this limitation in Sec VII.

Game Category of Test Games. We investigate the impact

of game categories of test instances. We compare GDG and

GGDG across five categories: racing games (board/race), man-

cala games (board/sow), puzzle games (puzzle), line games

(board/space/line), and war games, including capture games

(board/war). The demonstration examples are from the same

category as the test instances. We use instances with game

description token lengths of 300 or less as test games.

The results are summarized in Tab. VIII. Across all cat-

egories, our proposed GGDG outperforms GDG in terms

of Compilability, Functionality, and NCD metrics, which is

consistent with our previous experimental results. For ROUGE

scores, while the superior method varies by category, the

difference between GDG and GGDG remains within 2 points

across most categories.

In comparisons across categories, GDG’s performance

TABLE IX
COMPARISON OF LLM MODELS. THE BEST RESULTS ARE IN BOLD.

Method Compilability↑ Functionality↑ ROUGE↑ NCD↓

Llama-3.2-3B-Instruct

GDG 18.7±0.7 17.3±0.3 59.2±0.3 0.83±0.00
GGDG 28.0±1.5 25.7±2.0 55.4±0.1 0.76±0.02

Llama-3-8B-Instruct

GDG 27.0±1.2 26.3±0.7 63.5±0.6 0.75±0.01
GGDG 64.0±1.5 56.7±2.3 60.5±0.6 0.46±0.03

gpt-4o

GDG 27.7±0.3 27.7±0.3 67.7±0.1 0.74±0.00
GGDG 70.7±0.9 59.3±0.9 68.2±0.0 0.44±0.01

shows significant variation, with the puzzle category show-

ing the lowest scores (Compilability/Functionality: 7.4,

NCD: 0.98) for GDG and the largest improvement margin

(+53.7/+51.9 and -0.41 respectively) when using GGDG.

Conversely, the board/war categories showed GDG’s highest

performance levels (Compilability/Functionality: 57.7, NCD:

0.45) and the smallest margin of improvement with GGDG

(+14.1/+5.1 and -0.04 respectively). This variation may be

attributed to games in the puzzle category having more com-

plex logic compared to other categories, making it difficult for

LLMs to learn grammatically correct patterns from demon-

stration examples, or possibly due to limited knowledge about

puzzle category games obtained during pre-training. Mean-

while, GGDG showed smaller performance variations between

categories compared to GDG, with scores ranging from 55.6

to 71.8 for Compilability, 55.6 to 63.7 for Functionality, and

0.41 to 0.57 for NCD, demonstrating more stable performance.

LLM Models. We compare the performance of different LLM

models. We primarily used Llama-3-8B-Instruct in our exper-

iments and compare its performance to that of Llama-3.2-3B-

Instruct, a smaller LLM model, and gpt-4o, a more powerful

LLM model. The results are summarized in Tab. IX. GGDG

improves Compilability, Functionality, and NCD scores over

GDG across all models. With gpt-4o, GGDG also improves the

ROUGE score. Comparing across models, the 8B model shows

significant improvements in all evaluation metrics compared

to the 3B model. For example, with GGDG, upgrading from

the 3B model to the 8B model improves Compilability by

+36.0, Functionality by +31.0, ROUGE by +5.1, and NCD by

-0.30. gpt-4o achieves the highest scores across all evaluation

metrics. The improvements over the 8B model are +6.7 in

Compilability, +2.6 in Functionality, +7.7 in ROUGE, and -

0.02 in NCD. We observe that the improvements in Compil-

ability, Functionality, and NCD are larger when moving from

the 3B model to the 8B model compared to moving from

the 8B model to gpt-4o. This suggests that while increasing

model size brings significant performance improvements, the

room for improvement becomes limited between already high-

performing models. Therefore, if higher performance is de-

sired, selecting powerful models like gpt-4o is effective. In

contrast, if there are resource constraints, such as API costs

or computational resource limitations, the 8B model can be

considered a balanced choice between performance and cost.
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(game "Latin Square"
(players 1)
(equipment

{
(board (square 4) (values Cell (range 1 4)))
(regions { Columns Rows })

}
)
(rules

(play (satisfy { (forAll Region (== 0 (state at:(to)))) }))
(end (if (is Solved) (result P1 Win)))

)
)

SFT+GDG

Not Compilable

1
2
3
4
5
6
7
8
9

10
11
12
13

(game "Latin Square"
(players 1)
(equipment

{
(board (square 5) (values Cell (range 1 5)))
(regions { Columns Rows })

}
)
(rules

(play (satisfy { (all Different except:0) } ))
(end (if (is Solved) (result P1 Win)))

)
)

GGDG

Functional

1
2
3
4
5
6
7
8
9

10
11
12
13

(game "Latin Square"
(players 1)
(equipment

{
(board (square 5) (values Cell (range 1 5)))
(regions { Columns Rows })

}
)
(rules

(play (satisfy (all Different)))
(end (if (is Solved) (result P1 Win)))

)
)

Ground Truth

1
2
3
4
5
6
7
8
9

10
11
12
13

(game "Latin Square"
(players 1)
(equipment

{
(board (square 4) (values Cell (range 1 4)) )
(regions { Columns Rows })

}
)
(rules

(play (satisfy { (all Different) (is Full) }))
(end (if (is Solved) (result P1 Win)))

)
)

SFT+GGDG

Functional

1
2
3
4
5
6
7
8
9

10
11
12
13

Fig. 8. Comparison of generation results with baseline methods for Latin Square. Since the board size is not specified in the query, it varies depending
on the generated results. The ground truth is set to size 5 as an example.

E. Qualitative Results

Comparison with Baseline Methods. We conduct a qual-

itative analysis comparing SFT+GDG, which is the most

promising among the baseline methods, with our proposed

methods, GGDG and SFT+GGDG. Figure 8 shows the gener-

ation results for Latin Square. Latin Square is a puzzle where

players place numbers in an n×n grid such that the same

number does not repeat in each row and column.

The result of SFT+GDG is neither compilable nor functional

due to the part shown in the red frame: “(forAll Region (== 0

(state at:(to)))”. This issue stems mainly from two grammat-

ical problems. First, while the Ludii grammar defines that a

“forAll” clause must be followed by a “puzzleElementType”

(either “Cell”, “Edge”, “Vertex”, or “Hint”), an undefined

terminal symbol, “Region”, is used. Second, the expression

“(== 0 (state at:(to)))” cannot be parsed because the operator

“==” is not defined in the Ludii grammar.

In contrast, GGDG’s result is both compilable and func-

tional, generating a game description almost identical to the

ground truth. In particular, it shows significant improvement

in that the result contains no grammatical errors. However, in

the blue frame, “except:0” (a constraint requiring all values to

be different except for index 0) is added after “all Different”,

and this rule is not included in the game rules of Latin Square.

Furthermore, the SFT+GGDG result shows more improve-

ment and is consistent with the Latin Square game rules.

The “is Full” rule, which requires all cells to be filled, is

redundant as it is already included in the content of the “all

Different” rule, but it does not contradict the Latin Square

rules. These results suggest that combining SFT and GGDG

improves performance.

GGDG Components. We investigate the effects of GGDG

components through qualitative analysis. Figure 9 shows the

generation results for Tic-Tac-Toe. The GDG results are not

compilable due to the “count Pips” shown in the red frame.

The appearance of the term “Pips” occurs because the LLM

is influenced by the dice in the Tic-Tac-Die game from the

demonstration examples. Tic-Tac-Die is explained as follows:

“Tic-Tac-Die is played similarly to Tic-Tac-Toe except that

players roll a D9 dice each turn to dictate where they move

(dice pips show the cell index to move to).”

While the pips disappear in the results of

GGDG w/o RD, GDD, they are still not compilable.

This is due to the extra clause about “PASS” in the blue

frame. This occurs because the predicted “move” grammar

contains a “PASS” clause not included in the ground truth.

The grammar results of GGDG w/o GDD show that by

adding rule decoding, they match the ground truth grammar.

The generated game description is functional. However, this

description includes “do,” which is not in the predicted gram-

mar. The presence of this term, which appears in the Tic-

Tac-Die demonstration example, suggests that the LLM is

mimicking it.

In the GGDG results, adding game description decoding

reduces the occurrence of expressions not defined in the

grammar, such as “do”. This game description is functional

and closest to the ground truth among the compared methods.

However, since the condition “(is line 3)” is applied equally

to player1 and player2 as shown in the purple frame, it cannot

accurately determine which player has won. This suggests

there is still room for improvement in GGDG.

Analysis of Failure Cases. We examine the analysis results

of Bara Guti (Bihar) as an example of a failure case, as shown

in Fig. 10. This game uses a board that has three concentric

circles, with four diameters dividing it into eight equal sec-

tions, with counters placed in each section. In analyzing the

generated results, we note that ”Markers” and ”Counters” refer

to the same type of piece.

While SFT+GDG generated compilable output, it did not

produce functional results due to the parts highlighted in red

in Fig. 10. “concentric 1 8 8” specifies the number of cells in

each concentric ring sequentially, defining a total of 17 cells.

However, this description becomes non-functional because

lines 19 and 21 specify marker initial positions with indices

of 17 or greater. Additionally, the specified initial positions

differ from the ground truth.

In contrast, while GGDG’s generated results demonstrate

functionality, the definitions of the board and counter initial

positions differ from the ground truth. Specifically, it generates

a board by connecting two triangles on lines 19 and 22,

and places counters at positions expanded two steps from the

bottom using the expression “expand (sites Bottom) steps:2”

(highlighted in blue). This difference is presumed to be in-

fluenced by the existing demonstration example of Lau Kata

Kati: “(merge (wedge 4) (shift 0 3 (rotate 180 (wedge 4))))”.

Finally, while SFT+GGDG’s results maintain functionality

and return to the concentric circle board structure, the number

of concentric circles, cell count, and Marker initial positions

are incorrectly predicted, highlighted in green. These limita-
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GDG

Not Compilable

(game "Tic-Tac-Toe"
(players 2)
(equipment {

(board (square 3))
(piece "X" P1)
(piece "O" P2)

} )
(rules

(play
(do

(next:(if
(is Empty (count Pips))
(move

Add
(piece … )
(to (count Pips))

)
(move 

Pass 
(then 

(moveAgain)
)

)
)

)
)
(end {

(if (is Line 3) (result Mover Win))
(if (is Full) (result Mover Draw))

} )
)

)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

GGDG w/o RD, GDD

Not Compilable

(game "Tic-Tac-Toe"
(players 2)
(equipment {

(board (square 3))
(piece "X" P1)
(piece "O" P2)

} )
(rules

(play
(do

(roll)
next:(if

(is Line 3)
(move

Add
(piece … )

)
(move 

Pass 
(then 

(moveAgain)
)

)
)

)
)
(end {

(if (is Line 3) (result P1 Win))
(if (is Line 3) (result P2 Win))

} )
)

)

play ::= "(play" moves ")"
moves ::= do | effect | "next:" moves 
| logical_if | move
do ::= "(do" moves moves ")”
move ::= "(move" ADD piece to ")" 
| "(move" PASS then ")”

…

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35

GGDG w/o GDD

Functional

(game "Tic-Tac-Toe"
(players 2)
(equipment {

(board (square 3))
(piece "X" P1)
(piece "O" P2)

} )
(rules

(play
(do

(move
Add
(to (sites Empty))

)
)

)
(end {

(if (is Line 3) (result P1 Win))
(if (is Line 3) (result P2 Win))

} )
)

)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

play ::= "(play" moves ")"
moves ::= move
move ::= "(move" ADD to ")”

…

23
24
25

(game "Tic-Tac-Toe"
(players 2)
(equipment {

(board (square 3))
(piece "Disc" P1)
(piece "Cross" P2)

} )
(rules

(play
(move

Add
(to (sites Empty))

)
)
(end 

(if (is Line 3) (result Mover Win))
)

)
)

Ground Truth

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

play ::= "(play" moves ")"
moves ::= move
move ::= "(move" ADD to ")”

…

20
21
22

GGDG

Functional

(game "Tic-Tac-Toe"
(players 2)
(equipment {

(board (square 3))
(piece "X" P1)
(piece "O" P2)

} )
(rules

(play
(move

Add
(to (sites Empty))

)
)
(end {

(if (is Line 3) (result P1 Win))
(if (is Line 3) (result P2 Win))

} )
)

)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

play ::= "(play" moves ")"
moves ::= move
move ::= "(move" ADD to ")”

…

20
21
22

G
a
m

e
 D

e
s
c
ri

p
ti

o
n

G
ra

m
m

a
r

Fig. 9. Impact of GGDG components on generation results for Tic-Tac-Toe. Components are added from left to right, with the ground truth on the far
right. The middle row shows the game description, and the bottom row shows the results of grammar generation for only the methods that performed grammar
generation. Since the grammar results are highly redundant, only the important parts are shown.

(game "Bara Guti (Bihar)"
(players 2)
(equipment

{
(board

(concentric {1 8 8})
{

(track "Track1" … loop:True P1)
(track "Track2" … loop:True P2)

}
)
(piece “Marker” … )

}
)
(rules

(start
{

(place "Marker1" 
(sites {1 2 4 5 7 8 10 11})

)
(place "Marker2" 

(sites {14 15 17 18 20 21 23 24})
)

}
)
(play (forEach Piece))
(end (if (no Pieces Next) (result Next Loss)))

)
)

SFT+GDG

Compilable, Not Functional

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

(game "Bara Guti"
(players 2)
(equipment

{
(board

(merge
(wedge 8)
(shift 0 3.14159 (rotate 180 (wedge 8)))

)
use:Vertex

)
(piece "Counter” … )

}
)
(rules

(start
{

(place "Counter1" 
(expand (sites Bottom) steps:2)

)
(place "Counter2" 

(expand (sites Top) steps:2)
)

}
)
(play (forEach Piece))
(end (if (no Pieces Next) (result Next Loss)))

)
)

GGDG

Functional

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

(game "Bara Guti (Bihar)"
(players 2)
(equipment

{
(board (concentric {1 8 8 8}) use:Vertex)
(piece "Counter … )

}
)
(rules

(start
{

(place "Counter1" 
(sites {2 3 4 5 10 11 12 13 18 19 20 21})

)
(place "Counter2" 

(sites {1 9 17 6 7 8 14 15 16 22 23 24})
)

}
)
(play (forEach Piece))
(end (if (no Pieces Next) (result Next Loss)))

)
)

Ground Truth

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

(game "Bara Guti (Bihar)"
(players 2)
(equipment

{
(board (concentric {1 8 1}) use:Vertex)
(piece "Marker” … )

}
)
(rules

(start
{

(place "Marker1" 
(expand (sites {0}) steps:2)

)
(place "Marker2" 

(expand (sites {0}) steps:3)
)

}
)
(play (forEach Piece))
(end (if (no Pieces Next) (result Next Loss)))

)
)

SFT+GGDG

Functional

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Fig. 10. Comparison of generation results for Bara Guti (Bihar) as a failure example. Some parts of the game description are omitted due to space
constraints. The board appears in the upper right of each game description. Due to space constraints, GGDG’s results display a wedge of 4 instead of 8.

tions can be attributed to LLM’s lack of ability to understand

spatial structures like boards [72]. We discuss these limitations

of spatial understanding in Sec VII.

VII. LIMITATIONS AND DISCUSSION

As shown in Tab. VII, GGDG’s performance decreases with

longer game descriptions. It is known that LLM performance

degrades with longer input sequences [73]. We believe that

GGDG struggles with processing longer game descriptions

because its input token length is increased by the grammar,

compared to GDG. The development of LLMs capable of

handling longer contexts is ongoing [74], [75], and newer LLM

models may help mitigate this issue.

As shown in Fig. 10, it is difficult to compensate for

LLMs’ lack of spatial understanding capabilities through SFT.

It has been found that LLMs with 70B parameters demonstrate

superior capabilities compared to models with 7B or 13B

parameters in this regard [72]. Using a larger LLM, such as the

70B parameter models, is a possible option to increase such

capabilities. However, it should be noted that SFT for large-

parameter LLMs requires substantial computational resources,

which can be problematic in other ways.

Our proposed framework may have issues with inference

time and cost because it repeats LLM inference multiple

times. Specifically, the inference time per game averages 7.7

seconds for GDG and 143.9 seconds for GGDG. This issue can
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be mitigated by caching LLM responses, setting appropriate

limits on the number of LLM inferences, and improving

the prompts. Additionally, given recent advances in inference

acceleration techniques [76], these constraints are expected to

be lessened as newer techniques are developed.

The evaluation in this paper relies solely on automatically

calculable metrics and does not include human evaluations.

We believe that human evaluation could capture errors that

automated evaluation cannot fully cover, potentially leading to

further improvements and leads for future research directions.

VIII. BROADER IMPACT

The use of LLMs in the field of video games is associ-

ated with ethical issues related to sustainability, copyright,

explainability, and biases [39]. In this section, we discuss the

problems and their mitigation strategies within our proposed

framework from these perspectives.

Our research raises concerns about the carbon footprint

of LLMs. Our framework does not include training LLMs,

and only LLMs’ inference impacts the environment. This

issue can be mitigated by reducing the number of inference

calls through caching LLM responses and providing more

effective demonstrations. Additionally, using models that offer

enhanced performance for the same computational load can

further reduce environmental impact.

Our research is related to copyright issues concerning input

and output data. It is common practice for LLMs to be trained

using copyrighted data [39]. Since our framework does not

include the training process, it does not directly cause this is-

sue. However, users should consider the training data of LLMs

when employing our framework. Our approach automatically

generates game descriptions without human intervention, and

these outputs may not be copyrighted. Developing our frame-

work into an interactive approach with human designers may

allow the final output to qualify for copyright.

The generation process of LLMs is opaque, and there are

studies examining whether LLMs’ black-box nature hinders

the transparency of PCG [44]. In our research as well, the

process of each LLM call remains similarly unclear. However,

our grammar-based iterative decoding method breaks down the

generation process into multiple steps, which should enhance

our understanding of it.

LLMs are trained on data collected from the internet, which

introduces biases. Since game design tends to reflect the

culture of its time and region, these biases negatively impact

the design process when using LLMs. Our framework could

potentially mitigate the issue by incorporating examples from

various eras and regions in the demonstrations for LLMs. Ludii

collects historically influential games from diverse regions and

provides metadata on the regions where each game is rooted,

which can contribute to mitigating this problem.

IX. CONCLUSIONS

We have proposed a novel framework that combines large

language models with game description languages for generat-

ing game descriptions from text. Our approach integrates GDL

grammar into the generation process, enabling the creation

of structurally coherent game descriptions. By introducing

iterative refinement decoding methods specialized for both

grammar generation and game description generation, we have

seen improvements in the grammatical accuracy of game

descriptions. Extensive experimental results demonstrate that

our framework is effective in improving grammatical accuracy

within game description generation. Future research may ex-

plore fine-tuning specialized LLMs for each subtask of rule

and game description completion performed at each step of

iterative refinement decoding, as well as the utilization of

more efficient and powerful LLMs. Additionally, it would be

valuable to qualitatively validate the findings of our approach

beyond the Ludii dataset through conducting user studies with

actual humans.
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A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation
via machine learning (pcgml),” IEEE Trans. Games., vol. 10, no. 3, pp.
257–270, 2018.

[30] J. Liu, S. Snodgrass, A. Khalifa, S. Risi, G. N. Yannakakis, and
J. Togelius, “Deep learning for procedural content generation,” Neural

Computing and Applications, vol. 33, no. 1, pp. 19–37, 2021.
[31] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius, “Pcgrl: Procedural

content generation via reinforcement learning,” in Proc.of AIIDE, 2020.
[32] M. Cook, S. Colton, and J. Gow, “The angelina videogame design

system—part i,” IEEE Trans. Computational Intelligence and AI in

Games, vol. 9, no. 2, pp. 192–203, 2017.
[33] A. Liapis, G. N. Yannakakis, M. J. Nelson, M. Preuss, and R. Bidarra,

“Orchestrating game generation,” IEEE Trans. Games., vol. 11, no. 1,
pp. 48–68, 2019.

[34] A. Summerville, C. Martens, B. Samuel, J. Osborn, N. Wardrip-Fruin,
and M. Mateas, “Gemini: Bidirectional generation and analysis of games
via asp,” in Proc. of AAAI, 2018.

[35] M. Guzdial and M. O. Riedl, “Conceptual game expansion,” IEEE Trans.

Games., vol. 14, no. 1, pp. 93–106, 2022.
[36] M. U. Nasir, S. James, and J. Togelius, “Word2world: Generating stories

and worlds through large language models,” 2024.
[37] T. Machado, D. Gopstein, A. Nealen, O. Nov, and J. Togelius, “Ai-

assisted game debugging with cicero,” in Proc. of CEC, 2018.
[38] OpenAI, Nov 2022. [Online]. Available: https://openai.com/blog/chatgpt
[39] R. Gallotta, G. Todd, M. Zammit, S. Earle, A. Liapis, J. Togelius, and

G. N. Yannakakis, “Large language models and games: A survey and
roadmap,” in arXiv preprint arXiv:2402.18659, 2024.

[40] M. U. Nasir and J. Togelius, “Practical pcg through large language
models,” in Proc. of CoG, 2023.

[41] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” 2019.
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