
Generating Digital Painting Lighting Effects via RGB-space Geometry

LVMIN ZHANG, Soochow University / Style2Paints, China

EDGAR SIMO-SERRA,Waseda University / JST PRESTO, Japan

YI JI, Soochow University, China

CHUNPING LIU, Soochow University, China

29:17 278:25

 Stroke Density Lighting Effects

Measured Estimated Artist (conditioned)OursStroke history & Canvas image Artist (unconditioned)

00:06

Fig. 1. Generating digital painting lighting effects. An artist is invited to draw a digital painting on the le�. We then estimate a stroke density map using

the canvas image, which is compared to the measured stroke density computed with the artist’s real stroke history. The estimated stroke density is used to

generate our lighting effects in real-time. We also invite artists to draw lighting effects for comparisons. One artist, namely conditioned artist, is invited to

paint effects with similar style to ours, and another artist, namely unconditioned artist, is asked to try best to relight the original image according to artistic

vision. The time taken for each approach is shown at the bo�om of each image (in minutes), and the same with other figures in this paper.

We present an algorithm to generate digital painting lighting effects from a

single image. Our algorithm is based on a key observation: artists use many

overlapping strokes to paint lighting effects, i.e., pixels with dense stroke

history tend to gather more illumination strokes. Based on this observation,

we design an algorithm to both estimate the density of strokes in a digital

painting using color geometry, and then generate novel lighting effects by

mimicking artists’ coarse-to-fine workflow. Coarse lighting effects are first

generated using a wave transform, and then retouched according to the

stroke density of the original illustrations into usable lighting effects.

Our algorithm is content-aware, with generated lighting effects naturally

adapting to image structures, and can be used as an interactive tool to

simplify current labor-intensive workflows for generating lighting effects

for digital and matte paintings. In addition, our algorithm can also produce

usable lighting effects for photographs or 3D rendered images. We evaluate

our approach with both an in-depth qualitative and a quantitative analysis

which includes a perceptual user study. Results show that our proposed

approach is not only able to produce favorable lighting effects with respect

to existing approaches, but also that it is able to significantly reduce the

needed interaction time.

CCS Concepts: • Applied computing→ Arts and humanities; Fine arts;

Media arts.

Authors’ addresses: Lvmin Zhang, lmzhang9@stu.suda.edu.cn, Soochow University
/ Style2Paints, China; Edgar Simo-Serra, ess@waseda.jp, Waseda University / JST
PRESTO, Japan; Yi Ji, jiyi@suda.edu.cn, Soochow University, China; Chunping Liu,
cpliu@suda.edu.cn, Soochow University, China.

© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3372176.

Additional Key Words and Phrases: relighting, color, convex hull

ACM Reference Format:

Lvmin Zhang, Edgar Simo-Serra, Yi Ji, and Chunping Liu. 2020. Generating

Digital Painting Lighting Effects via RGB-space Geometry.ACMTrans. Graph.

1, 1, Article 1 (January 2020), 15 pages. https://doi.org/10.1145/3372176

1 INTRODUCTION

Lighting plays an important role in digital and matte painting. Un-

like physical illumination in real world or rendered scenes, the

painted lighting effects in digital paintings are created by artists

using heterogeneous strokes. The objective is artistic expression,

and thus, more often than not, the illumination is not subject to

any physical constraints. In current artistic workflows, artists man-

ually paint these lighting effects and tediously modify them to find

the best composition. In order to create usable lighting effect prod-

ucts, artists usually first draw some global or coarse illumination

layers, and then retouch the details of these layers to naturally fit

the original image content in a very time-consuming process. Some

examples of lighting effects are shown in Fig. 1 and 2.

The problem of creating or manipulating digital painting lighting

effects in illustrations or matte paintings has important differences

with 3D relighting like [Debevec et al. 2000], which usually has

emphasis on exploiting the 3D object structure or physical light

geometry, whereas in this work we focus on the artistic stroke struc-

ture in digital paintings. We aim at simplifying the labor-intensive

lighting effect painting workflow, where many objects are not even

painted to have 3D appearance, making it hardly possible to solve

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3372176
https://doi.org/10.1145/3372176

1:2 • Lvmin Zhang, Edgar Simo-Serra, Yi Ji, and Chunping Liu

18:21 12:04 55:24 41:51 31:42 45:31

175:14 195:07 200:01 191:31 154:07 145:12

Fig. 2. Examples of manually painted lighting effects.We show several examples of lighting effects created in different styles by multiple artists. The

reference lighting direction is shown in the top-le� while the recorded painting time is shown in the top-right (in minutes).

the accurate physical geometry of these objects. Moreover, in real-

life lighting effect creation, it is very important to ensure that de-

tails of artists’ carefully painted illustration are not significantly

modified when applying effects. Even small distortions can severely

limit the applicability to real-world professional digital painting use

cases. This makes it very difficult for normal estimation or proxy

construction algorithms [Hudon et al. 2018; Xu et al. 2015] to meet

artists’ needs.

This paper presents an algorithm to synthesize digital painting

lighting effects based on a key assumption: artists’ newly painted

strokes are related to their previous stroke history. In particular,

when artists are asked to paint a novel lighting effect layer, their

strokes share similarity to their previously painted strokes. To be

specific, pixels with dense corresponding stroke history tend to

capture more diversified lighting or shadow effects, whereas pixels

with relatively sparse stroke history are likely to correspond to

ambient or smooth color. Therefore, the density of stroke history is

an important clue when generating digital painting lighting effects.

For most existing digital paintings, the stroke history is not avail-

able and thus the stroke density cannot be directly measured. Fur-

thermore, recording and storing all strokes in a non-destructive

manner is impractical due to the high resolution and sheer number

of strokes used in most digital paintings. In our approach, we by-

pass this issue by designing an algorithm to directly estimate the

density of stroke history from a single finished illustration. Our al-

gorithm first extracts a virtual palette from the input image, and

then makes use of the relationship between pixel colors and palette

colors to estimate the stroke density. This estimation does not actu-

ally decompose images or extract strokes, whereas it is particularly

effective to guide the synthesis of novel lighting effects.

We then generate the lighting effects by mimicking artists’ work-

flow in a coarse-to-fine approach. Firstly, we generate coarse effect

maps as an initial composition, and then proceed to refine the map

according to the pixel-wise stroke density. The coarse effect map

provides a rough and low-frequency effect of the highlights, shad-

ows, and the color variations caused by the influence of nearby ob-

jects. This coarse effect map is then refined to fit the original image

structure, allowing the generation of aesthetically pleasing lighting

results. Our algorithm supports multiple types of light sources and

can directly serve as a plug-in for professional digital painting tools.

We perform both an in-depth quantitative and qualitative evalu-

ation of our approach, and validate our algorithm in a perceptual

user study and compare with manually painted lighting effects. We

find that the lighting effects generated by our approach are signifi-

cantly better than existing approaches. Furthermore, our approach

is found to be usable by artists and can be integrated in the matte

painting workflow, which we find can speed up lighting effect com-

position by roughly 50%. Finally, results show our approach also

has applicability to non-painted images such as photographs and

3D rendered ones.

In summary, our contributions are (a) an algorithm to generate

and manipulate digital painting lighting effects, (b) an algorithm to

estimate the density of artists’ stroke history for digital paintings, (c)

experiments on the connection between colors, strokes, and painted

lighting effects based on real data collected from professional artists,

and (d) an in-depth evaluation including a perceptual user study.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Generating Digital Painting Lighting Effects via RGB-space Geometry • 1:3

2 RELATED WORK

2.1 Sample-based Relighting

In order to manipulate the lighting condition in images, one classic

approach is to use multiple samples with different lighting direc-

tions on a same scene, and then formulate the relighting objective

as a light transport or interpolation problem. Some typical models

are reflectance field [Debevec et al. 2000], progressive optimiza-

tion [Matusik et al. 2004], wavelet [Peers and Dutre 2005], compres-

sive transport [Peers et al. 2009], and deep neural networks [Chen

et al. 2010; Peers et al. 2007]. Nevertheless, in digital painting use

cases, samples with different lighting directions are labor-intensive

to obtain, making it a chicken-and-egg problem to generate effects

using manually created ones. This limits the applicability of these

relighting approaches. Therefore, instead of requiring samples with

multiple lighting directions, our approach generates digital paint-

ing lighting effects directly using the density of the artists’ stroke

history, which makes our tool well-suited for artistic creation sce-

narios.

2.2 Intrinsic Images

Many image relighting algorithms rely on decomposing images

into reflectance (albedo) maps and illumination (irradiance) maps,

known as intrinsic image decomposition [Barrow and Tenenbaum

1978]. Related techniques are usually based on optimization [Bell

et al. 2014, 2013, 2015; Shen et al. 2011] or learning [Aksoy et al.

2018; Barron and Malik 2012; Gehler et al. 2011; Serra et al. 2012].

Although intrinsic decomposition is beneficial and effective to diver-

sify relighting applications, in the case of digital paintings there are

even more challenges. Digital illustrations are carefully painted by

artists, and thus it is important to preserve as much of the original

details as possible. Nevertheless, the perfect image reconstruction

after layer editing is still a non-trivial open problem to intrinsic

methods. For these reasons, instead of decomposing the illumina-

tion beyond input images, we base our pipeline on the structure of

artists’ painting strokes and try to conserve as much of the original

details as possible.

2.3 Normal Estimation and Proxy Construction

Another common relighting approach is to estimate the albedo

and surface normals, or proxy surfaces. This allows to efficiently

compute the illumination for different directions [Kender and Smith

1984; Wu et al. 2008]. Fitting surfaces to artistic creations has also

been extensively studied [Sykora et al. 2014; Wu et al. 2007; Xu

et al. 2015]. These approaches typically depend on the consistency

of the image albedo, as well as use strong assumptions such as

Lambertian scenes. Recently, deep learning methods [Hudon et al.

2018; Su et al. 2018] have been also used to estimate surface normals.

Sengupta et al. [2018] propose to estimate the normal map of faces.

Kanamori and Endo [2018] extend this technique to full-body shots

of individuals. Yu and Smith [2019] design an unsupervised training

strategy to estimate normal maps for buildings and sculptures. Philip

et al. [2019] build up a geometry relighting proxy to help neural

networks, and Sun et al. [2019] propose to relight facial images

using neural networks from a small but high-quality omnidirectional

dataset. However, in general, learning based approaches may suffer

from a lack of generalization caused by dependency on training

data, which contains many implicit and explicit biases. Instead of

relying on the estimation of surface normal and albedo, we make

use of artists’ stroke density to generate effects that are visually

similar to those created manually by artists. Our approach exhibits

stable generalization to a wide variety of images and can be directly

used in digital illustration workflows.

2.4 Color Geometry

Besides the albedo-shading decomposition, images can also be de-

composed using color geometry. Such color-based decomposition is

often used to analyze the layers or strokes in images. The mixture

or variance of image color has been extensively studied [Aksoy et al.

2017; Finlayson and amd Robert B. Fisher 2017; Koyama and Goto

2018; Lin et al. 2017]. It is also possible for images to be recolored

using decomposed color layers [Aharoni-Mack et al. 2017; Chang

et al. 2015; Zhang et al. 2017]. Tan et al. [2016] is the seminal work

to use convex-hull based color palettes for image recoloring. Shih et

al. [2013] generate night-time landscapes using a data-driven color

transform. Although our approach is based on analyzing the density

of stroke history, our algorithm does not explicitly decompose the

image nor extract strokes, unlike image layer or stroke decomposi-

tion methods [Aksoy et al. 2017; Lin et al. 2017; Tan et al. 2018, 2016;

Zhang et al. 2017]. On the contrary, our stroke density is directly

estimated from pixel colors and image palettes, which reduces the

inaccuracy caused by the hyper-parameters in image decomposi-

tion processing.

3 APPROACH

Our algorithm is based on a key assumption: when painting lighting

effects, the artists’ newly painted strokes are related to the stroke

history of the painting. Pixels with relatively denser stroke history

tend to gather more newly painted lighting or shadow strokes,

whereas pixels with relatively sparse stroke history are often shaded

with less newly painted effect strokes. Based on this principle, our

algorithm first estimates the density of stroke history and then

generates the lighting effects.

3.1 Estimating Stroke Density

First of all, we consider the simple problem of blending two strokes:

c = U1c1 + U2c2 s.t. U1, U2 > 0, U1 + U2 = 1 (1)

where {c1, c2} ∈ R3 are the stroke colors, {U1, U2} ⊂ R are the

blending weights, and c ∈ R3 is the generated color. In this case, we

define the stroke density : as:

: =

1 −
√

U21 + U
2
2

1 − 1√
2

(2)

where we can see that if the two strokes are equally blended (U1 =

U2 = 0.5), then : becomes 1. On the contrary, if only one stroke

color is visible (e.g., U1 = 0, U2 = 1), then : becomes 0. In this way,

the stroke density measures to what extent the stroke colors are

visible. The stroke density increases when multiple stroke colors

are visible, and it decreases to zero when only one stroke color can

be observed.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 • Lvmin Zhang, Edgar Simo-Serra, Yi Ji, and Chunping Liu

front

back

front

back

front

back

Convex Hull UV unfolding

Fig. 3. Pale�e extraction. The RGB-convex hull of the input image is

regarded as the pale�e. We visualize all colors in the front side (looking

from the white position) and the back side (looking from the black position)

of the mesh using RizomUV unfolding tool.

Similarly, we consider a set C including = stroke colors and a set

A including = blending weights:

C = {c1, . . . , c=} and A = {U1, . . . , U=} (3)

where each c8 ∈ R3 is a stroke color and each U8 ∈ R is a blending

weight. The blending of all these stroke colors can be formulated as:

c =

=∑

8=1

U8 c8 , s.t.

=∑

8=1

U8 = 1, U8 > 0, 8 = 1, . . . , = (4)

where c is the generated color. In this case, the stroke density : can

be written with Eq. (2) as:

: =

1 −
√
∑=
8=1 U

2
8

1 − 1√
=

(5)

When all strokes are equally blended (U8 =
1
=), then : becomes 1.

On the contrary, if no strokes are blended and only one color is

visible (e.g., U1 = 1), then : becomes 0. The stroke density increases

when more stroke colors can be observed, and decreases when less

stroke colors are visible.

We then solve the problem of stroke density map estimation

given a palette. In this paper, a palette refers to a specific set of

colors used to paint a target image. In other words, all pixel colors

of a given image should be reproducible by mixing or sampling

the colors from its palette. Here we use a convex-hull-based palette

because its dense and continuous mesh geometry can significantly

meliorate and simplify our stroke density computation, which will

be discussed later.

To identify such mesh-like palette, we compute the RGB-space

convex hull of all observed pixel colors using the quick hull algo-

rithm [Bradford et al. 1996; Tan et al. 2016] as

M = QH3 ({ c8 | 8 = 1, . . . ,, × � }) (6)

where c8 ∈ R3 is an observed pixel color, QH3 (·) is the function
to compute the 3D convex hull, andM is the mesh of the convex

hull, including all faces and all vertices. The convex hull is a tight

wrapping of the colors, and, as shown in Fig. 3, the colors on the

surfaces of the convex hull are regarded as the palette. The palette

is a mesh in RGB space, and the colors on it can be visualized by

flattening the mesh into a 2D surface using UV unfolding.

In order to estimate the stroke density, our main idea is to discover

possible color combinations in the palette that could reproduce each

pixel color, and then compute the stroke density using the blending

Algorithm 1 Stroke density map computation.

Input: An image consist of RGB vectors {c1,...,�×, }, where all

pixel RGB color cG = (AG , 6G , 1G);
Output: A map of the pixel-wise stroke density {:1,...,�×, };
1: {V, F } ← �>=E4G�D;; ({c1,...,�×, }); // Calculate the RGB

convex hull, whereV is a set of the vertices on the hull and F
is a set of the faces on the hull.

2: g ← 1
B

∑=
8=1

B8
3

∑3
C=1 F8,C ; // Calculate the barycentre g, where

F8,C means the C-th vertex in the 8-th triangle in F , B means the

total area of the convex hull, and B8 means the area of the 8-th

triangle.

3: M ← "4Bℎ(E4AC824B = V, 5 024B = F); // Build up the mesh

M in RGB space.

4: R ← '0~ (?>B8C8>= = g, 38A42C8>=B = { c1−g
|c1−g | , . . . ,

c�×, −g
|c�×, −g | });

// Cast rays in RGB space.

5: H ← �=C4AB42C8>=(R,M); // Calculate the hit points between
the ray set R and the meshM, whereH = {h1,...,�×, }.

6: ← { |c−h1 |
|g−h1 | , . . . ,

|c−h�×, |
|g−h�×, | };

7: return = {:1,...,�×, };

weights of the discovered combinations. we first randomly sample =

different points {c1, . . . , c=} in the paletteM. The more points are

sampled, the more accurate the estimation will be. We denote the

quantity of these points as =. We will later approximate = → +∞
for optimal accuracy. First of all, the barycentre g of these randomly

sampled points can be formulated as:

g =

1

=

=∑

8=1

c8 (7)

For each pixel position ? , the input of our estimation algorithm is

a pixel color c? ∈ R3, and the output is the corresponding stroke

density :? ∈ R. For each color c? , we cast a ray from g ∈ R3 to
c? ∈ R3 in the RGB-space. Such a ray will intersect with the surface

ofM at one point, namely h? ∈ R3. Given {g, c? ,h? } are collinear,
the color of c? can be formulated as:

c? =

(

1 −
|c? − h? |
|g − h? |

)

h? +
|c? − h? |
|g − h? |

g

=

(

1 −
|c? − h? |
|g − h? |

)

h? +
1

=

=∑

8=1

|c? − h? |
|g − h? |

c8 (8)

where | · | is the Euclidean distance. Then, the given color c? can

then be written as color blending with Eq. (3)

C = {c0 = h? } ∪ {c8 | 8 = 1 . . . =} (9)

A = {U0 =
(

1 −
|c? − h? |
|g − h? |

)

} ∪ {U8 =
|c? − h? |
= |g − h? |

|8 = 1 . . . =} (10)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Generating Digital Painting Lighting Effects via RGB-space Geometry • 1:5

g

r

barycenter (g)

convex hull

pixel color (c)

hit point (h)

Origin Color Space

Fig. 4. Visualization of the RGB-space geometry. A color point 2 can be

described in function of the convex hull barycentre 6 and the intersection

of a ray cast from 6 to 2 and the convex hull surface which we denote as ? .

The stroke density :? can then be computed from the blending

weightsA at the limit where = → +∞ as g approaches the barycen-

tre ofM at:

:? = lim
=→+∞

1 −
√

(

1 − |c?−h? |
|g−h? |

) 2
+∑=

8=1

(|c?−h? |
= |g−h? |

) 2

1 − 1√
=+1

= 1 −

√√(

1 −
|c? − h? |
|g − h? |

) 2

+ lim
=→+∞

1

=2

=∑

8=1

(|c? − h? |
|g − h? |

) 2

= 1 −
(

1 −
|c? − h? |
|g − h? |

)

=

|c? − h? |
|g − h? |

(11)

We can see this allows the stroke density to be estimated easily

given the pixel color c? at position ? , barycentre of the convex hull

g, and the intersection with the ray cast from g to c? denoted as h? .

As shown in Fig. 4, this theoretical result is consistent to our pre-

vious claims: when all the colors in the palette are equally mixed, the

: becomes 1 because the resulting color c? is exactly the barycentre

of the palette meshM and |c? − h? | = |g − h? |. On the contrary,

when the resulting color is exactly onM, the : decreases to zero

because |c? − h? | = 0. Finally, we provide a summarized version of

the stroke density estimation algorithm in Alg. 1.

3.2 Generating Lighting Effect

Our lighting effect generating algorithm is designed to mimic the

artists’ lighting effect workflow. As shown in Fig. 5, our proposed

algorithm sharesmany similarities with the standard artist workflow.

Screenshots of the artists’ original illustration stroke history are

shown in Fig. 5-(a) and the measured stroke density is presented in

Fig. 5-(b). To obtain the effects, artists first paint the coarse effect

layer and then retouch it into a refined effect layer. Then, the effect

is applied to the original illustration to achieve Fig. 5-(f).

In the workflow from Fig. 5-(a) to Fig. 5-(f), the artist is condi-

tioned to only paint routine soft lighting effects without any other

enhancements such as tone adjustment or adding additional details.

Our algorithm is designed to simulate such effect. We would like

to also point out that if the artists are asked to try best to finish all

possible shading, it may take them hours to achieve the effects with

their personal styles as shown in Fig. 5-(g).

Before we describe the detailed algorithm, we present several

observations based on the artist’s workflow. Firstly, we randomly

sample patches in the painted effect in Fig. 5-(e). We divide these

patches into two groups: low stroke density patches and high stroke

density patches. We observe that areas with relative low stroke

density generally correspond to ambient and smooth colors, whereas

areas with relatively high stroke density are likely to be painted with

highlights or shadows. We will present this experiment in detail

later in §4.2.

Based on this observation, we generate a lighting effect map by

mimicking artists’ coarse-to-fine workflow. Given a single image

in Fig. 5-(h) without available stroke history, we directly estimate

the stroke density in Fig. 5-(j). Afterwards, using the normalized

channel intensity map, we generate a coarse effect map, which

can then be refined to achieve the final lighting effect. Finally, the

lighting effects are applied to the illustration as shown in Fig. 5-(n).

In particular, we here discuss the case of a point light source. Our

objective is to compute a lighting effect map Y ∈ R, ×�×3 from

the input image X ∈ R, ×�×3, stroke density map Q ∈ R, ×� ,
light source l ∈ R3, light intensity W ∈ R, and ambient intensity

$ ∈ R. We compute the lighting effects for each channel of the image

separately, and denote a channel 2 as of the original image and

lighting effect map as X2 ∈ R, ×� and Y2 ∈ R, ×� , respectively.

3.2.1 Normalization. To avoid the high-frequency noise, we cal-

culate the low-frequency normalized channel intensity T2 of the

original image channel X2 with

T2 =

d (X2) −min(d (X2))
max(d (X2)) −min(d (X2))

(12)

where d (·) is a Gaussian filter. For the Gaussian filter we use a 64×64
pixel window and f = 16 for 512px images.

3.2.2 Coarse Effect Generation. We then generate the coarse light-

ing effect K shown in Fig. 5-(l). The motivation of this step is to cre-

ate an initial draft of the lighting effects, which is similar to artists’

coarse effect composition in Fig. 5-(c). Because our coarse effect is

only used to provide low-frequency features for further refinements,

it is not necessary to create effects that are consistent with artists’

coarse effect. This step also produces the color influence of nearby

objects, e.g., the red hair in Fig. 5-(d) can influence the face color

with red or blue color offsets on the face boundary.

We compute the channels K8 in the coarse lighting effect map K in

a pixel-wise fashion. We build up a xyz coordinate system using the

x-axis and y-axis of original image and a new z-axis perpendicular

to the image panel. We denote the position of the light source as

l = [;G , ;~, ;I]⊺ . For any pixel location p = [?G , ?~]⊺ , we define a
distance ?3 and angle \ as

?3 =

√

(?~ − ;~)2 + (?G − ;G)2 (13)

and

sin\ =

?~ − ;~
?3

, cos\ =

?G − ;G
?3

(14)

We then define the following wave functions

4∗2 (l, \, ?3) = 42 (;G + ?3 cos\, ;~ + ?3 sin\) (15)

=∗2 (l, \, ?3) = =2 (;G + ?3 cos\, ;~ + ?3 sin\) (16)

:∗ (l, \, ?3) = : (;G + ?3 cos\, ;~ + ?3 sin\) (17)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 • Lvmin Zhang, Edgar Simo-Serra, Yi Ji, and Chunping Liu

 Artists’ workflow

(b) Measured

stroke density

(c) Artist’s coarse

effect layer

(g) Effect created

with another style

(d) Artist’s refined

effect layer

(e) Visualization of

painted patches

(f) Artist’s final

lighting effect

Low Density Patches

High Density Patches

33:24 241:59

(a) Artist’s real

stroke history

(h) Original image

(R)

(i) Extracted palette

(M)

(j) Estimated stroke

density (K)

(k) Normalized

channel intensity (N)

(l) coarse

lighting effect (E)

(m) Refined lighting

effect (S)

(n) Output

(I)

 Proposed algorithm

Fig. 5. Comparison of the artist workflow with the proposed approach. In the first row is components in the artist’ manual workflow, and in the second

row is components in the pipeline approach of our algorithm.

z

x

y

d

x

y

d

Nc K

z

px

py

k*(l,Θ,pd)

px

pypd pd

Θ

l n*c (l,Θ,pd)

Θ

where 42 (G, ~), =2 (G, ~), and : (G, ~) are the pixel values at the

location [G, ~]⊺ for the coarse lighting effect map K2 , normalized

input image channel T2 , and stroke density map Q , respectively.

We observe that if we fix l and \ , these functions can be viewed as

waves that only depend on ?3 . We use bilinear interpolation when

the coordinates G and ~ are not integer values.

Each peak of the wave function =∗8 (·) has a side facing the light
source and a side facing away from the light source. We can increase

the intensity of the front side and reduce the intensity of the back

side to simulate a light source. Similar to the shape-from-shadow

algorithm [Kender and Smith 1984], all values in K2 can be written

in pixel wise as:

48 (?G , ?~) = 48 (;G + ?3 cos\, ;~ + ?3 sin\) = 4∗8 (l, \, ?3)

=

[=∗8 (l, \,Δ?3 + ?3) − =
∗
8 (l, \, ?3), Δ?3]

| [=∗8 (l, \,Δ?3 + ?3) − =
∗
8 (l, \, ?3), Δ?3] |

︸ ︷︷ ︸

wave

·
(

[;I , ?3]⊺
| [;I , ?3] |

)

︸ ︷︷ ︸

light

(18)

where Δ?3 is a scaling scalar, which we set to Δ?3 = 1 in all our

experiments. Every unknown pixel value in the coarse lighting effect

map K2 is estimated by calculating the dot production of the wave

direction unit vector and the light direction unit vector.

3.2.3 Refinement. When artists are painting lighting effects, pixels

with relatively low stroke density tend to be shaded with ambient

gray, whereas pixels with relatively high stroke density are likely to

gather diversified highlight or shadow colors. Based on this principle,

we refine the coarse lighting effect map using the stroke density

map with

Y8 = W K8 ⊙ Q +$ (19)

where ⊙ is the Hadamard product, and we recommend to set default

ambient intensity to $ = 0.55. This refinement step can also be

calculated pixel-wise as

B8 (?G , ?~) = B8 (;G + ?3 cos\, ;~ + ?3 sin\)
= W 4∗8 (l, \, ?3) :

∗ (l, \, ?3) + U (20)

where B2 (?G , ?~) is the value in Y8 at p = [?G , ?~]⊺ . This refine-
ment encourages the shading values to stay away from the ambient

intensity when the pixel stroke density is high. On the contrary, if

some pixels are of low stroke density, this refinement discourages

the shading, and these pixels will be shaded with the ambient in-

tensity. Finally, the lighting effect can be multiplied to the original

image with

O = X ⊙ Y (21)

where O ∈ R, ×�×3 is the rendered result. In cases where the light

source has colors, the channels in Y can be multiplied with the light

color. Additionally, this algorithm also supports other types of light

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Generating Digital Painting Lighting Effects via RGB-space Geometry • 1:7

sources, e.g., lights at infinity or spot lights. Please refer to our

supplementary material for other types of the light sources.

4 EXPERIMENTS

In this section, we validate the assumptions about the colors, strokes,

and painted lighting effects. Additionally, we provide quantitative

and qualitative analysis which includes perceptual user studies.

4.1 �alitative Results

We compare our stroke density maps estimated on single images to

the real stroke density maps measured with artists’ stroke history,

and, simultaneously, we compare our generated lighting effects to

those created manually by artists, as shown in Fig. 6. In particular,

we conduct two user studies by dividing the participated artists into

two groups: unconditioned group and conditioned group.

In the unconditioned group, we do not show our tool to the artists

and directly ask them to try best to relight illustrations according to

some simple lighting directions. We use results from this group to

analyze to what extent our synthesized effects are similar to those

created manually by artists.

In the conditioned group, we allow artists to test our tool with

arbitrary images to familiarize themselves with our effect style, and

we then ask them to paint effects with similar styles. We use results

in this group to exploit how long time does it take for the artists to

create effects that have similar style to our generated ones.

It is notable that the artists, especially those in the conditioned

group, are prohibited from using our tools when painting, in order to

ensure that they are drawing with their own artistic visions instead

of simply reproducing our generated results. Furthermore, we would

like to point out that the lighting effect creation is a labor-intensive

task, and we report the recorded painting time for each manually

created effect in corresponding figures. We also include comparison

with multiple lighting direction in Fig. 7. Although the current

algorithm cannot replace the manually created effects which takes

artists hours to create, i.e., the artist results in the unconditioned

group are generally better than the algorithm results, the majority

of our generated effects are of satisfactory visual quality and are

acknowledged by those professional artists as usable. Finally, results

in the conditioned group show that it take artists about 30 minutes

to create effects with the style similar to ours.

4.2 Connection between Colors, Strokes, and Manually

Painted Artistic Lighting Effects

As shown in Fig. 8, artists are invited to paint the example illus-

trations, and we record their strokes to compute the ground truth

stroke density, and, simultaneously, estimate the stroke density us-

ing the single canvas images as each stroke is drawn. Finally, we

visualize the error between the ground truth and the estimation,

and report the Peak Signal to Noise Ratio (PSNR). The raw data of

this experiment is provided in the supplementary material.

During the digital painting process, our color-geometry-based

stroke density estimation algorithm becomes increasingly accurate

because more and more colors in the canvas are evenly distributed

in the RGB color space. Although this estimation is not a perfect

measurement, it yields visually similar stoke density maps and can

achieve PSNR scores at roughly 26, which demonstrates that this

algorithm is a reliable source of stoke density estimation.

Moreover, as shown in Fig. 9, we study the connection between

artists’ stroke history and their painting effects. We invite artists to

manually paint artistic lighting effects, and then randomly sample

patches over their created effects in two groups: low stroke density

group and high stroke density group. These patches are sampled by

simply using a binary threshold to divide the stroke density map

into low density part and high density part. Random pixel positions

are then sampled and used as the central position of each patch. In

order to avoid the bias caused by the background and the stroke

density offsets between large objects, we ask artists to manually

create background masks to exclude background patches, and then

use adaptive threshold1 when we binarize the stroke density maps.

In the visualization, we can see that patches with low stroke

density are likely to be painted with relatively ambient, smooth, and

uniform effect color, whereas pixels with high stroke density tends

to gather sharp and intensive effect details and diversified lighting

and shadow. In order to highlight this observation, we also calculate

the mean standard deviation of these two patch groups, and we

find that areas with high stroke density have significantly larger

standard deviation than that of low stroke density. This evidence

further demonstrates that areas with relatively high stroke density

tends to gather diversified lighting and shadow effects.

4.3 Significance of Using Stroke Density

We conduct experiments to study possible alternatives to the stroke

density, as shown in Fig. 10. Firstly, we present results from a line

drawing normal map estimation method DeepNormal [Hudon et al.

2018], and then use a sprite rendering tool Unity SpriteLamp to

produce the baseline results. This method requires a line drawing

and a mask for each illustration, and we invite artists to manually

create the inking lines and the masks. Although this method can

perform relighting, it is not well-suited for digital painting because

many distortions of the original illustration details can be observed.

We also replace the stroke density map Q in our algorithm with

the alternative maps, e.g., the luminance map and the background

map as shown in Fig. 10, where the lighting effects becomes unusable.

Finally, we invite artists to manually create some simple gradient

maps to replace the lighting effect Y in our algorithm. We observe

that these simple gradients are only able to generate very simple and

non-natural looking illumination. Compared to these alternatives,

our algorithm is the best choice to achieve effects that are visually

similar to the artists’ manually painted ones. We also include more

alternative map formulations as well as animated ablative study in

the supplementary material.

4.4 Comparison with Non-digital-painting Relighting

As our approach does not rely on the real digital painting stroke

history, it is applicable to images even not created using strokes.

We show several results comparing with the surface optimization

approach of [Wu et al. 2008] and the CNN-based approach of [Yu and

Smith 2019] in Fig. 11, where we can see how the optimization-based

1THRESH_GAUSSIAN_C in OpenCV.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 • Lvmin Zhang, Edgar Simo-Serra, Yi Ji, and Chunping Liu

 Stroke Density Lighting Effects

35:24 200:01

Measured Estimated Ours Artist (Conditioned)Original Image & Stroke History

44:13 241:37

Artist (Unconditioned)

29:11 187:54

Fig. 6. Comparison on stroke density and lighting effects.We compare our estimated stroke density to the real stroke density measured on the stroke

history, and, at the same time, compare our generated lighting effects to artists’ manually created ones.

approach suffers from overly simple model fitting, while the CNN-

based approach has trouble handling diversified image contents. We

also show a visual comparison against the classic height-to-normal

approach of [Kender and Smith 1984] using a Sobel filter, as shown

in Fig. 12, where the height-based relighting results are not well-

suited for lighting effects. Although our generated lighting effects

may not strictly match the accurate physical structure of the 3D

objects, these results are usable from human perception, and can

help artists in the matte painting or image light editing workflow.

Please also refer to the supplementary material for more animated

results and interactive results.

In our generated effects, we can see that the low frequency domain

plays the dominant role in directionality. We would like to point

out that the high frequency domain is also important to make the

generated effects naturally adjust to the image structure. In Fig. 13,

we present results only using the low frequency coarse effect K

without refinement and then compare it to the effect Y with high

frequency domain refined using our algorithm, where structural

inconsistency artifacts can be found if the high frequency patterns

are not retouched using our proposed method.

4.5 Perceptual User Study

In order to perceptually evaluate and compare our approach with

existing methods, we perform a perceptual user study focusing on

usability aspects of different relighting algorithms. In particular, 6

users participated and were asked to relight 10 images with various

approaches. For each image, we randomly select one user to give

new lighting condition instructions to the other users, and have

each of the remaining five users relight the image with the new

conditions, each using a different approach. Finally, the user that

gave the new lighting condition ranks the results. Besides providing

the ranking results, we measure the time it takes to process an image

with each approach on average. Each approach is used in two stages

which are evaluated separately. The first stage consists of using the

approach as is, while the second stage consists of using professional

photo editing software as post-processing. The two stages are ranked

separately. Full details are provided in the supplemental material.

We compare our approach with a shape-from-shadow-based al-

gorithm [Kender and Smith 1984], a surface optimization algo-

rithm [Wu et al. 2008], and a recent deep learning-based approach [Yu

and Smith 2019]. As professional photo editing software, we use

Adobe PhotoShop Lighting Effects. Results are shown in Table 1.

We find that users prefer our approach over all other approaches

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Generating Digital Painting Lighting Effects via RGB-space Geometry • 1:9

 Original images and our results

 Artist (Conditioned) Artist (Unconditioned)

155:03215:4424:2230:01

177:28197:0131:0324:57

154:39195:3625:0122:28

Fig. 7. Comparison on lighting effects with multiple directions. We

compare our generated effects against the manually created lighting effects

painted by the artists. Besides, we present artists’ recorded painting time in

each manually created examples.

in both the first stage, using a single tool, and the second stage,

post-processing with professional tools. Of the other approaches we

find users prefer the professional tools, followed [Wu et al. 2008].

The low performance of [Yu and Smith 2019] is likely explained by

the low generalization to general images caused by the learning

procedure. We additionally find that our approach also provides a

significant decrease in the interaction time. When including post-

processing, our approach takes only roughly 50% of the time of

using the professional photo editing software. We note that the

other approaches take longer and obtain worse results than using

only the professional photo editing software. This highlights the

strengths of our approach, which is able to quickly and realistically

relight a diversity of images.

4.6 Color Geometry Model Variations

We present experiments with different color geometry models and

configurations. In particular, we replace our convex hull palette with

the simplified hull of [Tan et al. 2018], and replace the estimated

stroke density map with the calculated stroke density based on

12.03 14.98 12.25 9.27 12.54 13.87 16.55 21.47 26.6516.58

30

25

20

15

10

1step: 23 46 69 92 115 138 161 184 207 230 253 276 299 322 345 368 391 414 437 460 483 506 529 552 575

PSNR

12.09 9.84 8.72 10.74 10.24 13.39 14.02 16.77 19.41 26.58

30

25

20

15

10

1step: 19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380 399 418 437 456 475

PSNR

Fig. 8. Stroke density estimation accuracy. We validate our stroke den-

sity estimation algorithm by comparing the estimated stroke density to

the real stroke density measured from recorded stroked history. For each

example, in the first row we show the artists’ canvases, in the second row

we show the measured stroke density computed on the stroke history, in

the third row we show the estimated stroke density calculated on single

canvas images, and in the fourth row we show the error map between the

ground truth and the estimation. We also illustrate the diagrams of this

error in the last row of each example, where the x-axis is the painting stroke

steps, and the y-axis is the PSNR accuracy.

the actual layer decomposition from [Tan et al. 2016] in Fig. 14,

where the results may suffer from foggy artifacts. We also replace

the stroke density map with the image luminance map as shown in

Fig. 15. Finally, we can pre-process noisy input images, e.g., images

with JPEG artifacts, with a CNN model, e.g., SRCNN [Dong et al.

2015] to improve the quality of the estimated stroke density map,

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 • Lvmin Zhang, Edgar Simo-Serra, Yi Ji, and Chunping Liu

Patch Visualization

Low Stroke Density Patches

High Stroke Density Patches

Low Stroke Density Patches

High Stroke Density Patches

Low Stroke Density Patches

High Stroke Density Patches

15.63

24.58

17.19

35.53

17.25

37.71

15.63

24.58

17.19

35.53

17.25

37.71

15.63

24.58

17.19

35.53

17.25

37.71

Illustration Stroke History Stroke Density Manually Painted Effect Artist’s Canvas Manually Created Mask

Fig. 9. Relationship between stroke density and painted lighting effects. We study the relationship between the density of stroke history and the

manually painted lighting effects. From le� to right is the original image, screenshots of the stroke history, stroke density measured on the real stroke history,

lighting effects created by artists, artists’ final canvases, background masks manually created by artists, and the patches sampled from the painted effect. We

also present the mean standard deviation of all pixel colors in each patch group at the le�-top corner of each group in the last col.

Table 1. Average Interaction Time and User Ranking. We report the

recorded interaction time and user ranking (1 to 5 indicates worst to best)

of different algorithm and tool combinations. For the interaction time using

the combination of professional tools and a single approach, we show the

time corresponding to the professional tools and single approach separately.

Best results are shown in bold.

Single Tool / Combinations Time (s) Preference Rank

[Kender and Smith 1984] 14.4 1.8 ± 0.4

[Wu et al. 2008] 18.1 3.0 ± 0.0

[Yu and Smith 2019] 24.6 1.2 ± 0.4

Ours 7.2 4.0 ± 0.0

Professional Tool (PT) only 46.6 4.1 ± 0.3

PT + [Kender and Smith 1984] 66.8 + 14.4 1.8 ± 0.4

PT + [Wu et al. 2008] 58.5 + 18.1 3.0 ± 0.0

PT + [Yu and Smith 2019] 73.7 + 24.6 1.2 ± 0.4

PT + Ours 17.9 + 7.2 4.9 ± 0.3

as shown in Fig. 16. Please refer to the supplemental material for

additional ablative results.

4.7 Masked Lighting Effect Generation

In specific use cases where the input image contains complicated

background structure, or when separated lighting effects for the

foreground objects are required, we can use third-party image seg-

mentation methods, e.g., Mask-RCNN [He et al. 2018], to mat in-

dependent object components, and then generate lighting effects

for the separated segments. In particular, we can directly multiply

masks to the coarse effect map K . Because the stroke density maps

show strong capability to refine coarse lighting effects, even simple

and aliased masks predicted by Mask-RCNN may yield satisfactory

results, as shown in Fig. 18.

4.8 Additional Types of Light Sources

Our algorithm supports multiple types of light sources, which can

be implemented as a plug-in for professional photo editing soft-

ware, e.g., Adobe Photoshop Lighting Effect Filter, allowing users

to relight the image in a content-aware manner. Please refer to the

supplementary for detailed formulations.

4.9 Limitations

As shown in Fig. 17, our generated lighting effects may contain halo-

like artifacts, but these artifacts are not visible in the final result.

Besides, as shown in Fig. 19, our approach is unable to modify hard

shadows. Complicated background object structures or backgrounds

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Generating Digital Painting Lighting Effects via RGB-space Geometry • 1:11

33:54 127:33

45:05 198:54

original image inked line stroke history DeepNormal SpriteLamp luminance map result with K replaced

background map result with K replaced simple gradient map result with S replaced stroke density map our proposed method

original image inked line stroke history DeepNormal SpriteLamp luminance map result with K replaced

our proposed methodbackground map result with K replaced simple gradient map result with S replaced stroke density map

measured stroke density

measured stroke density

artist (conditioned) artist (unconditioned)

artist (conditioned) artist (unconditioned)

Fig. 10. Ablation study. We present ablation results from using other alternative algorithms without using stroke density maps, as well as results obtained

from our algorithm by replacing stroke density maps with other alternative maps.

that are significantly brighter than the foreground objects may

also interfered the wave transform. Nevertheless, in many cases,

this limitation can be addressed by combining third-party image

segmentation approaches as we mentioned before. Moreover, the

directionality of this algorithm is limited to the front side of the

image canvas, and it is unable to put a light source behind the image

objects as this would require 3D scene understanding.

5 CONCLUSION

We have presented an algorithm to generate digital painting lighting

effects to help simplify the current labor-intensive effect composi-

tion workflow in illustrations or matte paintings. We have studied

the connection between the colors, strokes, and painted lighting

effects, and developed an efficient coarse-to-fine approach based on

estimating the stroke density of the illustration. Qualitative results,

including a perceptual user study, corroborate the capability of our

algorithm to help artists in their daily lighting effect workflows. We

hope that our research will stimulate more researches related to

artistic lighting effect creation.

ACKNOWLEDGMENTS

We would like to thank Chengze Li for the helpful discussions. We

would like to thank all our reviewers for their insightful, construc-

tive, and high-quality comments. This work is supported by Na-

tional Natural Science Foundation of China (61972059, 61773272),

The Natural Science Foundation of the Jiangsu Higher Education

Institutions of China (19KJA230001), Suzhou Technology Develop-

ment Plan (Key Industry Technology Innovation-Prospective Appli-

cation Research Project SYG201807), Key Laboratory of Symbolic

Computation and Knowledge Engineering of Ministry of Education,

Jilin University (93K172016K08), the Priority Academic Program

Development of Jiangsu Higher Education Institutions. This work

is also supported by JST PRESTO (Simo-Serra, Grant Number: JP-

MJPR1756).

REFERENCES
Elad Aharoni-Mack, Yakov Shambik, and Dani Lischinski. 2017. Pigment-Based Recol-

oring of Watercolor Paintings. NPAR (2017).
Yagiz Aksoy, Tung Ozan Aydin, Aljosa Smolic, and Marc Pollefeys. 2017. Unmixing-

based soft color segmentation for imagemanipulation. ACMTransactions on Graphics
(2017).

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 • Lvmin Zhang, Edgar Simo-Serra, Yi Ji, and Chunping Liu

Original Image Surface Optimizing (Wu et al. 2008) CNN Normal Estimation (Yu & Smith 2019) Generated Digital Painting Effects (ours)

Fig. 11. Comparison with non-digital-painting relighting approaches. For each input image we provide two results with different lighting directions,

which is illustrated in each example.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Generating Digital Painting Lighting Effects via RGB-space Geometry • 1:13

Original Kender&Smith 1984 Ours Ours

Fig. 12. Comparison with height-to-normal-based relighting. We

compare our algorithm to the shape-from-shadow transform, where the

per-pixel intensity is used as the height map.

Original Image w/o Refinement Proposed Full Method

Fig. 13. Comparison to results without high frequency refinement.

We compare our results with those without high frequency refinement

using stroke density maps. We directly use the coarse lighting effect K to

shade the original image for the results in the second column, whereas the

results in the third column is obtained using our proposed approach.

Yagiz Aksoy, Changil Kim, Petr Kellnhofer, Sylvain Paris, Mohamed Elgharib, Marc
Pollefeys, and Wojciech Matusik. 2018. A Dataset of Flash and Ambient Illumination
Pairs from the Crowd. ECCV (2018).

J.T. Barron and J.Malik. 2012. Color constancy and intrinsic images and shape estimation.
ECCV (2012).

H. G. Barrow and J. M. Tenenbaum. 1978. Recovering intrinsic scene characteristics from
images. In Computer Vision Systems, A. Hanson and E. Riseman (Eds.). Academic
Press, 3–26.

Sean Bell, Kavita Bala, and Noah Snavely. 2014. Intrinsic Images in the Wild. ACM
Transactions on Graphics 33, 4 (2014).

Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. 2013. OpenSurfaces: A Richly
Annotated Catalog of Surface Appearance. ACM Transactions on Graphics 32, 4
(2013).

Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. 2015. Material Recognition
in the Wild with the Materials in Context Database. CVPR (2015).

Barber C. Bradford, Dobkin David P., and Huhdanpaa Hannu. 1996. The quickhull
algorithm for convex hulls. ACM Trans. Math. Software (1996).

Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi, and Adam Finkelstein. 2015.
Palette-based Photo Recoloring. ACM Transactions on Graphics (2015).

Jiansheng Chen, Guangda Su, Jinping He, and Shenglan Ben. 2010. Face Image Relight-
ing using Locally Constrained Global Optimization. ECCV (2010).

Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, Westley Sarokin, and
Mark Sagar. 2000. Acquiring the reflectance field of a human face. the 27th annual
conference on Computer graphics and interactive techniques (2000).

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2015. Image Super-
Resolution Using Deep Convolutional Networks. TPAMI (2015).

Graham Finlayson and Han Gong amd Robert B. Fisher. 2017. Color Homography:
Theory and Applications. TPAMI (2017).

P.V. Gehler, C. Rother, M. Kiefel, L. Zhang, and B. Scholkopf. 2011. Recovering intrinsic
images with a global sparsity prior on reflectance. NIPS (2011).

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2018. Mask R-CNN.
CVPR (2018).

Matis Hudon, Rafael Pages, Mairead Grogan, and Aljosa Smolic. 2018. Deep Normal
Estimation for Automatic Shading of Hand-Drawn Characters. ECCV (2018).

Yoshihiro Kanamori and Yuki Endo. 2018. Relighting humans: occlusion-aware inverse
rendering for full-body human images. In ACM Transactions on Graphics.

John R. Kender and Earl Smith. 1984. Shape from Darkness: Deriving Surface Informa-
tion from Dynamic Shadows. National Conference on Artificial Intelligence (1984).

Yuki Koyama and Masataka Goto. 2018. Decomposing Images into Layers with Ad-
vanced Color Blending. In Computer Graphics Forum, Vol. 37. Wiley Online Library,
397–407.

Sharon Lin, Matthew Fisher, Angela Dai, and Pat Hanrahan. 2017. LayerBuilder: Layer
Decomposition for Interactive Image and Video Color Editing. Arxiv (2017).

Wojciech Matusik, Matthew Loper, and Hanspeter Pfister. 2004. Progressively-Refined
Reflectance Functions from Natural Illumination. Eurographics Workshop on Render-
ing (2004).

Pieter Peers and Philip Dutre. 2005. Inferring reflectance functions from wavelet noise.
the Sixteenth Eurographics conference on Rendering Techniques (2005).

Pieter Peers, Dhruv K Mahajan, Bruce Lamond, Abhijeet Ghosh, Wojciech Matusik,
Ravi Ramamoorthi, and Paul Debevec. 2009. Compressive light transport sensing.
ACM Transactions on Graphics (2009).

Pieter Peers, Naoki Tamura,WojciechMatusik, and Paul Debevec. 2007. Post-production
Facial Performance Relighting using Reflectance Transfer. ACM Transactions on
Graphics (2007).

Julien Philip, Michael Gharbi, Tinghui Zhou, Alexei, Efros, and George Drettakis. 2019.
Multi-view Relighting using a Geometry-Aware Network. SIGGRAPH (2019).

Soumyadip Sengupta, Angjoo Kanazawa, Carlos D. Castillo, and David W. Jacobs. 2018.
SfSNet: Learning Shape, Refectance and Illuminance of Faces in the Wild. In CVPR.

M. Serra, O. Penacchio, R. Benavente, and M. Vanrell. 2012. Names and shades of color
for intrinsic image estimation. CVPR (2012).

Jianbing Shen, Xiaoshan Yang, Yunde Jia, and Xuelong Li. 2011. Intrinsic Images Using
Optimization. CVPR (2011).

YiChang Shih, Sylvain Paris, Fredo Durand, and William T. Freeman. 2013. Data-
driven Hallucination for Different Times of Day from a Single Outdoor Photo. ACM
Transactions on Graphics (2013).

Wanchao Su, Dong Du, Xin Yang, Shizhe Zhou, and Hongbo Fu. 2018. Interactive Sketch-
Based Normal Map Generation with Deep Neural Networks. ACM on Computer
Graphics and Interactive Techniques 1, 1 (jul 2018), 1–17.

Tiancheng Sun, Jonathan T. Barron, Yun-Ta Tsai, Zexiang Xu, Xueming Yu, Graham
Fyffe, Christoph Rhemann, Jay Busch, Paul Debevec, and Ravi Ramamoorthi. 2019.
Single Image Portrait Relighting. SIGGRAPH (2019).

Daniel Sykora, Ladislav Kavan, Martin Cadik, Ondrej Jamriska, Alec Jacobson, Brian
Whited, Maryann Simmons, and Olga Sorkine-Hornung. 2014. Ink-and-Ray: Bas-
Relief Meshes for Adding Global Illumination Effects to Hand-Drawn Characters.
ACM Transactions on Graphics 33, 2 (apr 2014), 1–15.

Jianchao Tan, Jose Echevarria, and Yotam Gingold. 2018. Efficient palette-based decom-
position and recoloring of images via RGBXY-space geometry. ACM Transactions
on Graphics (2018).

Jianchao Tan, Jyh-Ming Lien, and Yotam Gingold. 2016. Decomposing Images into
Layers via RGB-space Geometry. ACM Transactions on Graphics (2016).

Tai-Pang Wu, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. 2008. Interactive
normal reconstruction from a single image. ACM Transactions on Graphics 27, 5
(dec 2008), 1.

Tai-Pang Wu, Chi-Keng Tang, Michael S. Brown, and Heung-Yeung Shum. 2007.
ShapePalettes: Interactive Normal Transfer via Sketching. ACM Transactions on
Graphics (2007).

Qiuying Xu, Yotam Gingold, and Karan Singh. 2015. Inverse Toon Shading: Interactive
Normal Field Modeling with Isophotes. Sketch-Based Interfaces and Modeling (2015).

Ye Yu and William A. P. Smith. 2019. InverseRenderNet: Learning single image inverse
rendering. CVPR (2019).

Qing Zhang, Chunxia Xiao, Hanqiu Sun, and Feng Tang. 2017. Palette-Based Image
Recoloring Using Color Decomposition Optimization. IEEE Transactions on Image
Processing (2017).

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 • Lvmin Zhang, Edgar Simo-Serra, Yi Ji, and Chunping Liu

Original Image Simplified Convex Hull Decomposition-based Stroke Density Proposed Approach

Fig. 14. Comparison to results with other color geometry algorithm configurations. We analyze the effect of replacing our convex-hull-based pale�e

with the simplified hull proposed in [Tan et al. 2016], and also replacing our proposed stroke density estimation algorithm with the actual stroke decomposition

and density calculation. In each case we visualize the lighting effect map and the final rendered result. The light position used is indicated in the original

figure. Plane © Anonymous.

Original images Mask-RCNN Ours Ours

Fig. 18. Additional application: masked lighting effect generation.

Our algorithm can be combined with simple foreground segmentation

methods like Mask-RCNN to generate object-level lighting effects.

Lighting effects OursOriginal image

Fig. 19. Limitations. Our algorithm is easily interfered by hard shadows

and is unable to modify them. Additionally, our algorithmmay fail when the

background is significantly brighter than the foreground. Nevertheless, this

shortcoming can be meliorated when masks are applied to the proposed

algorithm.

Original Image Guided by Luminance Guided by Stroke Density

Fig. 15. Replacing stroke density maps with naive luminance maps.

We compare an image processed using our approach guided by luminance

maps and stroke density maps.

(a) (c) (d)(b)

Fig. 16. Influence of the pre-processing. (a) The original image com-

pressed with 0.85 JPEG quality. (b,c) The estimated stroke density map with

pre-processing. (d) The result without pre-processing.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Generating Digital Painting Lighting Effects via RGB-space Geometry • 1:15

Original Image Lighting Effect Output

Fig. 17. Invisible halo-like artifacts. Some halo-like Artifacts, as marked

with the red arrow, can be found surrounding the leaves in the lighting

effects in the second column. However, in the final result of the third column,

these artifacts become invisible.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sample-based Relighting
	2.2 Intrinsic Images
	2.3 Normal Estimation and Proxy Construction
	2.4 Color Geometry

	3 Approach
	3.1 Estimating Stroke Density
	3.2 Generating Lighting Effect

	4 Experiments
	4.1 Qualitative Results
	4.2 Connection between Colors, Strokes, and Manually Painted Artistic Lighting Effects
	4.3 Significance of Using Stroke Density
	4.4 Comparison with Non-digital-painting Relighting
	4.5 Perceptual User Study
	4.6 Color Geometry Model Variations
	4.7 Masked Lighting Effect Generation
	4.8 Additional Types of Light Sources
	4.9 Limitations

	5 Conclusion
	Acknowledgments
	References

