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Abstract

We propose an efficient pipeline for large-scale landmark

image retrieval that addresses the diversity of the dataset

through two-stage discriminative re-ranking. Our approach

is based on embedding the images in a feature-space using a

convolutional neural network trained with a cosine softmax

loss. Due to the variance of the images, which include

extreme viewpoint changes such as having to retrieve images

of the exterior of a landmark from images of the interior,

this is very challenging for approaches based exclusively

on visual similarity. Our proposed re-ranking approach

improves the results in two steps: in the sort-step, k-nearest

neighbor search with soft-voting to sort the retrieved results

based on their label similarity to the query images, and in

the insert-step, we add additional samples from the dataset

that were not retrieved by image-similarity. This approach

allows overcoming the low visual diversity in retrieved im-

ages. In-depth experimental results show that the proposed

approach significantly outperforms existing approaches on

the challenging Google Landmarks Datasets. Using our

methods, we achieved 1st place in the Google Landmark

Retrieval 2019 challenge on Kaggle. Our code is publicly

available here: https://github.com/lyakaap/

Landmark2019-1st-and-3rd-Place-Solution

1. Introduction

Image retrieval is a fundamental problem in computer

vision where given a query image, similar images must be

found in a large dataset. In the case of landmark images, the

variation between points of view and different parts of the

landmark can be extreme, proving challenging for humans

without deep knowledge of the landmark in question. One

such complicated example is shown in Fig. 1. The Scuderie

del Quirinale is very visually similar to other structures such
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Figure 1: An example of improving the top-3 retrieved re-

sults from the Google Landmarks Dataset v2.1 with our

re-ranking approach. The first row shows the result of a

k-Nearest Neighbor (k-NN) search in the embedding space,

the second row shows the result after the sort-step of our re-

ranking, and the third row is the result after both the sort-step

and insert-step of our re-ranking. In each step, incorrect sam-

ples are replaced by correct samples based on their neighbors

in label-space. Query images are in blue, correct samples

are in green and incorrect samples are in red.

as the Vatican obelisk and the Inco Superstack, leading to

erroneous retrievals. Our proposed re-ranking approach is

able to exploit labeled information from the training dataset

to improve the retrieval results, even when the correct im-

ages are very visually dissimilar such as drawings, different

viewpoints, diverse illumination, etc.

Instance image retrieval can be seen as the task of con-

verting the image information into an embedding where

similar images are nearby. Similar to recent approaches,
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Figure 2: Overview of our approach. In an offline step, image embeddings of the labeled set and index set are calculated, and

the instance-id of each index set image is predicted by k-NN soft-voting. Afterward, the same prediction is performed for a

query online, and initial retrieval results are obtained by k-NN search. For re-ranking, we assign “positive” or “negative” to

the retrieval results based on their prediction results. Final results are obtained by two-stage discriminative re-ranking.

we focus on learning this embedding with a convolutional

neural network (CNN). We adopt a cosine softmax loss to

train the neural network for the retrieval task. Afterward,

instead of simply using the distance in the embedding space

to find related images, we exploit the label information to

perform re-ranking. Our re-ranking is based on a two-step

approach. In the sort-step, a discriminative model based on

k-NN search with soft voting which allows us to sort the

initial retrieved results such that results more label-similar to

the query image are given higher priority. In the insert-step,

images that were originally not retrieved are inserted into

the retrieval results based on the same discriminative model.

This combined approach shows a significant improvement

over existing approaches.

Noh et al. [32] has recently provided a challenging dataset

named Google Landmarks Dataset v1 (GLD-v1) for instance-

level landmark image retrieval. For each landmark, there

is a diversity of images including both interior and exterior

images. Being able to identify the images without context is

very challenging, and in many cases, positive pairs have a

very different visual appearance. More recently, the dataset

has been expanded in a second version (GLD-v2) to be more

complex and challenging. We focus on the retrieval task in

this challenging setting which due to being recent has not

been fully explored yet.

Although the GLD-v2 dataset is a significant improve-

ment over the previous version, consistency and quality are

still significant open issues that can be very detrimental to re-

sults in the retrieval task. For this purpose, we also propose

an automatic data cleaning approached based on filtering

the training data. Although this reduces the dataset size

and training budget, it ends up being beneficial to overall

performance of the model.

To summarize our contributions, (1) an effective pipeline

for high quality landmark retrieval, (2) a re-ranking approach

based on exploiting labels, and (3) results that significantly

outperform existing approaches on challenging datasets.

2. Related Work

Instance Image Retrieval. Image retrieval is usually posed

as a problem of finding an image embedding in which similar

images have small distance, and has been traditionally done

based on local descriptor based methods [9, 24, 34, 42], in-

cluding the popular SIFT [30], RootSIFT [2], and SURF [4].

Bag-of-Words [9, 42] model and its variants (VLAD [24],

Fisher Vector [34], etc.) have been popular in image re-

trieval previous to the advent of learning-based approaches,

and construct image embeddings by aggregating local de-

scriptors. More recently, DELF [32] has been proposed as a

deep learning-based local descriptor method, which uses the

attention map of CNN activation learned by only image-level

annotation. See [51] for a survey of instance image retrieval.

After the emergence of deep learning, many image re-

trieval methods based on deep learning have been presented.

Most recent image retrieval approaches are based on deep

learning [1, 3, 15, 25, 26, 37, 39]. Both utilizing off-the-shelf

CNN activations as an image embedding [3, 25, 26, 39] and

further fine-tuning to specific datasets [1, 15, 37] are popular

approaches. An extension of VLAD called NetVLAD which

is differentiable and trainable in an end-to-end fashion has

also been recently proposed [1]. Gordo et al. [15] proposed

using a region proposal network to localize the landmark re-



gion and training a triplet network in an end-to-end fashion.

The current state-of-the-art local descriptor based method

is D2R-R-ASMK [43] along with spatial verification [35].

D2R-R-ASMK is a regional aggregation method comprising

a region detector based on ASMK (Aggregated Selective

Match Kernels) [44]. ASMK is one of the local feature

aggregation techniques. The current state-of-the-art CNN

global descriptor method is that of Radenović et al. [37]

which employs an AP loss [40] along with re-ranking meth-

ods [5, 49]. We construct our pipeline mainly based on latter

strategy and show that by using a two-stage discriminative

re-ranking approach, we are able to obtain results favorable

to the existing approaches.

Retrieval Loss Functions. Instance image retrieval requires

image embedding that captures the similarity well, and the

loss used during learning plays an important role. Using

CNN off-the-shelf embeddings has been effective for im-

age retrieval [3, 25, 26, 39]. Babenko and Lempitsky [3]

proposed using sum-pooling of CNN activation, and Lin et

al. [26] proposed max-pooling of multiple regions of CNN

activation. However, training specifically for the task of in-

stance retrieval has shown more effective with contrastive

loss [6] and triplet loss [18, 41, 48] being some of the more

used losses in image retrieval [13, 15, 19, 37]. Recently, the

Average-Precision (AP) loss [40], which optimizes the global

mean average precision directly by leveraging list-wise loss

formulations, has been proposed and achieved state-of-the-

art results. In face recognition field, recently cosine softmax

losses [11, 27, 28, 38, 46, 47, 50] have shown astonishing re-

sults and have become more favorable than other losses [31].

Cosine softmax losses impose L2-constraint to the features

which restricts them to lie on a hypersphere of a fixed ra-

dius, with popular approaches being SphereFace [27, 28],

ArcFace [11], and CosFace [46, 47], using multiplicative

angular margin penalty, additive angular margin penalty, and

additive cosine margin penalty, respectively. While con-

trastive loss and triplet loss require training techniques such

as hard negative mining [1, 41], cosine softmax losses do

not and easy to implement and stable in training. We show

their successes are not only in face recognition but also in

instance image retrieval by comparative experiments.

Re-ranking Methods. Re-ranking is a essential approach

to enhance the retrieval results on the image embedding.

Query expansion (QE)-based techniques are simple and pop-

ular ways of re-ranking for improving recall of retrieval

system. AQE [8] is the first work that applies query expan-

sion in vision field, and is based on averaging embeddings

of top-ranked images retrieved by an initial query, and using

the averaged embedding as a new query. αQE [37] uses

weighted average of descriptors of top-ranked images. Heav-

ier weights are put on as the rank gets higher. DQE [2] uses

an SVM classifier and its signed distance from the decision

boundary for re-ranking. Spatial verification (SP) [33, 35] is

a method that checks the geometric consistency using local

descriptors and RANSAC [14], can be combined with QE to

filter images used for expansion [8]. SP can be used as re-

ranking [7, 36] to improve precision, but it has an efficiency

problem. Therefore, it is performed generally on a shortlist

of top-ranked images only. HQE [45] leverages Hamming

Embedding [23] to filter images instead of SP.

Diffusion, also known as similarity propagation, is a ma-

jor manifold-based approach which can also be used for

re-ranking [12]. Many diffusion approaches have been pro-

posed for enhancing the performance of instance image re-

trieval [12, 21, 22, 49]. Diffusion can capture the image man-

ifold in the feature space by random-walk on k-NN graph.

However, because diffusion process tends to be expensive,

spectral methods have been proposed to reduce computa-

tional cost [21], and Yang et al. [49] proposed decoupling

diffusion into online and offline processes to reduce online

computation. EGT [5] is a recently proposed k-NN graph

traversal algorithm, which outperforms diffusion methods in

terms of performance and efficiency.

Conventional re-ranking methods are unsupervised,

which means they do not consider label information even

when label information is available. In contrast, our re-

ranking method can exploit label information, commonly

available in many problems, and shows excellent perfor-

mance in landmark retrieval tasks.

3. Method

Our approach consists of training an embedding space

using a cosine softmax loss to train a CNN. Afterward, re-

trieval is done based on k-NN search which is corrected and

improved using two-stage discriminative re-ranking.

3.1. Embedding Model

Our model is based on a CNN that embeds each image

into a feature-space amenable for k-NN search. Our model

is based on a ResNet-101 [17] augmented with Generalized

Mean (GeM)-pooling [37] to aggregate the spatial informa-

tion into a global descriptor.

The reduction of a descriptor dimension is crucial since

it dramatically affects the computational budget and alle-

viates the risk of over-fitting. We reduce the dimension to

512 from 2048 by adding a fully-connected layer after the

GeM-pooling layer. Additionally, a one-dimensional Batch

Normalization [20] after the fully-connected layer is used to

improve the generalization ability.

Training is done using the ArcFace [11] loss with L2

weight regularization defined as follows

L = −
1

N

N∑

i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j 6=yi
es cos θj

+ β(‖W‖22 + ‖WM‖22) , (1)



with

θyi
= W ⊺

yi
f(xi;WM ) and θj = W

⊺

j f(xi;WM ), (2)

where xi is the input image with target class yi, N is the

batch size, W denotes the weights of the last layer, WM is

the parameters of the whole network excluding the last layer,

f(x;WM ) is the embedding of x using WM , s is a scaling

hyperparameter, and m is a margin hyperparameter. We note

that ‖W‖2 = 1 and ‖xi‖2 = 1 is enforced by normalizing

at every iteration.

3.2. Twostage Discriminative Reranking

The diversity of images belonging to the same instance is

one of the main problems in image retrieval. For example,

an instance of church may contain diverse samples, such

as outdoor and indoor images. These images are extremely

hard to identify as the same landmark without any context.

Furthermore, the visual dissimilarity makes it nearly impos-

sible to retrieve them using only visual-based embeddings.

To overcome this issue, we propose two-stage discriminative

re-ranking that exploits the label information. An overview

of our re-ranking approach is shown in Fig. 2.

Our proposed method is composed of an auxiliary offline

step and two re-ranking stages. Suppose we have a query, an

index set and a labeled set. The index set is a database for

which we perform image retrieval and has no labels, only

images. First, we predict the instance-id of each sample from

the index set by k-NN search with soft-voting, where each

sample from the index set is regarded as a query, and the

labeled set as a database.

The score of each instance-id is calculated by accumu-

lating the cosine similarities of the k nearest samples as

follows

v(x, c) =
1

k

∑

x′∈N (x)

f(x′)⊺ f(x) · 1(label(x′) = c), (3)

where f(·) ∈ R
d is the feature embedding function with WM

omitted for brevity, N (x) is the set of k nearest neighbours

in the labeled set, and 1(·) is an indicator function. The

prediction then becomes the class that maximizes v(x, c) for

x. The index set prediction can be computed in an offline

manner once.

When a query is given, its instance-id is also predicted

in the same way described above. Index set samples that

are predicted to be the same id of the query sample are

treated as “positive samples”, and those of different id as

“negative samples”, and play an important role in our re-

ranking approach.

Our re-ranking method is illustrated in Figure 3 and con-

sists of a sort-step and insert-step. The top row in the figure

shows a query (in blue) and retrieved samples from the index

set by k-NN search with positive samples shown in green

Retrieval resultQuery

Label=12 Label=41 Label=12Label=12

Label=12 Label=41 Label=12

Positive PositiveNegative

(Out of rank)
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…
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Inserted

1. Assign positive / negative

Figure 3: Overview of our re-ranking procedure. “Positive”

represents the samples predicted the same id as the predicted

id of a query sample. “Negative” represents the samples

predicted the different id from a predicted id of a query

sample. Re-ranking is performed in each step based on their

predicted id results.

and negative samples shown in red. Here, we consider im-

ages on the left to be more relevant to the query than the ones

on the right. In the sort-step, positive samples are moved to

the left of the negative samples in the ranking, maintaining

the relative order of them. This re-ranking step can make

results more reliable, becoming less dependent on factors

such as lighting, occlusions, etc.

In the insert-step, we insert positive samples from the

entire index set, which are not retrieved by the k-NN search,

after the re-ranked positive samples in descending order of

scores which is calculated by k-NN cosine similarities. This

step enables us to retrieve visually dissimilar samples to a

query by utilizing the label information of the labeled set.

Here, the predicted instance-id may not always be reliable,

especially when the prediction score is low. If the instance

of query does not exist in the labeled set, there is a tendency

that the prediction score becomes very low. Thus, we do

not perform insertion to the sample of which the sum of the

prediction score between query and sample considered to be



inserted is lower than a threshold τscore to deal with this.

4. Dataset

The Google Landmarks Dataset (GLD) is the largest

dataset of instance image retrieval, which contains photos

of landmarks from all over the world. The photos include

a lot of variations, e.g., occlusion, lighting changes. GLD

has three versions: v1, v2, and v2.1 and we overview their

differences in Table 1. GLD-v1 [32] which is the first ver-

sion of GLD has released in 2018. This dataset has more

than 1 million samples and around 15 thousand labels. GLD-

v1 was created based on the algorithm described in [52],

and uses visual features and GPS coordinates for ground-

truth correction. Simultaneously, the Google Landmarks

Challenge 2018 was launched and GLD-v1 was used at this

challenge. Currently, we can still download the dataset, but

cannot evaluate with it since ground-truth was not released.

GLD-v2 1, used for the Google Landmarks Challenge 2019,

is the largest worldwide landmark recognition dataset avail-

able at the time. This dataset includes over 5 million images

of more than 200 thousands of different landmarks. It is

divided into three sets: train, test, and index. Only samples

from the train set are labeled.

Since GLD-v2 was constructed by mining web landmark

images without any cleaning step, each category may contain

quite diverse samples: e.g., images from a museum may con-

tain outdoor images showing the building and indoor images

depicting a statue located in the museum. In comparison

with the GLD-v1, there is significantly more noise in the

annotations. The GLD-v2.1 is a minor update of GLD-v2.

Only ground truth of test set and index set are updated.

Automated Data Cleaning. The train set of GLD-v2 is very

noisy because it was constructed by mining web landmark

images without any cleaning step. Furthermore, training

with the entire train set of GLD-v2 is complicated due to its

huge scale. Therefore, we consider to automatically remove

noises such as mis-annotation inspired by [15], leading to

reduction of dataset size and training budget, while avoiding

adverse effects of the noise for deep metric learning.

To build a clean train set, we apply spatial verifica-

tion [35] to filtered images by k-NN search. Specifically,

cleaning the train set consists of a three-step process. First,

for each image descriptor xi in the train set, we search its

1000 nearest neighbors from the train set. This image descrip-

tor is obtained by our embedding model learned from the

GLD-v1 dataset. Second, spatial verification is performed on

up to the 100 nearest neighbors assigned to the same label as

xi. For spatial verification, we use RANSAC [14] with affine

transformation and deep local attentive features (DELF) [32].

If an inlier-count between xi and nearest neighbor image de-

scriptor is greater than 30, we consider the nearest neighbor

1https://github.com/cvdfoundation/google-landmark

Table 1: Dataset statistics used in our experiments. The

index and test images are not included here. GLD-v2 and

GLD-v2.1 only differ in the index set and test set and thus

are shown together for the train set.

Dataset (train set) # Samples # Labels

GLD-v1 1,225,029 14,951

GLD-v2/2.1 4,132,914 203,094

GLD-v2/2.1 (clean) 1,580,470 81,313

as a verified image. Finally, if the count of verified images

in the second step reaches the threshold τfreq, xi is added to

the cleaned dataset. We set τfreq = 3 in our experiment.

This automated data cleaning is very costly due to the use

of spatial verification, however, it only has to be run once.

Table 1 summarizes the statistics of the dataset used in our

experiments. We show the effectiveness of using our cleaned

dataset through our experiments in the following sections.

5. Experiments

We pre-train the model on ImageNet [10] and the train

set of GLD-v1 [32] first, before being trained on cleaned

GLD-v2 train set with a cosine softmax loss. We use p = 3.0
for the Generalized Mean-pooling, and use 512-dimension

embedding space. We use a margin of 0.3 for the ArcFace

loss and β = 10−5 for the regularization term. For re-

ranking we use τscore = 0.6 and k = 3 for k-NN soft-voting.

We train each network for 5 epochs with commonly used

data augmentation methods such as brightness shift, random

cropping, and scaling. In particular, images are randomly

scaled between 80% and 120% of their original size and then

either cropping or zero-padding is used to return the image to

the original resolution, depending on whether the image was

downscaled or upscaled. Brightness is randomly modified

by 0% to 10%. When constructing mini-batches for training,

the images are resized to be the same size for efficient

training. This might cause distortions to the input images,

degrading the accuracy of the network [16]. To avoid this,

we choose mini-batch samples so that they have similar

aspect ratios, and resize them to a particular size. The size

is determined by selecting tuple of width and height from

[ (512, 352), (512, 384), (448, 448), (384, 512), (352, 512) ]
depending on their aspect ratio.

Model training is done by using the stochastic gradient

descent with momentum, where initial learning rate, momen-

tum, and batch size are set to 0.001, 0.9, and 32, respectively.

The cosine annealing [29] learning rate scheduler is used

during training.

For other approaches we compare to, we follow the set-

tings described in their respective papers. However, we

have changed some hyperparameters which would found to

give non-competitive results. In particular, spatial verifica-



Table 2: Comparison of our re-ranking against the other state-of-the-art re-ranking methods on top of our baseline. We report

mAP@100 in GLD-v2 and mAP@100, P@10, and MeanPos in GLD-v2.1. mAP@100 is mean average precision at rank 100.

P@10 is mean precision at rank 10 and higher is better. MeanPos is the mean position of the first relevant image (if no relevant

image in top-100, use 101 as position) and lower is better.

GLD-v2 GLD-v2.1

Private Public Private Public

Method mAP@100 mAP@100 mAP@100 P@10 MeanPos mAP@100 P@10 MeanPos

k-NN search 30.22 27.81 29.63 30.76 27.02 27.66 28.87 32.60

SP [36] 23.75 22.40 23.29 24.72 28.72 22.15 23.46 33.18

AQE [8] 32.17 30.47 31.60 32.97 27.44 30.28 31.35 31.54

αQE [37] 32.21 30.34 31.71 33.04 26.67 30.23 31.03 31.13

Iscen et al.’s DFS [22] 32.01 30.55 31.91 32.51 29.52 30.81 30.50 33.23

Yang et al.’s DFS [49] 31.20 29.36 30.90 31.48 29.87 29.29 29.63 33.83

EGT [5] 30.33 28.44 31.00 32.89 34.82 29.77 30.74 38.19

Ours 36.85 34.89 36.04 36.27 24.43 34.41 33.40 29.23

Ours + αQE 37.34 35.59 36.55 36.68 24.44 35.12 33.85 28.11

Table 3: Ablation study of each step of our re-ranking. We

show the effect of adding the sort-step and both the sort-step

and insert-step with respect to our strong baseline on the

GLD-v2 dataset.

Description Private Public

Baseline 30.22 27.81

+ Sort-step 33.79 30.91

+ Insert-step 36.85 34.89

tion (SP) follows the procedure from [36] except for using

DELF [32] trained with GLD-v1 as the local descriptor. In

AQE [8] and αQE [37], the number of retrieved results used

for query expansion are set to 10 including the query itself.

The α of αQE is set to 3.0. SP is not used to filter samples

for the construction of a new query in QE different from [8].

For Iscen et al.’s diffusion (DFS) [22] and Yang et al.’s diffu-

sion (DFS) [49], the default hyperparameters are used. The

threshold t of EGT [5] is set to inf . Hyperparameters of

each method are tuned using the GLD-v2 Public split.

We use multi-scale feature extraction described in [15]

during test time in whole experiments. The resulting features

are finally averaged and re-normalized.

5.1. Evaluation Protocol

We use the Google Landmarks Dataset (GLD) [32] for

experiments. GLD-v1 and GLD-v2 have three data splits:

train, index and test set. The train set of GLD-v1 and GLD-

v2 is used for training. Additionally, the train set of GLD-v2

is used as a labeled set for re-ranking. The index set and the

test set of GLD-v2 and GLD-v2.1 are used for our evaluation.

The index set and the test set of GLD-v1 are not used for our

evaluation since we cannot obtain ground-truth of GLD-v1

and use evaluation server. Note that evaluation on GLD-

v2 are performed on evaluation server of the competition

page 2 and it shows only mAP@100. We report two split

results, “Private” and “Public”. The Private split accounts

for 67% and the Public split accounts for 33% of GLD-v2

and GLD-v2.1 respectively.

5.2. Results

We evaluate our re-ranking method and other state-of-

the-art re-ranking methods on top of our baseline in Table 2,

evaluating on the GLD-v2 and GLD-v2.1 datasets. Baseline

is the retrieved results by k-NN search using descriptors

extracted by our trained model. Surprisingly, spatial verifica-

tion (SP) [36] harms the performance drastically in contrast

to the common sense of instance image retrieval. After vi-

sual inspection of the results of SP, we hypothesize that this

is likely caused by a large number of instances that are very

similar. There are many cases where the RANSAC inlier

count increases artificially due to geometrical consistency of

partial region between even different instances, degrading

accuracy as a result.

Experimental results show that our approach outperforms

the previous re-ranking approaches on the challenging GLD

dataset. Furthermore, a combination of ours and αQE boosts

the performance, and it suggests that our re-ranking method

can be combined with existing re-ranking methods to further

improve performance.

We perform an ablation study and report the result in

Table 3 to validate each step in our re-ranking approach.

We can see that both the sort-step and insert-step signifi-

cantly improve results with respect to the k-NN search-only

baseline.

2https://www.kaggle.com/c/landmark-retrieval-2019/submit
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Sánchez, Patrick Pérez, and Cordelia Schmid. Aggregat-

ing local image descriptors into compact codes. TPAMI,

34(9):1704–1716, 2012. 2
[25] Yannis Kalantidis, Clayton Mellina, and Simon Osindero.

Cross-dimensional weighting for aggregated deep convolu-

tional features. In ECCVW, pages 685–701, 2016. 2, 3
[26] Zehang Lin, Zhenguo Yang, Feitao Huang, and Junhong Chen.

Regional maximum activations of convolutions with attention

for cross-domain beauty and personal care product retrieval.

In ACMMM, pages 2073–2077, 2018. 2, 3
[27] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha

Raj, and Le Song. Sphereface: Deep hypersphere embedding

for face recognition. In CVPR, pages 6738–6746, 2017. 3
[28] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang.

Large-margin softmax loss for convolutional neural networks.

In ICML, pages 507–516, 2016. 3
[29] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient

descent with warm restarts. In ICLR, 2017. 5
[30] David G. Lowe. Distinctive image features from scale-

invariant keypoints. IJCV, 60(2):91–110, 2004. 2
[31] Iacopo Masi, Yue Wu, Tal Hassner, and Prem Natarajan. Deep

face recognition: A survey. In SIBGRAPI, pages 471–478,

2018. 3
[32] Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand,

and Bohyung Han. Large-scale image retrieval with attentive

deep local features. In ICCV, pages 3476–3485, 2017. 2, 5, 6
[33] Michal Perdoch, Ondrej Chum, and Jiri Matas. Efficient rep-

resentation of local geometry for large scale object retrieval.

In CVPR, pages 9–16, 2009. 3
[34] Florent Perronnin, Yan Liu, Jorge Sánchez, and Hervé Poirier.
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