A High Performance CRF Model for Clothes Parsing

Edgar Simo-Serra¹

Sanja Fidler²

Francesc Moreno-Noguer¹

Raquel Urtasun²

¹IRI (CSIC-UPC) Barcelona, Spain

²University of Toronto Toronto, Canada

Problem:

- Semantic segmentation of clothing garments
- Large inter-class variability
- Fine-grained recognition task

Contributions:

- 30% over State-of-the-Art Performance
- Novel potentials that exploit the task
- Efficient model that dresses the person

CRF Model

Number of Classes

Superpixel labels: y_i ∈ {1,...,C} Limb segment labels: $I_p \in \{1,...,C\}$

Used to segment the image Correspond to each 2D limb

CRF Energy
$$E(y,l) = E_{unary}(y) + E_{similarity}(y) + E_{limbs}(y,l)$$

Unary Potentials

- Simple Features [1]
- Logistic regression trained for one-vs-all
- Color histograms (RGB and CIE L*a*b)
- Texture histograms (Gabor filters)
- o Location features (relative position to 2D pose)
- Person Mask

Pairwise Potentials

Similarity (Long-range connection between similar superpixels)

- Foreground/background segmentation by [3]
- Avoids false positives on background
- Clothelets
 - Pose-conditioned garment likelihood
 - Masks for all garments are averaged based on 2D pose bounding boxes
- Shape Features
 - Logistic regression trained for one-vs-all
 - Enriched SIFT descriptors with second-order pooling [3]

- Shape, color and texture similarity [4] used with classifier • Minimum spanning tree to lower computational cost
- Limbs (Edges between limb nodes and superpixels)
 - Symmetric parts (e.g. both shins) are connected
 - Connection strength based on overlap

Loss Function

- Wordnet-based similarity between synsets of the different labels weighted by class occurence
- Learnt using maximum likelihood

Ours Ours Truth [1] Input Truth [1] Input Results 56 Classes 29 Classes Method [1] [2] [1] Ours Ours Jaccard index 12.32 20.52 7.22 9.22 12.28 **Evaluation on Fashionista dataset [1]** Jaccard index (intersection over union) as metric 1. Fashionista v0.2 with 56 Classes using a 67-33 split as done in [2] 2. Fashionista v0.3 with 29 Classes using a 50-50 split Ours (GT Pose) Ours (Estimated Pose) 0.8 Ours (No Pose) 0.6 0.4 0.2 29 Classes | 56 Classes 56 Classes Method Method Contribution of each potential in the 56 class scenario. All potentials increase performance. References [1] Yamaguchi, K., Kiapour, M.H., Ortiz, L.E., Berg, T.L.: Parsing clothing in fashion photographs. In: CVPR. (2012) background footwear boots hat shirt jacket glasses [2] Yamaguchi, K., Kiapour, M.H., Berg, T.L.: Paper doll parsing: Retrieving similar styles to hair shorts tights accessories purse shoes Jeans parse clothing items. In: ICCV. (2013) [3] Carreira, J., Caseiroa, R., Batista, J., Sminchisescu, C.: Semantic segmentation with secondskin leggings skirt dress sweater vest belt order pooling. In: ECCV. (2012) upper_body top misc_garments socks blouse pants bag [4] Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for stockings

Simple Features	13.80	7.93
Clothelets	8.91	3.02
eSIFT	16.65	9.29
eMSIFT	13.65	7.80

Full Model	12.28
No Similarity	11.64
Io Limb Segments	12.24
o Simple Features	10.07
No Clothelets	11.94
No Object Mask	10,02
No eSIFT	10.70
No eMSIFT	12.25

- object recognition. IJCV 104 (2013) 154–171

Source Code at http://www.iri.upc.edu/people/esimo/research/fashion/