Discriminative Learning of Deep Convolutional Feature Point Descriptors

Edgar Simo-Serra^{*,1,5}, Eduard Trulls^{*,2,5}, Luis Ferraz³, Iasonas Kokkinos⁴, Pascal Fua², Francesc Moreno-Noguer⁵

 1 Waseda University, Tokyo, Japan $^{-2}$ CVLab, École Polytechnique Fédérale de Lausanne, Switzerland $^{-3}$ Catchoom Technologies, Barcelona, Spain ⁴ CentraleSupelec and INRIA-Saclay, Chatenay-Malabry, France ⁵ Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain (*: First two authors contributed equally)

Objective

- Learn compact, discriminative representations of image patches with Convolutional Neural Networks.
- Optimize for comparisons with the L₂ distance, i.e. no metric learning. Our descriptors work within existing pipelines.

Main features

- **Drop-in replacement for SIFT:** 128f, compare with the L₂ norm.
- **Consistent improvements** over the state of the art.
- Trained in one dataset, but **generalizes very well** to scaling, rotation, deformation and illumination changes.
- Computational efficiency (on GPU: 0.76 ms; dense SIFT: 0.14 ms).
- Code is available: https://github.com/etrulls/deepdesc-release

Key observation

- 1. We train a Siamese architecture with **pairs of patches**. We want to bring matching pairs together and otherwise pull them apart.
- 2. Problem? Randomly sampled pairs are already **easy to separate**.
- 3. Solution: To train discriminative networks we use hard negative and positive mining. This proves essential for performance.

We take samples from [1], for illustration. Corresponding patches are shown with same color:

- (a) Representation from t-SNE [8]. Distance encodes similarity.
- (b) Random sampling: similar (close) positives and different (distant) negatives.
- (c) We mine the samples to obtain dissimilar positives (+, long blue segments) and similar negatives (×, short red segments):
- (d) Random sampling results in easy pairs.
- (e) Mined pairs with harder correspondences.

This allows us to train discriminative models with a small number of parameters (~45k), which also alleviates overfitting concerns.

(e) Mined pairs

Model & Training

Our model is a 3-Layer Convolutional Neural Network. For training we use a **siamese architecture** with weight sharing and SGD.

Layer	1	2	3
Input size	64 imes 64	29×29	8 imes 8
FiÎter size	7 imes 7	6×6	5×5
Output channels	32	64	128
Pooling & Norm.tion	2×2	3×3	4 imes 4
Nonlinearity	Tanh	Tanh	Tanh
Stride	2	3	4

Train on the **MVS Dataset** [1]. 64×64 grayscale patches from SFM: Statue of Liberty (LY, top), NotreDame (ND, center), Yosemite (YO, bottom). ~150k points and ~450k patches each \Rightarrow 10⁶ positive pairs and 10^{12} negative pairs \Rightarrow Efficient exploration with mining.

We minimize the hinge embedding loss. With 3D point indices p_1, p_2 :

$$U(\mathbf{x}_1, \mathbf{x}_2) = \begin{cases} \|D(\mathbf{x}_1) \| \\ \max(0, C - \|D(\mathbf{x}_1)) \| \end{cases}$$

This penalizes corresponding pairs that are placed far apart, and non-corresponding pairs that are less than *C* units apart.

Methodology: Train over two sets and test over third (*leave-one-out*), with cross-validation. Metric: precision-recall (PR). 'Needle in a haystack' setting: pick 10k unique points and generate one positive pair and 1k negative pairs for each, i.e. 10k positives vs. 10M negatives. Results summarized by 'Area Under the Curve' (AUC).

Effect of mining

(a) Forward-propagate positives $s_p \ge 128$ and negatives $s_n \ge 128$. (b) Pick the 128 with the largest loss (for each) and back-propagate.

Table 1:(a) No mining. Larger batches **do not help**.

Table 2: (b) Mining with $r_p = s_p/128$, $r_n = s_n/128$. The mining cost is incurred **during training only**.

Generalization: Wide-Baseline Matching Data from [5]. We match a set of points from view '3' against '4' to '8'

Generalization: Deformation and Illumination Our models outperform the state-of-the-art on illumination changes and non-rigid deformations [3] without re-training or fine-tuning.

References

- 2014.

Comparison with the state-of-the-art on MVS

We benchmark our models against SIFT, BinBoost [7], and VGG [4]. Better performance on 2/3 splits. Why? YO is very different from LY/ND (e.g. mean/std). Training on all three sets: top performance.

Toot	SIFT	BGM	L-BGM	BinBc	ost-{64,	,128,256}	VGG	Ours
lest	(128f)	(256b)	(64f)	(64b)	(128b)	,128,256} (256b)	(80f)	(128f)
ND	0.349	0.487	0.495	0.267	0.451	0.549	0.663	0.667
YO	0.425	0.495	0.517	0.283	0.457	0.533	0.709	0.545
LY	0.226	0.268	0.355	0.202	0.346	0.410	0.558	0.608
All	0.370	0.440	0.508	0.291	0.469	0.550	0.693	0.756

(increasing baseline) and build PR curves, as before. No re-training.

Descriptor	Training	'3' vs '4'	'3' vs '5'	'3' vs '6'	'3' vs '7'	'3' vs '8'
Ours Ours Ours	LY+YO LY+ND YO+ND	0.923 0.919 0.922	0.690 0.677 0.685	0.456 0.424 0.439	0.218 0.197 0.228	0.088 0.058 0.058
VGG [4] VGG [4] VGG [4] Daisy [6] SIFT [2]	YO ND LY -	0.894 0.880 0.879 0.835 0.772	$0.632 \\ 0.590 \\ 0.582 \\ 0.594 \\ 0.532$	$\begin{array}{c} 0.400 \\ 0.372 \\ 0.365 \\ 0.363 \\ 0.308 \end{array}$	$\begin{array}{c} 0.174 \\ 0.182 \\ 0.166 \\ 0.172 \\ 0.138 \end{array}$	$\begin{array}{c} 0.067 \\ 0.058 \\ 0.064 \\ 0.032 \\ 0.053 \end{array}$

ation	Descriptor	Training	Def.	I11.	Def.+Ill.
	Ours	LY+YO	76.568	88.434	75.933
	Ours	LY+ND	75.702	87.521	75.606
	Ours	YO+ND	76.731	88.898	76.591
	VGG [4]	YO	74.120	87.342	74.765
	VGG [4]	ND	72.629	84.690	72.599
	VGG [4]	LY	72.602	84.848	72.565
	DaLI [3]	-	70.577	89.895	72.912
	Daisy [6]	-	67.373	75.402	66.197
	SIFŤ [2]	_	55.822	60.760	53.431

[1] M. Brown, Gang Hua, and S. Winder. Discriminative learning of local image descriptors. PAMI, 2011.

 [2] D. Lowe. Distinctive image features from scale-invariant keypoints. *IJCV*, 2004.
[3] E. Simo-Serra, C. Torras, and F. Moreno-Noguer. DaLI: Deformation and Light Invariant Descriptor. *IJCV*, 2015. [4] K. Simonyan, A. Vedaldi, and A. Zisserman. Learning local feature descriptors using convex optimisation. PAMI,

[5] C. Strecha, W. von Hansen, L. V. Gool, P. Fua, and U. Thoennessen. On benchmarking camera calibration and multi-view stereo for high resolution imagery. In CVPR, 2008.

[6] E. Tola, V. Lepetit, and P. Fua. DAISY: An efficient dense descriptor applied to wide baseline stereo. PAMI, 2010. [7] T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit. Boosting binary keypoint descriptors. In CVPR, 2013. [8] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. In *JMLR*, 2008.