

PROBLEM:

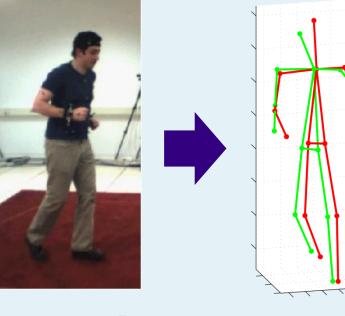
Retrieval of a 2D and 3D Human Pose from a single image **STATE-OF-THE ART LIMITATIONS:**

- Use of temporal information or background subtraction
- Unrealistic assumption of good 2D input

CONTRIBUTIONS:

- Novel probabilistic generative model for 3D Human Motion
- Bayesian framework for joint inference of 2D and 3D pose

Problem Definition



GIVEN:

Input Image

• Camera Focal Length α

WE WANT TO RETRIEVE:

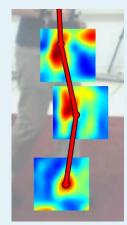
Both the 3D and 3D pose of the subject in the input image

Bayesian Formulation

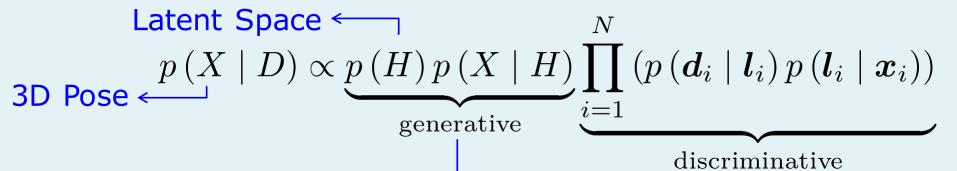
Image evidence given body configuration

nage Evidence
$$\overleftarrow{p(D \mid L)} = \prod_{i=1}^{N} p(d_i \mid l_i)$$

2D Pose $\overleftarrow{}$



Consider 2D to be projection of true 3D model generated by smaller latent model



Generative model reduces search space during inference

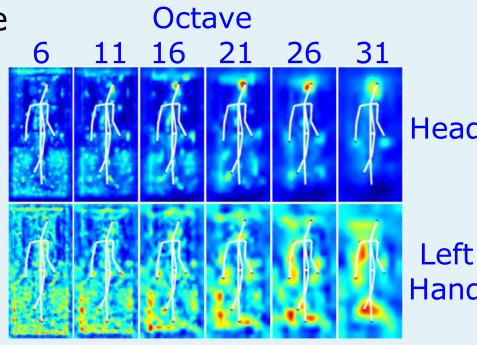
Discriminative 2D detectors enforce consistency of the 3D pose with the image evidence

Discriminative 2D Part Detectors [29]

- Smooth response good for inference
- Scale estimated from depth with β :

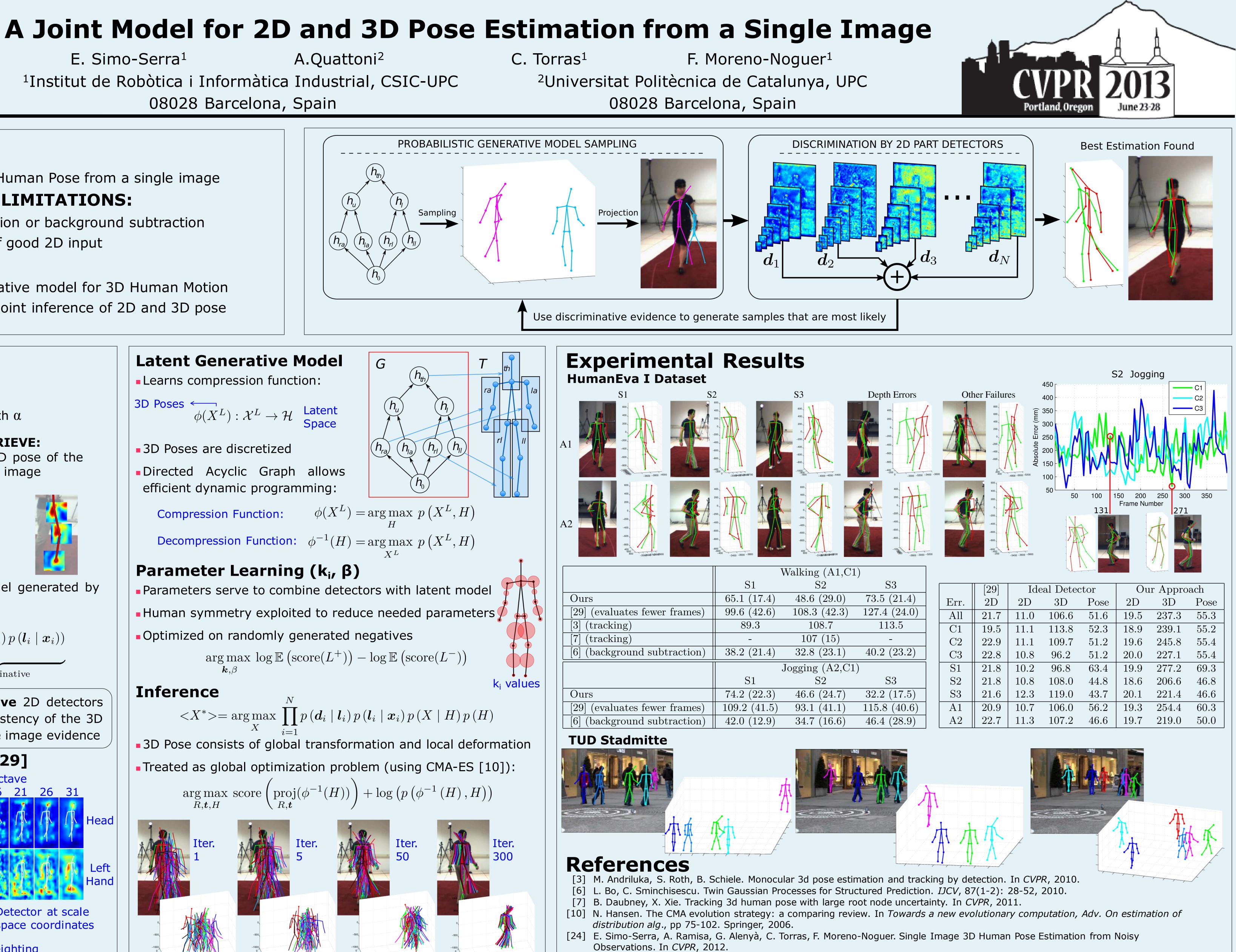
Part scale $\leftarrow s_i^{-1} = \alpha^{-1}\beta z_i \, rac{} \rightarrow \text{Part depth}$

- \rightarrow Focal length Weighted based on usefulness for 3D pose estimation
- Score interpreted as log-likelihood



Detector at scale

 $\log p(L \mid D) \approx \text{score}(L) = \sum_{i=1}^{N} k_i d_i(u_i, v_i, s_i) \text{ space coordinates}$



	Walking (A1,C1)				
	S1	S2	$\mathbf{S3}$		
Ours	65.1(17.4)	48.6 (29.0)	73.5(21.4)		
[29] (evaluates fewer frames)	99.6 (42.6)	108.3 (42.3)	127.4(24.0)		
[3] (tracking)	89.3	108.7	113.5		
[7] (tracking)	-	107 (15)	-		
[6] (background subtraction)	38.2(21.4)	32.8~(23.1)	40.2(23.2)		
	Jogging (A2,C1)				
	S1	S2	S3		
Ours	74.2(22.3)	46.6(24.7)	32.2(17.5)		
[29] (evaluates fewer frames)	109.2 (41.5)	93.1 (41.1)	115.8 (40.6)		
[6] (background subtraction)	42.0 (12.9)	34.7(16.6)	46.4(28.9)		
· · · · · · · · · · · · · · · · · · ·					

	[29]	Ideal Detector			Our Approach		
Err.	2D	$2\mathrm{D}$	3D	Pose	2D	3D	Pose
All	21.7	11.0	106.6	51.6	19.5	237.3	55.3
C1	19.5	11.1	113.8	52.3	18.9	239.1	55.2
C2	22.9	11.1	109.7	51.2	19.6	245.8	55.4
C3	22.8	10.8	96.2	51.2	20.0	227.1	55.4
S1	21.8	10.2	96.8	63.4	19.9	277.2	69.3
S2	21.8	10.8	108.0	44.8	18.6	206.6	46.8
S3	21.6	12.3	119.0	43.7	20.1	221.4	46.6
A1	20.9	10.7	106.0	56.2	19.3	254.4	60.3
A2	22.7	11.3	107.2	46.6	19.7	219.0	50.0

- [29] Y. Yang, D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In CVPR, 2011.