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Objective
• Learn compact, discriminative representations of image patches

with Convolutional Neural Networks.
• Optimize for comparisons with the L2 distance, i.e. no metric

learning. Our descriptors work within existing pipelines.

Main features
• Drop-in replacement for SIFT: 128f, compare with the L2 norm.
• Consistent improvements over the state of the art.
• Trained in one dataset, but generalizes very well to scaling, rota-

tion, deformation and illumination changes.
• Computational efficiency (on GPU: 0.76 ms; dense SIFT: 0.14 ms).
Code is available: https://github.com/etrulls/deepdesc-release

Key observation
1. We train a Siamese architecture with pairs of patches. We want

to bring matching pairs together and otherwise pull them apart.
2. Problem? Randomly sampled pairs are already easy to separate.
3. Solution: To train discriminative networks we use hard negative

and positive mining. This proves essential for performance.

(a) 12 points/132 patches with t-SNE [8]

(b) All pairs: pos/neg

(c) “Hard” pairs: pos/neg

We take samples from [1], for illustration. Cor-
responding patches are shown with same color:
(a) Representation from t-SNE [8]. Distance

encodes similarity.
(b) Random sampling: similar (close) posi-

tives and different (distant) negatives.
(c) We mine the samples to obtain dissimilar

positives (+, long blue segments) and sim-
ilar negatives (×, short red segments):

(d) Random sampling results in easy pairs.
(e) Mined pairs with harder correspondences.

(d) Random pairs

(e) Mined pairs

This allows us to train discriminative models with a small number
of parameters (∼45k), which also alleviates overfitting concerns.

Model & Training

Our model is a 3-Layer Convolutional Neural Network. For train-
ing we use a siamese architecture with weight sharing and SGD.

Layer 1 2 3

Input size 64 × 64 29 × 29 8 × 8
Filter size 7 × 7 6 × 6 5 × 5
Output channels 32 64 128
Pooling & Norm.tion 2 × 2 3 × 3 4 × 4
Nonlinearity Tanh Tanh Tanh
Stride 2 3 4
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Train on the MVS Dataset [1]. 64 × 64 grayscale patches from SFM:
Statue of Liberty (LY, top), NotreDame (ND, center), Yosemite (YO,
bottom). ∼150k points and ∼450k patches each ⇒ 10

6 positive pairs
and 10

12 negative pairs ⇒ Efficient exploration with mining.
Mean St.Dev.

We minimize the hinge embedding loss. With 3D point indices p1, p2:

l(x1,x2)=

{

‖D(x1)−D(x2)‖2, p1=p2
max(0, C − ‖D(x1)−D(x2)‖2), p1 6=p2

This penalizes corresponding pairs that are placed far apart, and
non-corresponding pairs that are less than C units apart.

Methodology: Train over two sets and test over third (leave-one-out),
with cross-validation. Metric: precision-recall (PR). ‘Needle in a
haystack’ setting: pick 10k unique points and generate one posi-
tive pair and 1k negative pairs for each, i.e. 10k positives vs. 10M
negatives. Results summarized by ‘Area Under the Curve’ (AUC).

Effect of mining
(a) Forward-propagate positives sp ≥ 128 and negatives sn ≥ 128.
(b) Pick the 128 with the largest loss (for each) and back-propagate.
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SIFT
CNN3, mined 1/2
CNN3, mined 2/2
CNN3, mined 4/4
CNN3, mined 8/8

sp sn PR AUC

128 128 0.366
256 256 0.374
512 512 0.369
1024 1024 0.325

Table 1: (a) No mining.
Larger batches do not help.

sp sn rp rn Cost PR AUC

128 256 1 2 20% 0.558
256 256 2 2 35% 0.596
512 512 4 4 48% 0.703
1024 1024 8 8 67% 0.746

Table 2: (b) Mining with rp = sp/128, rn = sn/128.
The mining cost is incurred during training only.

Comparison with the state-of-the-art on MVS
We benchmark our models against SIFT, BinBoost [7], and VGG [4].
Better performance on 2/3 splits. Why? YO is very different from
LY/ND (e.g. mean/std). Training on all three sets: top performance.
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Test
SIFT BGM L-BGM BinBoost-{64,128,256} VGG Ours
(128f) (256b) (64f) (64b) (128b) (256b) (80f) (128f)

ND 0.349 0.487 0.495 0.267 0.451 0.549 0.663 0.667
YO 0.425 0.495 0.517 0.283 0.457 0.533 0.709 0.545
LY 0.226 0.268 0.355 0.202 0.346 0.410 0.558 0.608
All 0.370 0.440 0.508 0.291 0.469 0.550 0.693 0.756

Generalization: Wide-Baseline Matching
Data from [5]. We match a set of points from view ‘3’ against ‘4’ to ‘8’
(increasing baseline) and build PR curves, as before. No re-training.

‘3’ ‘4’

‘5’ ‘6’

‘7’ ‘8’

Descriptor Training ‘3’ vs ‘4’ ‘3’ vs ‘5’ ‘3’ vs ‘6’ ‘3’ vs ‘7’ ‘3’ vs ‘8’

Ours LY+YO 0.923 0.690 0.456 0.218 0.088
Ours LY+ND 0.919 0.677 0.424 0.197 0.058
Ours YO+ND 0.922 0.685 0.439 0.228 0.058

VGG [4] YO 0.894 0.632 0.400 0.174 0.067
VGG [4] ND 0.880 0.590 0.372 0.182 0.058
VGG [4] LY 0.879 0.582 0.365 0.166 0.064
Daisy [6] – 0.835 0.594 0.363 0.172 0.032
SIFT [2] – 0.772 0.532 0.308 0.138 0.053

Generalization: Deformation and Illumination
Our models outperform the state-of-the-art on illumination changes
and non-rigid deformations [3] without re-training or fine-tuning.

Deformation Illumination Descriptor Training Def. Ill. Def.+Ill.

Ours LY+YO 76.568 88.434 75.933
Ours LY+ND 75.702 87.521 75.606
Ours YO+ND 76.731 88.898 76.591

VGG [4] YO 74.120 87.342 74.765
VGG [4] ND 72.629 84.690 72.599
VGG [4] LY 72.602 84.848 72.565
DaLI [3] - 70.577 89.895 72.912
Daisy [6] - 67.373 75.402 66.197
SIFT [2] - 55.822 60.760 53.431
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