Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification

Satoshi lizuka*

Edgar Simo-Serra*

Waseda University

(*equal contribution)

Hiroshi Ishikawa

Colorization of Black-and-white Pictures

Our Goal: Fully-automatic colorization

Colorization of Old Films

Related Work

- Scribble-based [Levin+ 2004; Yatziv+ 2004; An+ 2009; Xu+ 2013; Endo+ 2016]
 - Specify colors with scribbles
 - Require manual inputs

[Levin+ 2004]

- Reference image-based [Chia+ 2011;
 Gupta+ 2012]
 - Transfer colors of reference images
 - Require very similar images

Input

Reference

Output

[Gupta+ 2012]

Related Work

- Automatic colorization with hand-crafted features [Cheng+ 2015]
 - Uses existing multiple image features
 - Computes chrominance via a shallow neural network
 - Depends on the performance of semantic segmentation
 - Only handles simple outdoor scenes

Contributions

- Novel end-to-end network that jointly learns global and local features for automatic image colorization
 - New fusion layer that elegantly merges the global and local features
 - Exploit classification labels for learning

Layers of Our Model

- Fully-connected layer
 - All neurons are connected between layers
- Convolutional layer
 - Takes into account underlying spatial structure

Fully-connected layer

No. of feature maps

Convolutional layer

Our Model

- Two branches: local features and global features
- Composed of four networks

Low-Level Features Network

- Extract low-level features such as edges and corners
- Lower resolution for efficient processing

Global Features Network

Compute a global 256-dimensional vector representation of the image

Mid-Level Features Network

Extract mid-level features such as texture

Fusion Layer

Fusion Layer

- Combine the global features with the mid-level features
- The resulting features are independent of any resolution

$$\mathbf{y}_{u,v}^{\mathrm{fusion}} = \sigma \left(\mathbf{b} + W \begin{bmatrix} \mathbf{y}^{\mathrm{global}} \\ \mathbf{y}_{u,v}^{\mathrm{mid}} \end{bmatrix} \right)$$

Colorization Network

- Compute chrominance from the fused features
- Restore the image to the input resolution

Training of Colors

- Mean Squared Error (MSE) as loss function
- Optimization using ADADELTA [Zeiler 2012]
 - Adaptively sets a learning rate

Joint Training

- Training for classification jointly with the colorization
 - Classification network connected to the global features

Dataset

- MIT Places Scene Dataset [Zhou+ 2014]
- 2.3 million training images with 205 scene labels
 - 256×256 pixels

Results

Computational Time

Colorize within a few seconds

Image Size	Pixels	CPU (s)	GPU (s)	Speedup
$224 \times 224^{\dagger} \\ 512 \times 512$	50,176 262,144	0.399 1.676	0.080 0.339	5.0× 4.9×
1024×1024	1,048,576	5.629	1.084	$5.2 \times$
2048×2048	4,194,304	20.116	4.218	$4.8 \times$

Colorization of MIT Places Dataset

Comparisons

Effectiveness of Global Features

Input

w/o global features

w/ global features

User Study

- 10 users participated
- We show 500 images of each type: total 1,500 images per user
- 90% of our results are considered "natural"

Natural Unnatural

Approach	Naturalness (median)
Ground Truth	97.7%
Proposed	92.6%
Baseline	69.8%

Colorization of Historical Photographs

Mount Moran, 1941

Scott's Run, 1937

Youngsters, 1912

Burns Basement, 1910

Style Transfer

Style Transfer

Style Transfer

Adapting the colorization of one image to the style of another

Limitations

Difficult to output colorful images

Input

Ground truth

Output

Cannot restore exact colors

Input

Ground truth

Output

Conclusion

- Novel approach for image colorization by fusing global and local information
 - Fusion layer
 - Joint training of colorization and classification
 - Style transfer

Farm Land, 1933

California National Park, 1936

Homes, 1936

Spinners, 1910

Doffer Boys, 1909

Thank you!

Project Page http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization

Code on GitHub! https://github.com/satoshiiizuka/siggraph2016_colorization

