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Colorization of Black-and-white Pictures







Colorization of Old Films
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Related Work

® Scribble-based [Levin+ 2004; Yatziv+ 2004;
An+ 2009; Xu+ 2013; Endo+ 2016]

e Specify colors with scribbles
e Require manual inputs
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® Reference image-based [Chia+ 2011;
Gupta+ 2012]

e Transfer colors of reference images

e Require very similar images

Input Reference Output
[Gupta+ 2012]



Related Work

® Automatic colorization with hand-crafted features [Cheng+ 2015]

e Uses existing multiple image features

e Computes chrominance via a shallow neural network

e Depends on the performance of semantic segmentation
e Only handles simple outdoor scenes
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Contributions

* Novel end-to-end network that jointly learns global and local features
for automatic image colorization

e New fusion layer that elegantly merges the global and local features
e Exploit classification labels for learning




Layers of Our Model

® Fully-connected layer

e All neurons are connected between layers

® Convolutional layer
e Takes into account underlying spatial structure
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Our Model

Luminance

Mid-Level Features Colorization

Network : Network
Fusion Layer
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T Chrominance

Upsampling

Low-Level Features
Network Global Features Network

* Two branches: local features and global features
®* Composed of four networks



Mid-Level Features Colorization

Network : Network
Fusion Layer
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Upsampling

Low-Level Features
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* Extract low-level features such as edges and corners
* Lower resolution for efficient processing
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Global Features Network
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* Compute a global 256-dimensional vector representation of the image
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Mid-Level Features Network
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e Extract mid-level features such as texture
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Fusion Layer

Luminance
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Fusion Layer

®* Combine the global features with the mid-level features
® The resulting features are independent of any resolution

Mid-Level Features

SO Fusion Layer
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Colorization Network

/ Luminance \

Mid-Level Features Colorization
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®* Compute chrominance from the fused features
® Restore the image to the input resolution
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Training of Colors

® Mean Squared Error (MSE) as loss function

® Optimization using ADADELTA [Zeiler 2012]
e Adaptively sets a learning rate

Forward

[ Model }

Backward

MSE

Ground truth
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Joint Training

Luminance
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Predicted labels

Scaling

Upsampling

® Training for classification jointly with the colorization
e Classification network connected to the global features
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Dataset

* MIT Places Scene Dataset [Zhou+ 2014]

® 2.3 million training images with 205 scene labels
e 256 X 256 pixels
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Computational Time

® Colorize within a few seconds

Image Size Pixels CPU (s) GPU(s) Speedup
224 x 2247 50,176 0.399 0.080 5.0
512 x 512 262,144 1.676 0.339 4.9x
1024 x 1024 1,048,576 5.629 1.084 5.2X
2048 x 2048 4,194,304 20.116 4.218 4.8 %
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Colorization of MIT Places Dataset
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Comparisons

T

Ours Ours
(w/o global features) (w/ global features)

[Cheng+ 2015]
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Effectiveness of Global Features

w/o global features w/ global features



‘User Study

® 10 users participated
* We show 500 images of each type: total 1,500 images per user

® 90% of our results are considered “natural”
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Mount Moran, 1941 Scott's Run, 1937 Youngsters, 1912 Burns Basement, 1910
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Style Transfer

Low-Level Features
Network
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Style Transfer
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Style Transfer

* Adapting the colorization of one image to the style of another

Local Global Local Global Local Global

Inputs

Output
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Limitations
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Conclusion

* Novel approach for image colorization by fusing global and local information
e Fusion layer
e Joint training of colorization and classification
e Style transfer

Farm Land, 1933 California National Homes, 1936 Spinners, 1910 Doffer Boys, 1909
Park, 1936 30



Thank youl!

Project Page
Code on GitHub!

The Lost world (1925)
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Community Center, North Dome, Norris Dam, 1933
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http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization
https://github.com/satoshiiizuka/siggraph2016_colorization

