

DeepRemaster: Temporal Source-Reference Attention Networks for Comprehensive Video Enhancement

Satoshi lizuka

Edgar Simo-Serra

Background

- Vintage film is deteriorated
 - Noise, blur, and low contrast
 - Black and white or low quality colors
- Digital remastering is a challenging task
 - Conducted manually by experts
 - Requires a significant amount of both time and money

"Oliver Twist" (1933)

"A-Bomb Blast Effects" (1952)

Seven Samurai (1954)

Our Goal

- Semi-automatically remastering of vintage films
 - This includes restoration, enhancement, and colorization

Related Work

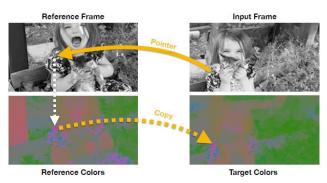
- Image/video restoration
 - Gaussian noise [Dabov+'07, Maggioni+'12'14, Lefkimmiatis'18]
 - JPEG noise [Zhang+'17]
 - Blur [Shi+ '16]

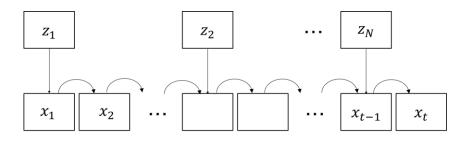
Gaussian Noise

• Image Colorization

- Scribble-based [Levin+ 2004; Yatziv+ '04; An+ '09; Xu+ '13; Endo+ '16; Zhang+ '17]
- Reference-based [Chia+'11; Gupta+'12; He+'18]
- Automatic [lizuka+'16; Larsson+'16; Zhang+'16]

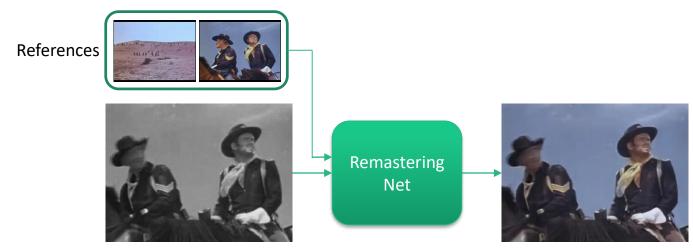
[Levin+ '04]


[Zhang+'17]

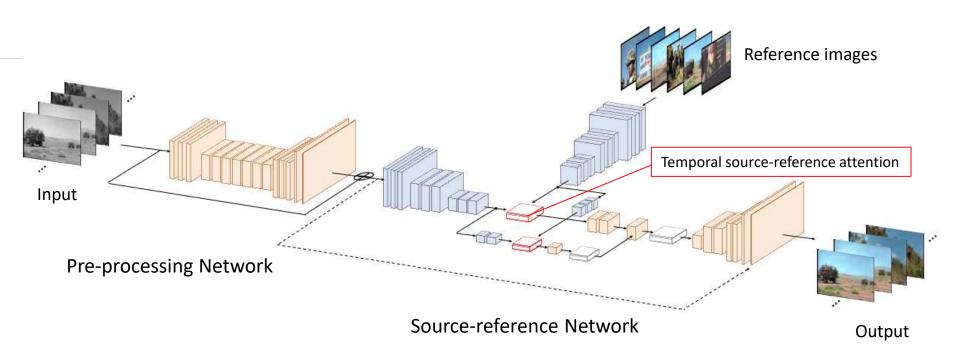


Related Work

- Reference-based video colorization
 - Recurrent neural networks [Liu+'18; Vondrick+'18]
 - Processes a video by propagating color frame-by-frame
 - Cannot propagate between scene changes
 - Continues amplifying errors

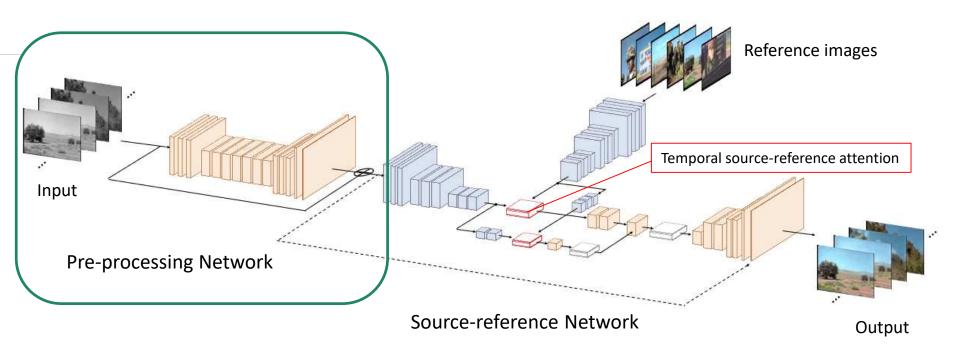


Our Method

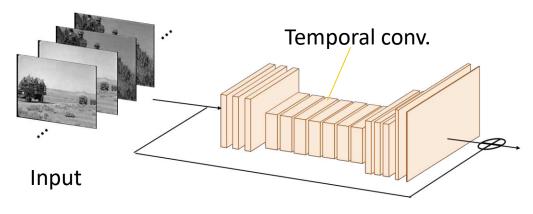


- Model based on spatial and temporal convolutions
 - Automatic noise removal, super-resolution, and contrast adjustment
- Semi-automatic colorization source-reference attention
 - Can colorize a video using an arbitrary number of reference images

Our Network

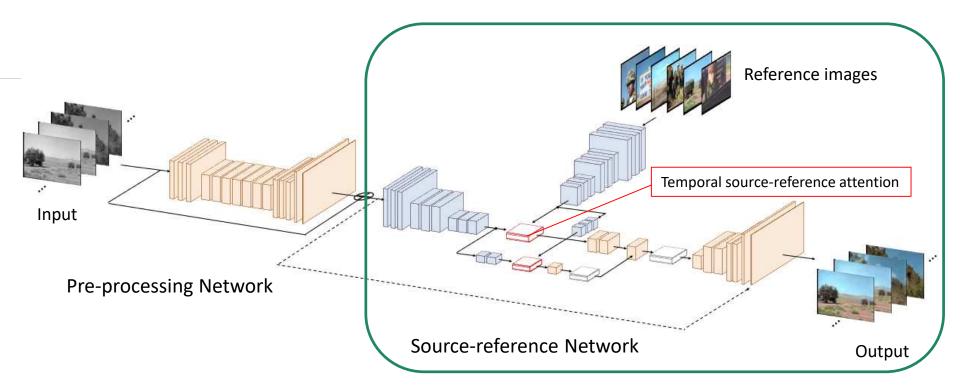


Our Network



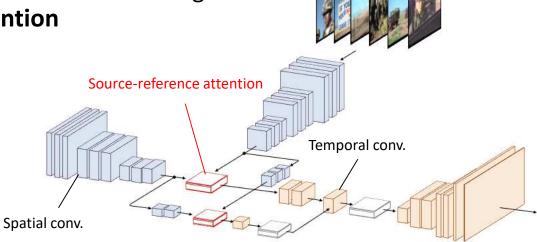
Pre-processing Network

- Removes artifacts and noise from the input grayscale video
- Formed exclusively by temporal convolutions



Pre-processing Network

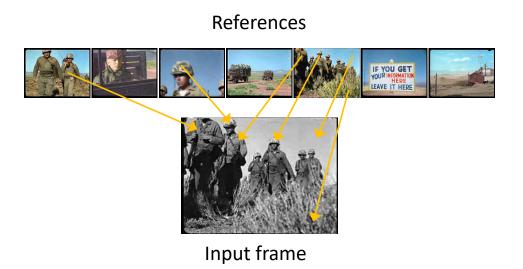
Our Network

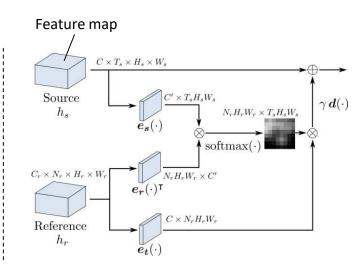


Source-reference Network

 Takes the output of the pre-processing network along with an arbitrary number of reference color images

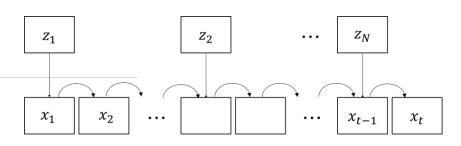
 Colorizes the frames based on the reference images by using source-reference attention




Reference images

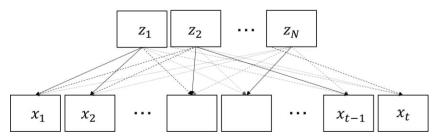
Temporal Source-reference Attention

- Compute similarity between the source images and reference images
 - Actually computed on feature maps



source-reference attention

Advantages of Source-Reference Attention



- Cannot form long-term dependencies
- Temporal consistency is lost when a new reference is used
- Require precise scene segmentation

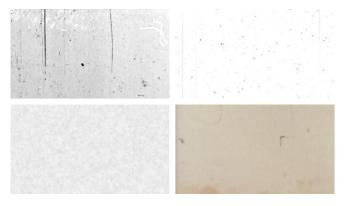
Recursion-based network

Our temporal source-reference attention

Can use all the color reference information for colorization

Optimization

- Combination of two L1 losses
 - Fully supervised learning
 - Uses ADADELTA[Zeiler '12] for optimization
- Objective function:


Output of Ground truth source-reference network chrominance

$$\underset{\theta,\phi}{\arg\min} \, \mathbb{E}_{(x,y_l,y_{ab},z)\in\mathcal{D}} \, \| \underline{P(x;\theta)} - \underline{y_l} \| + \beta \, \| \underline{S\big(P(x;\theta),z;\phi\big)} - \underline{y_{ab}} \|$$
Output of Ground truth pre-processing network luminance

Training Data Generation

- Example-based and algorithm-based deterioration
 - Example-based: scratch noise, fractal noise, dust noise, ...
 - Algorithm-based: Gaussian noise, blur, low contrast
- 1200 videos from Youtube8M[Abu-El-Haji+ '16] for training

Examples of noise data

Original

Deteriorated

Comparisons

Input

[Zhang+'17b]&[Vondrick+'18]

[Yu+'18]&[Zhang+'17a]

Ours

Quantitative Result

Remastering results

Approach	Frames	# Ref.	PSNR
Zhang+[2017b]&Zhang+[2017a]	90	1	27.13
	300	5	27.31
Yu+[2018]&Zhang+[2017a]	90	1	26.43
	300	5	26.59
Zhang+[2017b]&Vondrick+[2018]	90	1	26.43
	300	5	26.60
Yu+[2018]&Vondrick+[2018]	90	1	26.85
	300	5	26.89
Ours w/o joint training	90	1	29.07
, c	300	5	29.23
Ours	90	1	30.83
	300	5	31.14

Quantitative Results

Restoration results

Approach	Frames	# Ref.	PSNR
[Zhang et al. 2017b]	300	: = :	25.08
[Yu et al. 2018]	300	-	24.49
Ours w/o skip connection	300	-	24.73
Ours	300	100	26.13

Colorization results

Approach	Frames	# Ref.	PSNR
[Zhang et al. 2017a]	90	1	31.28
	300	5	31.16
[Vondrick et al. 2018]	90	1	31.55
	300	5	31.70
Ours w/o temporal conv.	90	1	28.46
© 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300	5	28.51
Ours w/o self-attention	90	1	29.00
	300	5	28.72
Ours	90	1	34.94
	300	5	36.26

Comparisons

[Yu+'18]&[Zhang+'17a]

Input

Reference images (manually created)

[Zhang+'17b]&[Vondrick+'18]

Reference images

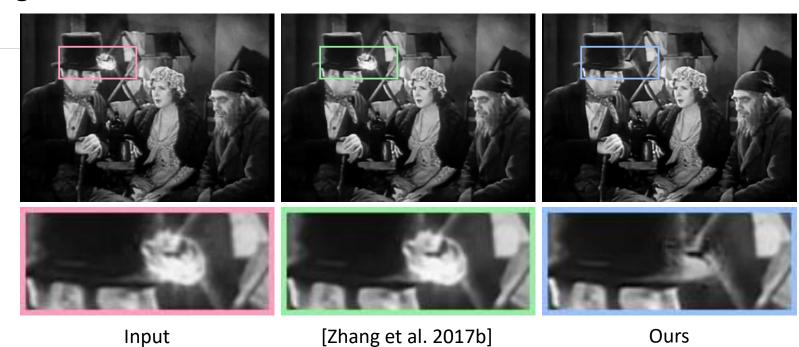
——— Attention

Input Output

Reference images

———— Attention

Input Output


"Isewan typhoon" (1959), the original film is provided by CBC Television Co.

Restoration Results

Large noise removal

Limitations

- Severely deteriorated film is difficult to remaster
 - Cannot fill large missing regions
- Scene with intense motion

Input

Output

Input

Output

Conclusion

- Novel single framework to tackle entire remastering task
 - Automatic noise removal, super-resolution, and contrast adjustment
 - Reference-based colorization via temporal source-reference attention
- Significant improvement with respect to existing methods
- Applicable to other reference-based image/video processing
- GitHub: https://github.com/satoshiiizuka/siggraphasia2019 remastering

