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Figure 1: Rendered images by our proposed appoarch. We introduce our novel neural rendering framework, CrystalNet, for high quality
refraction rendering. We use a neural network to bake UV coordinates and object information from refracted rays to reconstruct high frequency
color information on refractive surfaces. Compared to previous baking approaches such as GlassNet [ZSS24], our method captures refraction
effects more accurately with less loss of details.

Abstract
Neural rendering bakes global illumination and other computationally costly effects into the weights of a neural network, allowing
to efficiently synthesize photorealistic images without relying on path tracing. In neural rendering approaches, G-buffers obtained
from rasterization through direct rendering provide information regarding the scene such as position, normal, and textures to
the neural network, achieving accurate and stable rendering quality in real-time. However, due to the use of G-buffers, existing
methods struggle to accurately render transparency and refraction effects, as G-buffers do not capture any ray information from
multiple light ray bounces. This limitation results in blurriness, distortions, and loss of detail in rendered images that contain
transparency and refraction, and is particularly notable in scenes with refracted objects that have high-frequency textures. In this
work, we propose a neural network architecture to encode critical rendering information, including texture coordinates from
refracted rays, and enable reconstruction of high-frequency textures in areas with refraction. Our approach is able to achieve
accurate refraction rendering in challenging scenes with a diversity of overlapping transparent objects. Experimental results
demonstrate that our method can interactively render high quality refraction effects with global illumination, unlike existing
neural rendering approaches. Our code can be found at https://github.com/ziyangz5/CrystalNet
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1. Introduction

Using neural networks to “bake” or precompute global illumina-
tion and render photorealistic images has provided a new way to
solve the key challenge of real-time global illumination in computer
graphics. Traditionally, global illumination is achieved by using
expensive path tracing [Kaj86], which is hard to achieve real-time
performance, or cheap precomputed methods [GSHG98] with lim-
ited light transportation type supported. Neural rendering instead
uses end-to-end deep models to learn and bake global illumination
and scene representation into the weights, supervised by path-tracing
images.

Recent neural rendering methods utilize G-buffers, which sim-
plify input handling by avoiding spatial data [GRPN20, DPD22,
GMX22]. However, the usage of G-buffers has introduced a prob-
lem with transmissive object rendering. In such cases, transmissive
surfaces obscure crucial shading information in the G-buffers, com-
plicating the rendering process. Zhang and Simo-Serra [ZSS24]
proposed a method that separates transmissive surfaces in G-buffer
to improve the transparency quality but assumes a low index of re-
fraction. Currently, no existing method is capable of baking specular
refraction effects because the G-buffer of the transmissive surface
do not provide information on incoming rays, thus losing high-
frequency information from refracted images. To address this limita-
tion, we introduce a neural rendering framework, which we denote
CrystalNet, which consists of a refraction buffer (R-buffer) gen-
erator and rendering neural network. First, the R-buffer generator
predicts UV coordinates and object indices of the incoming rays on
transmissive surfaces from the G-buffers, which allows for texture
lookups, allowing for recovering high frequency texture information.
Afterwards, the neural renderer combines all the information to syn-
thesize the scene. The entire framework is optimized for a specific
scene by baking all the necessary information for rendering into
the weights of the neural networks, and can generate high quality
specular refraction effects such as caustic effects.

Our research demonstrates the practicality of using low-frequency
information baked by neural models to reconstruct high-frequency
textures. In comparison to directly representing texture in neural
networks, our proposed method, CrystalNet, significantly enhances
the quality of specular refraction rendering. This advancement has
the potential to enable real-time global illumination in computer
graphics without ray computations, making it more accessible and
efficient for a wide range of applications.

Our main contributions in this paper include:

1. A novel neural rendering framework, CrystalNet, for rendering
of scenes with high quality specular refraction effects with full
global illumination including soft shadows and caustics.

2. Refraction buffers (R-buffers) baking information into data that
is usable by neural networks based on refracted UV coordinates
on transmissive surfaces.

3. In-depth evaluation and comparison with existing approaches.

2. Related Work

In this section, we review the most related works in traditional
refraction rendering and neural rendering.

2.1. Traditional Refraction Rendering

Specular refraction rendering has been a challenging problem in
computer graphics. Early attempts focus on refraction effects on ar-
bitrary shapes [Wym05a] under distant lighting. Wyman [Wym05b]
extended this method to handle nearby geometries. Later, Oliveira
and Brauwers [OB07] improved it to handle more complex geome-
tries. Génevaux et al. [GLD06] used pre-computed rays to approx-
imate light paths, but such baking procedure is usually high-cost.
To avoid expensive precomputation and increase the capability to
render deformable objects, the ray-object intersection in 2D tex-
ture space methods are proposed [ED06]. Despite the efficiency
and stability of traditional refraction rendering approaches, they
typically suffer from limited lighting types, constrained geometries’
complicity, unsupported overlapping transmissive objects, and the
incapability of combining with other global illumination. In this
paper, we propose a neural rendering method that takes advantage
of the flexibility of neural rendering methods to solve the problems
above and simultaneously handle refraction effects.

Refraction with roughness and BTDF is also a major research
topic in refraction rendering [ED06, DRBS∗11, GP16]. However, it
is out of the scope of this paper as neural rendering methods are
often highly capable of capturing low-frequency global illumination.
We include an analysis on rough surface refraction in Sec. 4.3.

2.2. Neural Rendering

As a group of data-driven rendering methods, neural rendering can
theoretically bake various light transportation types under area light-
ing and effectively and efficiently unify refraction rendering with
other global illumination.

Ren et al. [RWG∗13] initiated the usage of neural networks to
bake relightable global illumination with fixed objects and limited
types of lighting. Encoding scenes to latent vectors was introduced
by Eslami et al. [EJRB∗18]. Later, Granskog et al. [GRPN20] ex-
pands the encoding into explainable compositional latent vectors.

Several later works empathize with the improvement of inputs to
the neural rendering models. Gao et al. [GMX22] explored the usage
of radiance cues to improve the rendering quality. Active Exploration
proposed by Diolatzis et al. [DPD22] improved the sampling proce-
dure of the training images. Zhang and Simo-Serra [ZSS24] recog-
nized the limitation of using G-buffer as inputs to neural rendering
models caused by the occlusion by transparent objects and proposed
GlassNet to improve the transparency rendering quality. However,
not all previous works have addressed the effects of refraction on
transmissive objects. Even the closest work, GlassNet, only consid-
ers transmissive objects with refraction index close to 1. Instead, our
proposed method, CrystalNet, is able to capture the refraction effects
even on smooth refractive objects with high-frequency refracted
information. To losslessly preserve all information of transparent
objects, our method utilizes the permutation-invariant network struc-
ture proposed in GlassNet.

Real-time path tracing and denoising, aided by neural networks,
are rapidly developing areas. Although these methods are gen-
erally orthogonal to neural rendering techniques, they still have
some limitations that neural rendering can address. Neural radiance
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Figure 2: Overview of CrystalNet. Initially, our rasterization-based renderer generates the G-buffer, direct lighting, and transparency buffers.
Then, a refraction buffer generator will predict UV coordinates and object indices of refracted objects, which allow for bilinear texture
lookups. Finally, a neural network will combine all of the provided information and synthesize high quality images with global illumination
and accurate transparency. The full details of the network structure can be found in Fig. 3.

caching [MRNK21] achieves real-time path tracing but has lim-
itations on complex light paths due to the low sampling number.
Recurrent Denoising Autoencoder [CKS∗17] can effectively remove
noise even with extremely low samples per pixel. However, it still
generates specular refractive effects poorly for lack of arbitrary
output variables under such cases [ZSS24].

Recently, Neural Radiance Fields (NeRF) based methods have sig-
nificantly contributed to the neural rendering field. We refer the de-
velopment of NeRF to a comprehensive survey [GGH∗22]. Various
latest approaches [BMRF∗22,PSH∗22,LLW∗23,CLZ∗23,DCS∗24]
attempt to extend the ability of NeRF into refractive objects. How-
ever, such methods often restricted to static objects. Furthermore,
NeRF-based methods also require ray marching during rendering,
which increases the computational burden. Compared to NeRF-
based approaches, our method does not require ray marching, and
supports dynamic scenes.

3. Proposed Approach

We introduce our neural rendering framework, CrystalNet. Nota-
tions used in this paper are summarized in Tab. 1. Our approach
consists of two major components: a refraction buffer (R-buffer)
generator, and a rendering model. The R-buffer generator predicts
UV coordinates and object indices of refracted objects from direct
lighting information, which allow for texture lookups. Afterwards,
all the computed information is used by the rendering model to
synthesize a high quality image of the scene. Our network mainly
utilizes the structure from UNet [RFB15] and GlassNet, and the
implementation can be found in the code and Fig. 3.

3.1. Overview

The general objective of neural rendering is to use a neural network
to bake the outgoing radiance, Lo at position p. Lo can be computed
by the rendering equation [Kaj86]:

Lo(p,ωo) =
∫

Ω

Li(p,ωi) f (m,ωo,ωi)|n ·ωi|dωi +Le(p,ωo) (1)

To compute Lo, instead of doing expensive path tracing, neural
rendering methods use a neural network F to represent the global
illumination in latent space:

Lo(p,ωo)≈ F(p,n,m,ωi,σ) (2)

To more accurately capture the refraction effects, we explicitly
separate the reflection scattering over the upper hemisphere Ω

+, and
the refraction under the lower hemisphere Ω

−:

Lo(p,ωo) =
∫

Ω+
Li(p,ωi) fr(mr,ωo,ωi)|n ·ωi|dωi+∫

Ω−
Li(p,ωi) ft(mt ,ωo,ωi)|n ·ωi|dωi

(3)

In the case of baking reflection scattering, it is possible to leverage
G-buffers from direct rendering, as neural networks do not need to
encode high-frequency information such as textures, but only need
to encode global illumination.

In contrast, the refraction component, especially on smooth sur-
faces, often consists of distorted images of the objects behind the
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Figure 3: Network structure of CrystalNet. Our network utilizes UNet [RFB15], and GlassNet structure [ZSS24]. All activation functions are
leaky ReLU. We use the same network structure for both R-buffer generator and the neural renderer with only the difference of the hidden
layers. Specific implementation details can be found in the released code.

refracting surface, with high frequency texture information. Such
refraction can not be rendered simply using G-buffers, and it is nec-
essary to either provide high-frequency information of the refracted
objects into the rendering neural network through expensive ray
tracing, or encode it into the network itself. Specifically, in addition
to all the rendering information regarding the transmissive object
itself, a neural network, Ft , requires information regarding the high-
frequency information of the refracted objects γ. Accordingly, most
of the neural rendering models bake γ directly by using an implicit
deep model T :

∫
Ω+

Li(p,ωi) fr(ωo,ωi)|n ·ωi|dωi ≈ Fr(p,nr,mr,ωi)∫
Ω−

Li(p,ωi) ft(ωo,ωi)|n ·ωi|dωi ≈ Ft(p,nt ,mt ,ωi,γ)

≈ Ft(p,nt ,mt ,ωi,T (σ))

(4)

Note that T can only rely on the neural scene latent representation
to bake the high-frequency information of the refraction, leading to
blurry and loss of details on high-frequency color or normal textures.

Instead of directly baking the high-frequency information, our
method, CrystalNet, bakes the lower frequency UV coordinates and
then reconstructs the textures directly. Specifically, our refraction
baking model, T , reconstructs γ by generating the R-buffer contain-
ing UV coordinates and normals. The overall CrystalNet structure
is shown in Fig. 2. By applying such an approach, we avoid using

neural networks to directly bake the high-frequency texture and
achieve high-quality refraction through texture look-ups instead.

Similar to recent neural rendering approaches, we also use a
G-buffer as input to our approach and path tracing images as the
ground truth. To maximally retain the information occluded by
the transmissive objects, we apply the permutation invariant G-
buffer encoding method used in [ZSS24]. By doing so, the G-buffer
provided to the rendering model contains all the information behind
the refractive models.

3.2. Permutation Invariant Network Structure

We address the occlusion problem by transparent objects on G-
buffers by separating the G-buffers of transparent objects into indi-
vidual buffers. As previous works proposed [QSMG17, ZSS24], a
permutation invariant neural network, f , can be approximated by
a deep function g combined with a symmetric operator, and then
post-processed by an outer neural network k. As described below,
we choose addition as the symmetric operator:

f ({x1,x2, . . . ,xnumt} , γ̂) = k(
numt

∑
i=1

h(xi,σ, γ̂)) (5)

By applying this structure, our model can process the transpar-
ent objects without losing input information, and does not require
specific input order of the transparent objects.
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Notation Description

Lo Outgoing radiance
Li Incoming radiance
Le Emission radiance
ωo Outgoing direction
ωi Incoming direction
n Normal
m Material parameters
Ω Hemisphere
Ω+ Ω− Upper and lower hemisphere
ι Object index
p Position in 3D space
puv pι

uv UV coordinates with ι indicating specific object
PUV UV maps as 2D tensors with channels
F F Neural networks predicting radiance
T T Neural networks predicting refraction information
σ Neural scene representation in latent space
γ Refraction buffer
c cp Color with subscripts indicating specific location
I[x,y] Color on texture or image at coordinate (x,y)
u v UV coordinates
w h Image width and height
L Loss function
λtv Weight of total variation loss
numt Total number of transmissive objects
·̂ All hat notations indicate symbols are predictions
·r Subscripts indicate symbols are for reflective objects
·t Subscripts indicate symbols are for transmissive objects

Table 1: Glossary of notations used in this paper.

3.3. Refraction Baking: R-Buffer

Our R-buffer generator, T , takes a G-buffer as an input and generates
a tuple of normal and UV coordinates for a refracted objects, ι:

T (p,n,m,ωi,σ,γ) = {n̂t , p̂ι
uv, ι̂} (6)

We take advantage of the fact that modern rendering engines use
UV coordinates and bilinear interpolation to reconstruct 2D texture
of color, normal, etc., to 3D objects. We used the predicted refraction
UV coordinates, p̂ι

uv, to reconstruct the color information, ĉ, from
textures of objects by bilinear interpretation:

ĉι
puv ≈I[x,y] · (1− x′) · (1− y′)+

I[x+1,y] · x′ · (1− y′)+

I[x,y+1] · (1− x′) · y′+

I[x+1,y+1] · x′ · y′

(7)

where x′ = ⌊w ·u+1⌋−w ·u and y′ = ⌊h · v+1⌋−h · v. Then, the
predicted R-buffer, γ̂, can be used in the rendering model.

Given that UV mapping is highly sensitive to the stability of the
generated UV coordinates, we use the total variation loss [ROF92]
to enforce the smoothness of generated UV maps. Specifically, the
loss function is the combination of L1 reconstruction loss and the
total variation loss with a balance coefficient λtv:

LT
(

PUV, P̂UV
)
=

∥∥∥PUV − P̂UV
∥∥∥

1
+λtvLtv

(
P̂UV

)
(8)

where the total variation loss, Ltv, is defined as:

Ltv

(
P̂UV

)
= ∑

i, j

∣∣∣P̂UV
i+1, j − P̂UV

i, j

∣∣∣+ ∣∣∣P̂UV
i, j+1 − P̂UV

i, j

∣∣∣ (9)

The R-buffer generator is implemented using a permutation invari-
ant multi-layer convolutional neural network described in Sec. 3.2.

3.4. Rendering Model

We next introduce our neural rendering model. It contains three
building blocks: a reflection baking network, Fr, a transmissive
baking network, Ft , and final rendering network R. For the network
architectures, Fr and R uses a U-Net model [IZZE17], and Ft uses
the permutation invariant multi-layer convolutional neural network
described in [ZSS24]. We use G-buffers with separated transmis-
sive objects as inputs to prevent the occlusion to the G-buffer by
transmissive objects and maximally retain inputting information as
shown in Fig. 2.

The reflection baking network Fr accepts all information re-
quired by rendering equation. As with most other neural rendering
approaches, besides p, nr, mr, and ωi, we take advantage of a ras-
terization engine to also directly generate the depth buffer, zr, and
direct lighting, dr, as network inputs. We use Linearly Transformed
Cosines [HDHN16] to approximate the direct lighting. Fr also gen-
erates a neural scene representation latent vector, σ used in Ft .

The transmissive baking network Ft takes the rendering informa-
tion of only refraction objects (p, nt , mt , zt , and ωi) and, as described
in Sec. 3.3, the R-buffer γ̂ generated by T the inputs. As we use
separated groups of G-buffers for transmissive objects, we need a
permutation-invariant network structure, as mentioned in Sec. 3.2,
to handle the G-buffer groups with uncertain ordering.

Finally, the final rendering network uses the outputs from Fr
and Ft to approximate Lo. We use positional encoding to process
all the input data, which has proven to be beneficial for neural
networks to learn high-frequency information [MST∗21]. The full
implementation details of the network structure can be found in the
released code and Fig. 3.

3.5. Training

We randomly choose the camera position and targeting center in a
bounding box with sizes depending on the scenes. Each of the 3D
coordinates of the position of movable objects follows a uniform
distribution with a given range. We generated our ground truth by
using Mitsuba 3 [JSRV22] path tracer. The ground truth for refracted
UV maps is generated by our custom renderer using a ray-casting
algorithm. Fr, Ft and R are trained as one neural network. To
achieve efficiency, T is separately trained because UV coordinates
ground truth is much easier to get, and, therefore, T can be trained
with much more data than the networks using path tracing images as
ground truth. The loss function of Fr, Ft and R is the combination
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Figure 4: Random selection of images from the dataset.

Parameter Value

Training set size 1380
Validation set size 120
Test set size 128
Samples per pixel 4096
Learning rate of the renderer 1×10−4

Learning rate of the R-buffer generator 7.5×10−5

Weight decay 1×10−4

Total variation weight, λtv 1.5×10−8

Table 2: Dataset settings and hyperparameter choices.

of L1 loss and DSSIM [LMCB06], and the loss function for T is
described in Eq. (8). We trained all our models end-to-end and used
Adam [KB14] as the optimizer.

4. Experiments

4.1. Experiment Settings

We choose 256× 256 as the input and output resolution for the
experiments. Note that resolution is not the main focus of this
paper. As indicated by previous works, it is feasible to enhance
resolution by placing a supersampler [ZSS24] or by using the Pix-
elGenerator as the network backbone to support multi-resolution
[GRPN20]. We test our models under three scenes: CORNELL-
BOX, DESK, and BEDROOM. BEDROOM is created from the
Bitterli datasets [Bit16]. CORNELLBOX and DESK are created
using existing models and textures in public domain. The setting
of datasets and hyperparameter chosen during training are shown
in Fig. 4 and Tab. 2. The training time of the neural renderer and
R-buffer generator T are around 6 hours and 16 hours.

In this section, we use L1 reconstruction error, LPIPS [ZIE∗18],
SSIM [LMCB06], and Peak Signal-to-Noise Ratio (PSNR) as the
evaluation metrics. We evaluate the models on transmissive only
area to further investigate the performance of our method focusing
on the refraction quality. Such areas are evaluated by L1 error and
PSNR (T.L1 and T.PSNR). As our method focuses on reconstruct

high frequency texture, for transmissive parts, we also include the
L2 error of the amplitude spectrum on frequency domain (T.Amp.):

LAmp.(I, Î) =
∑

w,h
i, j (

∥∥FFT
(
I)i, j

∥∥−∥∥FFT(Î)i, j
∥∥)2

w ·h (10)

We convert the rendered images into the frequency domain by
Fast Fourier Transform (FFT).

4.2. Comparison with the State-of-the-Art

We compare our method to other state-of-the-art methods: Glass-
Net [ZSS24], which only focuses on transparent objects with low
refraction index, and Active Exploration [DPD22] which bakes
scene global illumination based on active sampling processes. The
qualitative and quantitative results can be found in Fig. 5 and Tab. 3.

In summary, our proposed methods achieve the best specular
refraction rendering quality among the compared methods and test-
ing scenes. In CORNELLBOX, other methods completely failed to
capture the refracted texture of the background wall, whereas our
method reconstructed it successfully. For smaller refraction objects
in DESK, GlassNet failed to render the checkerboard texture on
the teapot. Although Active Exploration was able to reconstruct
the checkerboard texture, the geometric structure of the refraction
was inaccurate. Our method achieves both better texture rendering
quality and the precision of the refracted geometry. In BEDROOM,
our method also generates the refracted texture much better than
other methods.

Furthermore, we compare the performance of the models under
the exact training time in Fig. 7 under CORNELLBOX. The ex-
periment shows GlassNet is unable to accurately render the scene
regardless the length of the training time.

To further demonstrate the advantage of using G-buffers as in-
puts, we test the ability of our model under variable lighting and
index of refraction (IoR) conditions. As shown in Fig. 8 and Tab. 4,
CrystalNet still significantly outperforms the GlassNet even under
such challenging conditions. Additionally, our video demonstration
can be found the supplementary documents.

We also compared to the real-time path tracing denoising algo-
rithm proposed by Chaitanya et al. [CKS∗17]. As shown in Fig. 6,
we achieve a much better refraction quality than the path tracing de-
noiser under 32 sample-per-pixel under a similar frame time around
18 to 20 milliseconds.

4.3. Ablation Study

One important decision is what types of information should be
included in the R-buffer. We explore whether including refracted
normal in R-buffer or not can improve the rendering quality. As
shown in Tab. 5, using predicted normals can positively affect the
rendering quality. We also investigated the effectiveness of com-
bining texture reconstruction loss and UV coordinates loss when
training the R-buffer generator. As shown in Tab. 6, using a com-
bination of color space loss and UV space loss does not improve
but worsens the rendering quality. Therefore, we choose not to use
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Figure 5: Qualitative comparison. We compare with GlassNet and Active Exploration [DPD22] in three challenging scenes. Our method
achieves the best visual refraction rendering quality among all compared methods.
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Scene Method Metrics

L1 ↓ LPIPS ↓ SSIM ↑ PSNR ↑ T.L1 ↓ T.PSNR ↑ T.Amp. ↓

CORNELLBOX
GlassNet 0.02988 0.04444 0.89189 23.85371 0.22757 13.52789 0.11564

Active Exp. 0.07726 0.17964 0.75572 17.59048 0.391709 10.20211 0.16840
Ours 0.02836 0.03381 0.90364 24.63194 0.21195 14.30030 0.11139

BEDROOM
GlassNet 0.03279 0.07125 0.88129 27.04549 0.18837 17.22410 0.08531

Active Exp. 0.03721 0.13940 0.86013 24.30689 0.31550 12.35947 0.13601
Ours 0.02709 0.05951 0.89872 28.60590 0.16426 18.00709 0.08389

DESK
GlassNet 0.03691 0.08818 0.88115 25.07125 0.29159 12.78175 0.23917

Active Exp. 0.03515 0.07266 0.90637 21.61073 0.26436 14.85235 0.35330
Ours 0.02330 0.05344 0.93148 27.69721 0.20789 15.25814 0.23184

Table 3: Quantitative comparison. Results show that our method, CrystalNet, has better performance on scenes with refraction objects
compared to GlassNet and Active Exploration. Best result is denoted in bold.

(a) Ground truth (b) Ours (c) Denoiser

Figure 6: Comparison with a path tracing denoiser. The refraction
rendering quality of real-time path tracing denoiser is unsatisfactory
even with 32 samples per pixel.

Variable Lighting Variable IoR

Metrics Ours GlassNet Ours GlassNet

L1 ↓ 0.02432 0.03495 0.03784 0.03964
LPIPS ↓ 0.02203 0.05687 0.05375 0.11011
T.L1 ↓ 0.16413 0.25086 0.17037 0.21048
T.Amp. ↓ 0.09240 0.11860 0.11688 0.14551

Table 4: Quantitative comparison under more scene parameters.
Our experiments show that our method still performs strong under
variable lighting and IoR. Best result is highlighted in bold.

color space loss, which also decreases the required training time as
converting to during training is expensive.

We further demonstrate that our method is capable of handling
refraction with roughness in Fig. 9. As shown in various previ-
ous works [XZX19, MST∗21], neural networks tend to learn low-
frequency information well, whereas ignores high-frequency infor-
mation. Refraction on rough surface contains much lower frequency,
and thus can be baked well in neural rendering models.

4.4. Performance Analysis

We implement our method into a custom CUDA/OpenGL rendering
framework. Under this framework, our renderer is able to render
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Figure 7: Evolution of the validation loss w.r.t. training time.

(a) Ground truth (b) Ours (c) GlassNet

Figure 8: Qualitative results on three refractive objects with vari-
able IoR. All three refractive objects have different IoR, and the IoR
of the glass plane varies from 1.6 to 2.

256× 256 images with two refraction objects at 55 FPS using a
RTX 4090 GPU, achieving real-time performance. We also demon-
strate the performance advantage to other methods. Under the same
hardware condition, Active Exploration requires averagely 40 mil-
liseconds frame time, whereas our method is significantly more
efficient, requiring only averagely 18 milliseconds frame time. Fur-
thermore, by utilizing a supersampler, CARN [AKS18], our method
can render 1024×1024 with two refraction objects at 25 FPS.
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L1 ↓ SSIM ↑ T.L1 ↓ T.Amp. ↓

γ̂ = {n̂} 0.03220 0.88409 0.22862 0.12305
γ̂ = {ĉ} 0.02520 0.92736 0.17414 0.10046

γ̂ = {n̂, ĉ} 0.02439 0.93371 0.16471 0.09735

Table 5: Impact of compositions of the R-buffer. Results show
including refracted normal, n̂, and refracted texture, ĉ, in R-buffers
increases rendering quality. Best result is highlighted in bold.

L1 Refraction Rendering Error

LUV
1 0.1649

LUV
1 +LTex

1 0.1657
LUV

2 +LTex
1 0.1710

Table 6: Impact of the texture reconstruction loss. Our experiments
show the combination of texture reconstruction loss and UV space
loss does not improve the performance of the network. Best result is
highlighted in bold.

Additionally, as we are using the permutation-invariant structure
as described in Eq. (5), the memory consumption does not grow
with the number of transmissive objects because the transmissive
objects are handled one by one.

5. Limitations and Discussion

Due to computation time scaling with resolution size, most neural
rendering approaches are limited to lower resolutions. In this work,
we have focused on improving the quality of the results, without
significant improvements in computational speed. To increase the
rendering resolution while maintaining similar performance, it is
necessary to employ supersampling-based approaches. We believe
that through optimization and breakthroughs in supersampling will
allow our proposed approach to run in real-time at acceptable reso-
lutions, allowing for general usage.

Our approach is able to accurately reconstruct high frequency
textures through refraction thanks to the R-buffer, greatly improving

(a) Ground truth (b) Ours

Figure 9: Refraction with roughness. Our method is able to capture
the roughness effect.

results over existing approaches. However, in one special situation
where total reflection occurs, the approximation error may become
significant due to R-buffer only capturing refraction rays. Although
it is not possible to directly extend the R-buffer concept to handle
total reflection, it should be possible to use a similar approach to
approximate the reflective component through baking it into another
neural network component.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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