Fashion Style in 128 Floats: Joint Ranking and Classification using Weak Data for Feature Extraction

Edgar Simo-Serra and Hiroshi Ishikawa

Waseda University, Tokyo, Japan

Objective

- Learn compact, discriminative representations of images with Convolutional Neural Networks.
- Exploit weak data in the form of incomplete and noisy userprovided tags.
- Optimize for comparisons with L₂ distance.

Main features

- Able to exploit data with **missing and incomplete** tags.
- Obtains compact 128-float representations of **whole images**.
- Adaptable to new datasets **without needing annotating**.

• Outperforms pre-trained features for fashion style prediction.

http://hi.cs.waseda.ac.jp/~esimo/research/stylenet/

Key observation

- 1. Pre-trained imagenet networks limits both architecture and target applications, i.e., images should be similar to imagenet.
- 2. Lots of data with user-provided tags on the internet. However, these tags are often **incomplete and noisy**. We want to exploit this data to train new networks from scratch.
- 3. *Problem?* Standard training with classification losses is **not robust** to noisy data.
- 4. Solution: Jointly use a ranking loss with a classification loss. The ranking loss allows comparing vectors and is robust to noise, while the classification loss is critical for training.

Problem formulation

- 1. Consider set of possible tags *T*
- 2. Assume dataset of images with noisy labels $l = (l^t)_{t \in T}$ with $l^t \in 0, 1$
- 3. Define similarity between two images as $r(a, b) = \frac{|a \wedge b|}{|a \vee b|}$

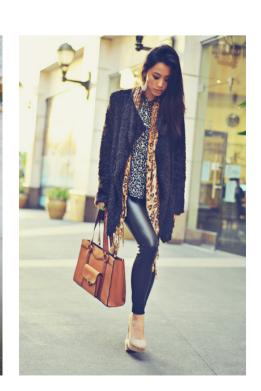
Black-Pants Blue-Shirt Gray-Scarf White-Sweater Black-Bag Yellow-Shoes

Black-Jeans Brick-Red-Sweater Brown-Bag Dark-Brown-Vest **Red-Wedges**

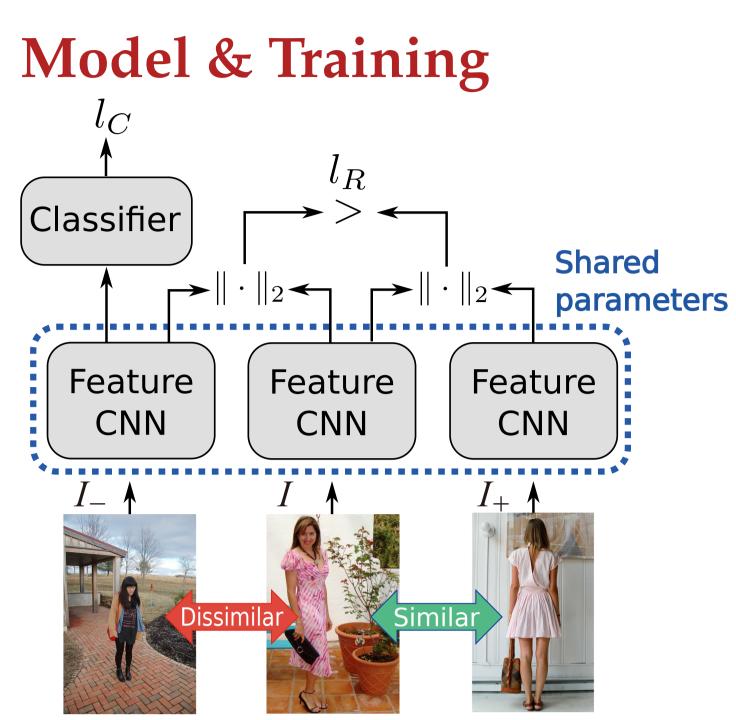
Aquamarine-Bag Camel-Heels **Ivory-Shorts Ivory-Sunglasses** Light-Yellow-Hat Turquoise-Blue-Vest

Black-Bag Black-Boots Black-Sweater White-Hat White-Shirt

Black-Boots Gray-Bag Light-Blue-Jeans Light-Brown-Coat White-Sweater **Gray-Sweater**



Black-Coat **Black-Leggings** Bronze-Scarf Dark-Gray-Blouse Neutral-Shoes Tawny-Bag



Top: Overview of the proposed model. **Right**: Architecture of the feature CNN. Model is trained from scratch using a classification and ranking loss.

similar to the anchor I_{-} with $r(I, I_{-}) < \tau_d$.

Loss encourages the distance between output of the anchor and similar image $d_+ = d(I, I_+)$ to be smaller than the distance between the output of the anchor and the dissimilar image $d_{-} = d(I_{-}, I)$ [5]:

 $l_R(d_-, d_+) = \left(\frac{\exp(d_-)}{\exp(d_-) + \exp(d_+)}\right)$

of the dissimilar image X_{-} with multi-label cross-entropy loss:

 $l_C(X_-, \boldsymbol{y}_-) =$

with $l_{\times}(x, y) = -x_y + \log(\exp(x_0) +$ Joint loss: $L(d_{-}, d_{+}, X_{-}, y_{-}) = l_R(d_{-}, d_{+}, y_{-}) = l_R(d_{-}, d_{+}, y_{-}) = l_R(d_{-}, d_{+}, y_{-}) = l_R(d_{-}, d_{+}, y_{-}) = l_R(d_{-}, y_{-}) = l_R(d_$

Implementation

- . Pre-training with classification loss only.
- pling until similar/dissimilar criterion is met.
- 3. Optimization with ADADELTA [6].
- 4. Fine-tuned VGG to remove poor quality images from training can improve performance.

type	kernel size	output size	params
convolution	3×3	384x256x64	1,792
convolution	3×3	384x256x64	36,928
dropout (25%)		384x256x64	
max pooling	4×4	96x64x64	
batch normalization		96x64x64	128
convolution	3×3	96x64x128	73,856
convolution	3×3	96x64x128	147,584
dropout (25%)		96x64x128	
max pooling	4×4	24x16x128	
batch normalization		24x16x128	256
convolution	3×3	24x16x256	295,168
convolution	3×3	24x16x256	590,080
dropout (25%)		24x16x256	
max pooling	4×4	6x4x256	
batch normalization		6x4x256	512
convolution	3×3	6x4x128	32,896
fully-connected		128	393,344
TOTAL		128	1,572,544

Ranking loss: Defined on triplets of images where one is an anchor I, one is similar to the anchor I_+ with $r(I, I_+) > \tau_s$, and one is dis-

Classification loss: Auxiliary network used to predict image labels

$$\frac{1}{|T|} \sum_{t \in T} l_{\times}(X_{-}^{t})$$

- exp(x₁))
$$d_{-}, d_{+}) + \alpha l_{C}(X_{-}, \boldsymbol{y}_{-})$$

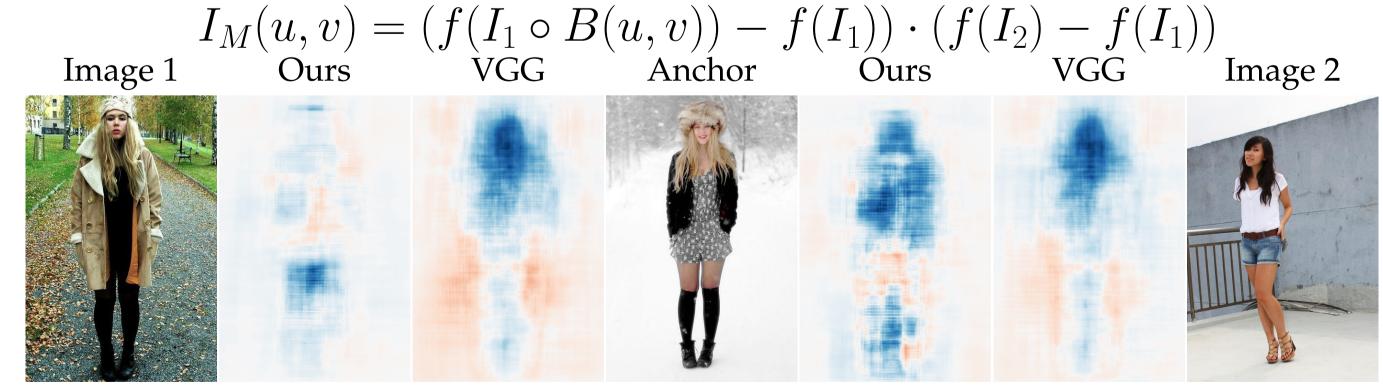
2. Batches formed by selecting anchor images and randomly sam-

Experimental results

Trained on Fashion144k dataset [3] using 80,554 training and 8,948 testing images with |T| = 3,303 tags. Evaluation on **Hipsters Wars** dataset [2] with 1,893 images and 5 class labels.

	classifier evaluated on	Table 2: Similarity search (no train).			
100 random 9:1 f	train-test splits.	feature dim. top-1 top-2 top-3			
feature p	params dim. acc. pre. rec. iou	Ours Joint 128 63.5 79.9 86.3			
Ours Joint	1.6M 128 75.9 75.4 76.5 61.5	5 VGG M [1] 4096 53.2 71.7 81.3			
Ours Ranking	1.6M 128 74.5 74.2 74.5 59.6				
Ours Siamese	1.6M 128 73.3 72.9 74.0 58.2	$2 VGG M_{-}128 [1] 128 44.6 64.0 76.2$			
Ours Class.	1.6M 128 73.5 71.7 74.1 57.3				
Ours Joint Dirty	1.6M 128 72.9 72.1 73.1 57.0) Table 2. Fina tuning on 1.1 calit			
Kiapour et al. $[2]^{\dagger}$	[‡] 39,168 70.6 70.6 70.4 54.6	Table 3: Fine-tuning on 1:1 split.			
		– feature dim. acc. pre. rec. iou			
VGG M [1]	99M 4096 71.9 72.9 70.9 56.2	() $()$ $()$ $()$ $()$ $()$ $()$ $()$			
VGG 16 [4]	134M 4096 70.1 70.5 69.7 54.8				
VGG M 1024 [1]	86M 1024 70.4 71.1 69.5 54.2	2 VGG M 4096 68.4/64.6 67.3/64.2 68.8/63.0 51.8/46.8			
VGG M 128 [1]	82M 128 63.5 62.8 63.5 46.3	3 VGG 16 4096 63.8/63.3 62.6/62.6 63.5/61.9 46.5/45.4			
VGG 16 Places [8]	134M 4096 57.4 57.6 59.4 41.5				

Visualizing descriptors



References

- convolutional nets. In BMVC, 2014.
- fashion styles. In ECCV, 2014

- recognition using places database. In NIPS, 2014.

Occlude parts of the image to visualize change [7]. For single descriptors show descriptor norm and PCA basis.

Ours			Fine-tuned VGG M 128			
CA 1	PCA 2	PCA 3	Norm	PCA 1	PCA 2	PCA 3

Visually compare the similarity according to the feature CNN $f(\cdot)$ of two images I_1 and I_2 by occluding with a bounding box B(u, v):

[1] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into [2] M. Hadi Kiapour, Kota Yamaguchi, Alexander C. Berg, and Tamara L. Berg. Hipster wars: Discovering elements of

[3] Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, and Raquel Urtasun. Neuroaesthetics in Fashion: Modeling the Perception of Fashionability. In CVPR, 2015.

[4] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In *ICLR*, 2015. [5] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang, James Philbin, Bo Chen, and Ying Wu. Learning fine-grained image similarity with deep ranking. In CVPR, 2014

[6] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. *CoRR*, abs/1212.5701, 2012.

[7] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014. [8] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learning deep features for scene