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PROBLEM: CONTRIBUTIONS: KEY FEATURES:
= Predicting motion hypothesis from poses = Joint Pose and Kinematic Manifold = Generative Model
= Only generating feasible pose hypothesis = Efficient approach for sampling = Fully unsupervised
= QOutperforms widely used Gaussian diffusion models = Scales well to large datasets
Ground Truth Zoomed Sampling Prior Complexity Scales Consistent
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MANIFOLDS, GEODESICS, AND TANGENT SPACES EXPERIMENTAL RESULTS
= Geodesic distance between two points on a manifold is the shortest distance between the = Evaluation on Human3.6M dataset
two points on the manifold = 15 categories of actions
= Tangent space is a local approximation of a manifold that is a Euclidean space = 6 actors used for training, 1 actor used for testing
The mapping to and from the tangent space is defined by two operators: Log—li kelihood
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Kt N exp, () =x %7 & log,(x) =v Method Train Test
Samples 465,325 62,064
Gaussian diffusion 5.4325 5.4349

local Gaussian diffusion 6.4193 6.4206

Ours (30%, 211 clusters) 9.3382 11.7874
Ours (15%, 147 clusters) 89544  11.8714
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STATISTICS ON TANGENT SPACES lterate until convergence o I
= Mean estimated on manifold using geodesic mean to obtain geodesic mean “ o ol
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= Covariance estimated on tangent space in closed form \/ ° 0 I
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= Given the mean and covariance we define a normal O § 0 ° L
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UNSUPERVISED FINITE MIXTURE MODELLING Left Hip e Left Foot
= Extension of unsupervised learning of finite mixture models [0] | I
= Center each cluster on a tangent space to minimize geodesic error . e
* Minimum Message Length (MML) used to determine number of clusters h : o
= Expectation-Maximization (EM) algorithm | ) * N 4 [ °
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JOINT POSE AND KINEMATIC MANIFOLD h W T e I
* Rotation between consecutive joints modeled as SO(3/2)" manifold Vo | c s T
= Kinematics modeled with associated quotient of Lie algebras s0(3/2)" ‘ o R AT b
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log, (v2) = v2 — vy
exp,,, (V2) = v2 + 14

= Joint distribution of Pose and Kinematic is learnt

= GFMM code available:
http://www.iri.upc.edu/people/esimo/code/gfmm/
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