

# Lie Algebra-Based Kinematic Prior for 3D Human Pose Tracking

Edgar Simo-Serra, Carme Torras, Francesc Moreno-Noguer Institut de Robòtica i Informàtica Industrial (CSIC-UPC)





#### **PROBLEM**:

- Predicting motion hypothesis from poses
- Only generating feasible pose hypothesis

#### **CONTRIBUTIONS:**

- Joint Pose and Kinematic Manifold
- Efficient approach for sampling
- Outperforms widely used Gaussian diffusion models

## **KEY FEATURES**:

- Generative Model
- Fully unsupervised
- Scales well to large datasets

| Ground Truth | Zoomed | Sampling |
|--------------|--------|----------|
|              |        |          |
|              |        |          |

#### **GIVEN**:

✓ 3D positions of joints



 $T_{\mu_2}\mathcal{M}$ 

WE WANT TO ESTIMATE: Distribution of velocities

| Prior              | Complexity | Scales | Consisten |
|--------------------|------------|--------|-----------|
| Gaussian diffusion | Low        | Yes    | No        |
| GPLVM [1]          | Low        | No     | No        |
| GPDM [2]           | Medium     | No     | No        |
| hGPLVM [3]         | Medium     | No     | No        |
| CRBM [4]           | High       | Yes    | No        |
| GCMFA [5]          | High       | No     | No        |
| GFMM (Ours)        | Low        | Yes    | Yes       |

#### MANIFOLDS, GEODESICS, AND TANGENT SPACES

- Geodesic distance between two points on a manifold is the shortest distance between the two points on the manifold
- Tangent space is a local approximation of a manifold that is a Euclidean space



#### **EXPERIMENTAL RESULTS**

- Evaluation on Human3.6M dataset
- 15 categories of actions
- 6 actors used for training, 1 actor used for testing

|                          | Log-likelihood |                 |
|--------------------------|----------------|-----------------|
| Method                   | Train          | Test            |
| Samples                  | 465,325        | 62,064          |
| Gaussian diffusion       | 5.4325         | 5.4349          |
| local Gaussian diffusion | 6.4193         | 6.4206          |
| Ours (30%, 211 clusters) | 9.3382         | 11.7874         |
| Ours (15%, 147 clusters) | 8.9544         | <b>1</b> 1.8714 |
|                          | Righ           | et Hand         |



 $T_{\mu_1}\mathcal{M}$ 

 $\log_x$ 

 $\Sigma_{k}^{-1} = \Gamma_{k} = \begin{bmatrix} \Gamma_{k,x} & \Gamma_{k,vx} \end{bmatrix}$ 

Covariance estimated on **tangent space** in closed form

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} \log_{\mu}(x_i) \log_{\mu}(x_i)^{\top}$$

Given the mean and covariance we define a normal distribution on the tangent space as:  $\mathcal{N}_{\mu}(v, \Sigma^{-1}) = \lambda \exp\left(-\frac{\log_{\mu}(x)^{\top}\Sigma^{-1}\log_{\mu}(x)}{2}\right)$ 

## **UNSUPERVISED FINITE MIXTURE MODELLING**

- Extension of unsupervised learning of finite mixture models [6]
- Center each cluster on a tangent space to minimize geodesic error
- Minimum Message Length (MML) used to determine number of clusters
- Expectation-Maximization (EM) algorithm

$$p(x|\theta) = \sum_{k=1}^{K} \alpha_k p(x|\theta_k) \qquad p(x|\theta_k) \approx \mathcal{N}_{\mu_k}(0, \Sigma_k^{-1})$$

## JOINT POSE AND KINEMATIC MANIFOLD

- Rotation between consecutive joints modeled as  $SO(3/2)^n$  manifold
- Kinematics modeled with associated quotient of Lie algebras  $\mathfrak{so}(3/2)^n$

| - | $\alpha \circ (\alpha \wedge \beta) $ | · ~ / |   |
|---|---------------------------------------|-------|---|
|   |                                       |       | 1 |





## **KINEMATIC MODEL**

Kinematics conditioned on pose  $p(v|x,\theta) = \frac{p(x,v|\theta)}{p(x|\theta_x)} = \frac{\sum_{k=1}^K \alpha_k p(x|\theta_{k,x}) p(v|x,\theta_k)}{\sum_{k=1}^K \alpha_k p(x|\theta_{k,x})}$ 

Regression gives another mixture model

$$p(v|x,\theta_k) = \mathcal{N}_{\mu_v}(\Gamma_{k,vx}\Gamma_{k,x}^{-1}\log_{\mu_k,x}(x_x), \Gamma_{k,v} - \Gamma_{k,vx}\Gamma_{k,x}^{-1}\Gamma_{k,vx})$$



#### **GFMM code available:** http://www.iri.upc.edu/people/esimo/code/gfmm/

## REFERENCES

[1] N. D. Lawrence. Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models. JMLR, 6:1783-1816, 2005.

[2] J. Wang, D. Fleet, and A. Hertzmann. Gaussian process dynamical models. In NIPS, 2005.

[3] M. Andriluka, S. Roth, and B. Schiele. Monocular 3D Pose Estimation and Tracking by Detection. In CVPR, 2010.

[4] G. Taylor, L. Sigal, D. Fleet, and G. Hinton. Dynamical binary latent variable models for 3d human pose tracking. In CVPR, 2010.

[5] R. Li, T.-P. Tian, S. Sclaroff, and M.-H. Yang. 3d human motion tracking with a coordinated mixture of factor analyzers. IJCV, 87(1-2):170-190, 2010.

[6] E. Simo-Serra, C. Torras, and F. Moreno-Noguer. Geodesic Finite Mixture Models. In BMVC, 2014.