UNDERSTANDING HUMAN-CENTRIC IMAGES

From Geometry to Fashion

Edgar Simo-Serra
Barcelona, 6th of July, 2015
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Lots of information can be obtained from a single image
Location, context, roles, relationships, ...
Prior knowledge is necessary
Must build frameworks from the ground up
This thesis is an effort towards higher level image understanding
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FEATURE POINT DESCRIPTORS



DEFORMATION AND LIGHT INVARIANT (DALI) DESCRIPTOR

r
Deformation and Light Invariant :@E...
e oo - [

g oj=1=-19

. ™~
x Deep Convolutional Neural Network Descriptors
% D(x1)  D(x2)

k 1(x1,%2,6) j




DEFORMATION AND LIGHT INVARIANT (DALI) DESCRIPTOR

Problem: matching points of interest under:

Non-rigid deformations
Photometric changes




INVARIANCE TO DEFORMATION

Diffusion of heat for 3D mesh matching
Invariant to isometries
Solution is given by Heat Kernel Signature [1]
Time interval corresponds to globalness of the description

J. Sun, M. Ovsjanikov, L. Guibas. A concise and provably informative
nt

nulti-scale signature basec

1 heat diffusion. In EL \"'D‘ZHD‘H[’Z Symposium on Geometry Processing, 2009.




INVARIANCE TO DEFORMATION

Diffusion of heat for 3D mesh matching
Invariant to isometries
Solution is given by Heat Kernel Signature [1]
Time interval corresponds to globalness of the description

Embed the image as a 3D surface to apply to images

J. Sun, M. Ovsjanikoy, L. Guibas. A concise and provably informative multi-scale signature basec

n heat diffusion. In Eurographics Symposium on Geometry Processing, 2009.




INVARIANCE TO DEFORMATION

Diffusion of heat for 3D mesh matching

Invariant to isometries

Solution is given by Heat Kernel Signature [1]

Time interval corresponds to globalness of the description
Embed the image as a 3D surface to apply to images
Heat diffusion along the surface is used as a descriptor




INVARIANCE TO ILLUMINATION

HKS is sensitive to scale (illumination)

Use Fast Fourier Transform to gain invariance to scale [2]

Illumination Changes
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DALI DATASET

New deformation and illumination dataset
12 objects, 4 deformation levels, 4 illumination levels
Manual annotation of correspondences

Deformation Level
Deform. Level # 0 Deform. Level # 1 Deform. Level # 2 Deform. Level # 3




DALI DATASET

New deformation and illumination dataset
12 objects, 4 deformation levels, 4 illumination levels
Manual annotation of correspondences

Illumination Changes
I1l. Conditions # O Ill. Conditions # 1 Ill. Conditions # 2 Ill. Conditions # 3
o o Q e

Light
Sources
e
Camera

Object




DALI RESULTS

DaLl outperforms all, especially in illumination

Descriptor  Deformation  Illumination Deformation+

[llumination

DaLI-PCA 67.425 85.122 68.368
DalLl 70.577 89.895 72912
DAISY 67.373 75.402 66.197
SIFT 55.822 60.760 53.431
LIOP 58.763 60.014 52.176
Pixel Diff. 54714 65.610 54.382
NCC 38.643 62.042 41.998

GIH 37.459 28.556 31.230




DEEP CONVOLUTIONAL NEURAL NETWORK DESCRIPTORS

10

3

Deformation and Light Invariant
(DaLl) Descriptor

100

1000 3

3

Patches

Deep Convolutional Neural Network Descriptors

D(x1)  D(x2)

1DGx1) = D)2
k 11,2, ) J

Siamese network
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SIAMESE NETWORKS
X1
(5
Learn using pairs of patches

Patches
/33

jointly

Minimize distance for "same”

patches, maximize for CNN .
"different” patches L

Need to use all the tricks to get $P6a)  D(x2)

good performance ID(x1) — D(xs ”2

\ s )

l(x17x276)

L.

Siamese network




BEST NETWORK

Implemented in Torch7 (Lua, LeCun et al.)
INPUT: 64x64 patch

3 Convolutional layers, 46,272 parameters

1. 32x7x7 Kernel, Tanh, 2x pooling, normalization
2. 64x6x6 Kernel, Tanh, 3x pooling, normalization
3. 128x5x5 Kernel, Tanh, 4x pooling

OUTPUT: 128 dimension vector

16




DATA

Learn on Structure from Motion dataset
Ground truth created by using 3D structure
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MINING

Sampling approach for negatives/positives
10° positives, 10" negatives

Large amounts of mining

Essential for performance

PR curve, validation set

Precision
o
o

o
=

SIFT
CNNS3, no minin,

CNN3; mined 8/8
—&—CNN3, mined 16/16

0 0.1 0.2 03 0.4 0.5 0.6
Recall




RESULTS

Train Test SIFT  CNN3 PR AUC Increase
LY+YOS ND  0.349 0.667 91.1%
LY+ND YOS 0.425 0.545 28.2%
YOS+ND LY 0.226 0.608 169.0%

PR curve, training LY+YO, test ND PR curve, training LY+ND, test YO PR curve, training YO+ND, test LY

04 o5 05 071 08 09 94 05 06 071 08 0
Recall Recall
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FEATURE POINT DESCRIPTORS
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CONCLUSIONS

SIFT is ubiquitous in computer vision
Better alternatives out there (DAISY, DaLl, .. .)

Alternative descriptions can be complementary

Trend to move away from hand-crafted features to learnt features
continues

21




3D HUMAN POSE MODELS
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OVERVIEW

Shape Models (Hasler et al., 2009)
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GPDM Models (Wan

24



OVERVIEW

Overview of different generative 3D human pose models

Model Complexity Scales? Consistent? PDF?

GMM Low Yes No Yes
PGA Low Yes Yes No
GPLVYM Low No No Yes
GPDM Medium No No Yes
hGPLVM Medium No No Yes
CRBM High Yes No Yes
GCMFA High No No Yes
PCA Low Yes No No
DAG Medium Yes No Yes

GFMM Low Yes Yes Yes

24



LINEAR LATENT MODELS (PcA)

4 )
Linear Latent Model (PCA)
U J
4 N
Directed Acyclic Graphs (DAG)
o /

Geodesic Finite Mixture Models
(GFMM)
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LINEAR LATENT MODELS (PcA)

Represent pose as a linear combination of deformation bases

Nm
x:x0+2aiqi = Xo + Qa
i=1
Bases found by computing SVD on the covariance of training data

Nm eigenvectors corresponding to largest eigenvalues as basis

1

—

0.997

0.994

Relative Covariance

0.991

5 10 15 20 25 a0 3 40
nm
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LINEAR LATENT MODELS (PcA)

Dimension of the Latent Space np,
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LINEAR LATENT MODELS (PcA)

-500

L — T | —
-108D00 2000 1500 1000 500 0 -500

Very fast to both train and use

Linear formulation
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LINEAR LATENT MODELS (PcA)

-500

L — T | —
-108D00 2000 1500 1000 500 0 -500

Very fast to both train and use
Linear formulation

Not probabilistic
Can generate non-anthropomorphic poses
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DIRECTED ACYCLIC GRAPHS (DAG)

4 N
Linear Latent Model (PCA)
\_ J
7
Directed Acyclic Graphs (DAG)
. J

Geodesic Finite Mixture Models
(GFMM)
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DIRECTED ACYCLIC GRAPHS (DAG)

Model pose with a graphical model
Probabilistically encode plausible configurations
Directed Acyclic Graph allows for dynamic programming

30



DIRECTED ACYCLIC GRAPHS (DAG)

Model pose with a graphical model
Probabilistically encode plausible configurations
Directed Acyclic Graph allows for dynamic programming

Poses discreticized with k-means
clustering

Discrete locations associated with latent
states

Learnt using maximum likelihood

Efficient functions that map from latent
space to pose and back

30




GEODESIC FINITE MIXTURE MODELS (GFMM)

-

Linear Latent Model (PCA)

Geodesic Finite Mixture Models
(GFMM)
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OVERVIEW

Model Probability Density Function (PDF) of data on a manifold
Fully unsupervised algorithm
Efficient implementation

One tangent space per cluster

32



MANIFOLDS, GEODESICS, AND TANGENT SPACES

Geodesic distance between two points on a manifold is the
shortest distance along the manifold

58



MANIFOLDS, GEODESICS, AND TANGENT SPACES

Geodesic distance between two points on a manifold is the
shortest distance along the manifold

Tangent space is a local approximation of a manifold that is a
Euclidean space

logarithm and exponential map project to and from a tangent space
respectively

58



STATISTICS ON TANGENT SPACES

Expectation-Maximization algorithm
Minimum Message Length used to determine number of clusters
Random initialization with large amount of clusters

34



STATISTICS ON TANGENT SPACES

Expectation-Maximization algorithm
Minimum Message Length used to determine number of clusters
Random initialization with large amount of clusters

Expectation
Data softly assigned to clusters
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STATISTICS ON TANGENT SPACES

Expectation-Maximization algorithm
Minimum Message Length used to determine number of clusters
Random initialization with large amount of clusters

Expectation
Data softly assigned to clusters

Maximize probability with tangent spaces
Mean estimated on the manifold using the geodesic mean
Covariance estimated on the tangent space in closed form

34
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RESULTS - REGRESSION

Regression gives another GFMM

Scenario 1 Scenario 2 Scenario 3

36



SUMMARY

4 N
Linear Latent Model (PCA)
\_ /
4 N
Directed Acyclic Graphs (DAG)
\_ /

(GFMM)

37



SUMMARY

Overview of different generative 3D human pose models

Model Complexity Scales? Consistent? PDF?

PCA Low Yes No No
DAG Medium Yes No Yes
GFMM Low Yes Yes Yes

Many different ways to model the pose
Each models has different strengths/weaknesses

Exploiting known properties is beneficial

38




SUMMARY

Overview of different generative 3D human pose models

Model Complexity Scales? Consistent? PDF?

PCA Low Yes No No
DAG Medium Yes No Yes
GFMM Low Yes Yes Yes

Many different ways to model the pose
Each models has different strengths/weaknesses
Exploiting known properties is beneficial

Now to models in action!

38



3D HUMAN POSE ESTIMATION
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PROBLEM DEFINITION

GIVEN:

Single input image

Internal calibration A
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PROBLEM DEFINITION

600

GIVEN:

Single input image

Internal calibration A

OBJECTIVE:
Retrieve 3D pose

~400 " _3560606708860900
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3D POSE ESTIMATION FROM NOISY OBSERVATIONS

Single Image 3D Human Pose
Estimation from Noisy
Observations

A Joint Model for 2D and 3D Pose
Estimation from a Single Image

42



3D POSE ESTIMATION FROM NOISY OBSERVATIONS

Single Monocular

2D Image
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3D POSE ESTIMATION FROM NOISY OBSERVATIONS

4 EXPLORATION OF AMBIGUOUS HYPOTHESES 1 HYPOTHESES DISAMBIGUATION !
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3D POSE ESTIMATION FROM NOISY OBSERVATIONS
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3D POSE ESTIMATION FROM NOISY OBSERVATIONS
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UNCERTAINTY PROPAGATION

Projective Linear Deformation Model
Camera projection can be written as a linear equation

Mx = 0

4l



UNCERTAINTY PROPAGATION

Projective Linear Deformation Model
Camera projection can be written as a linear equation
Principal component analysis is also a linear equation

Mx = 0
X Xo + Qo

4l



UNCERTAINTY PROPAGATION

Projective Linear Deformation Model
Camera projection can be written as a linear equation
Principal component analysis is also a linear equation
Rank deficient system

Mx = 0

} = MQ(X+MX0:O
X = Xo+Qu

4l



UNCERTAINTY PROPAGATION

Projective Linear Deformation Model
Camera projection can be written as a linear equation
Principal component analysis is also a linear equation
Rank deficient system

Mx = 0
X Xo + Qo

} = MQ(X+MX0:O

2D Gaussians propagated through linear system to poses

Ho = — (MQ)'Mxq

Yo" sa\'
et

4l



RESU

G. Truth

Detection

Opt. PCA Best Rec. BestErr.

Ours

0. e

S1, Walk

9.8 £ 5.3 px

S2, Walk 13.7 £ 5.2 px 102.4mm 284 5mm

102 4mm

13.0 £ 8.8 px

P

157 3mm

e
105.3mm

S3, Jog

17.5 + 13.0 px
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JOINT 2D AND 3D POSE ESTIMATION

Single Image 3D Human Pose
Estimation from Noisy
Observations

A Joint Model for 2D and 3D Pose
Estimation from a Single Image

46



JOINT 2D AND 3D POSE ESTIMATION

Propose single framework for 2D and 3D
Probabilistic extendible framework

46



BAYESIAN FORMULATION

Consider image evidence to be independent for each part:

p(ODIL) = dell

47



BAYESIAN FORMULATION

Consider image evidence to be independent for each part:
(D|L)= Hp (di | ;)

Bayes' rule and consider p(L) =p (L | X)p(X | H)p(H)

p(X|D)ocp(H)p(XIH)JT (p(di [ )P (L | x))

i=1
generative

discriminative

47



BAYESIAN FORMULATION

PROBABILISTIC GENERATIVE MODEL SAMPLING

Projection

Best Estimation Found

47



RESULTS - HUMANEVA

OPTIMIZATION OUTPUT

! E
L

Depth Errors Other Failures
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RESULTS - TUD STADMITTE




RESULTS - QUANTITATIVE

Walking (A1,C1)

S1 S2 S3
Joint Model 65.1(17.4) 48.6 (29.0) 73.5(21.4)
Noisy Observations  99.6 (42.6)  108.3 (42.3) 127.4(24.0)

[1] (tracking) 89.3 108.7 1135

[2] (tracking) - 107 (15) -

[3] (background subtraction)  38.2 (21.4) 32.8(23.1) 40.2 (23.2)
Jogging (A2,C1)

S1 S2 S3
Joint Model 742 (22.3) 46.6 (24.7) 32.2(17.5)
Noisy Observations  109.2 (41.5) 93.1(41.1) 115.8 (40.6)
[3] (background subtraction)  42.0 (12.9)  34.7 (16.6)  46.4(28.9)

50



3D POSE ESTIMATION

Single Image 3D Human Pose
Estimation from Noisy
Observations

jm—

A Joint Model for 2D and 3D Pose
Estimation from a Single Image

51



CONCLUSIONS

Single image 3D pose estimation is an ambiguous problem
2D evidence is very unreliable
Strong models necessary for performance

Joint models perform best

Can exploit information
Delay decision until the end

52




FASHION UNDERSTANDING
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SEMANTIC SEGMENTATION OF CLOTHING

( ; )

Semantic Segmentation of Clothing

/ i W Prediction \
.

Claustrophobic Setting
User Cluster 20
Brown/Blue Jacket (2)

Al Modelling Fashionability

Black Casual (7) o
Black Boots/Tights (4) -
Black/Blue Going out (3) _!;. J
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CLOTHES PARSING PROBLEM

Semantic segmentation of clothing garments
Large inter and intra class variability
Fine-grained recognition task

&
g4 0T

[Ibackground M heels W blazer [@stockings []blouse [l hat
M hair B wedges |l cardigan [Jtights [ top W purse
I skin W shoes [@jumper [Wshorts  [Eskirt [l belt

¢s
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CONTRIBUTIONS

30% over state-of-the-art performance
Novel potentials that exploit the task
Efficient model that dresses the person

Truth [1] ours

RN Bx A%

K. Yamaguchi, H. Kiapour, L.E. Ortiz, T.L. Berg. Parsing clothing in fashion photographs. In CVPR,

57



CRF MODEL

Superpixels labels

yie{1,...,C}
Limb segment labels
lLe{1,...,C}

Unary potentials

Simple features
Person Mask
Clothelets
Shape features

Pairwise potentials

Similarity between superpixels
Limbs
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CRF MODEL

Superpixels labels

yie{1,...,C} ‘

. Reduce complexity
Limb segment labels S
Le{l....C} More discriminative

Unary potentials

Simple features
Person Mask
Clothelets
Shape features

Pairwise potentials

Similarity between superpixels
Limbs

58



CRF MODEL

Superpixels labels

y| 6 {17 AR | C}

- label 2D Pose Detector (Yang and
Limb segment labels Ramanan, CVPR 2011)
b e{1,...,C}

. Problem specific
Unary potentials .

Simple features
Person Mask
Clothelets
Shape features

Pairwise potentials

Similarity between superpixels
Limbs
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CRF MODEL

Superpixels labels

y| 6 {17 M C} .

imb label Color, texture, and location
Uil Segrent (oS histograms (Yamaguchi et al,, CVPR
b e{1,...,C}

Unary potentials

. : T nar
Simple features € Unary

Person Mask
Clothelets
Shape features

Pairwise potentials

Similarity between superpixels
Limbs
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CRF MODEL

Superpixels labels

yie{1,...,C}

imb label Foreground/background

iy segiment zloels segmentation by CPMC (Carreira
b e{1,...,C}

and Sminchisescu, PAMI 2012)
Unary potentials
Input GT Unary

il

Simple features

Clothelets
Shape features

Pairwise potentials

Similarity between superpixels
Limbs
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CRF MODEL

Superpixels labels

vie{l,...,C} .

imb label Pose-conditioned garment
Limb segment labels likelihood

b e{1,...,C}

Unary potentials

Input Socks Jacket

Simple features
Person Mask

Shape features
Pairwise potentials

Similarity between superpixels
Limbs

58



CRF MODEL

Superpixels labels

y| 6 {17 ctt C} . . .

imb label Enriched SIFT descriptors with
Limb segment labels second order pooling (Carreira and
b e{1,...,C}

Sminchisescu, ECCV 2012)

Unary potentials

T nar
Simple features € Unary

Person Mask
Clothelets
Shape features

Pairwise potentials

Similarity between superpixels
Limbs

58



CRF MODEL

Superpixels labels

yie{’l,.-.,C} . . .
imb label Shape, color, and texture similarity
Limb segment labels (Uijlings et al, 2013)

b e{1,...,C}

Unary potentials

T Pairwi
Simple features € d >¢

Person Mask
Clothelets
Shape features

Pairwise potentials

Similarity between superpixels
Limbs
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CRF MODEL

Superpixels labels

vie{l,...,C} . . .
Limb label Connect superpixels to limbs using
m segment apels 2D pose

b e{1,...,C}

Unary potentials

T Pairwi
Simple features € d >€

Person Mask
Clothelets
Shape features

Pairwise potentials

Similarity between superpixels
Limbs

58



FULL MODEL

Limbs Simple Feat. Full Model

Pose Mask Shape Feat.
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RESULTS

Evaluation on the Fashionista dataset

~700 images
29 and 56 class settings

Metric is Jaccard index or Intersection over Union: tﬁfﬁ
29 Classes 56 Classes
Method [1] ours [1] [2]  Ours

Jaccard index 12.32 20.52 722 922 12.28

60



RESULTS - QUALITATIVE

Input Truth [1] Ours

K. Yamaguchi, H. Kiapour, L.E. Ortiz, T.L. Berg. Parsing clothing in fashion photographs. In CVPR,
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INFERRING FASHIONABILITY AND RECOMMENDATIONS

-

~

Semantic Segmentation of Clothing

""" Prediction
Claustrophobic Setting !
User Cluster 20
| DRSS || 1 Modelling Fashionability

Recommendation
Black Casual (7)

Black Boots/Tights (4)
Black/Blue Going out (
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CONTRIBUTIONS

Large novel dataset (144,169 posts!)

Understand and model fashionability

Give fashion advice!

LOS ANGELES, CA
466 FANS

288 VOTES

62 FAVOURITES

TAGS
CHIC
EVERDAY
FALL

COLOURS
WHITE-BOOTS

NOVEMBER 10, 2014
GARMENTS

White Cheap Monday Boots

Chilli Beans Sunglasses

Missguided Romper

Daniel Wellington Watch
COMMENTS

Nice!!

Love the top!

cute

63



CONTRIBUTIONS

Large novel dataset (144,169 posts!)
Understand and model fashionability

Give fashion advice!

W Prediction
Claustrophobic Setting g
User Cluster 20

Brown/Blue Jacket (2)

Recommendation
Black Casual (7)
Black Boots/Tights (4)
Black/Blue Going out (3)
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FOLLOW + REH
miamiyu
from Seoul

6592 chic points
hitp/miamasvin.net

-

User Details
- Followers
- Location

410 VOTES

8 COMMENTS

82 FAVORITES

Post Details

- Votes

- Comments
- Favourites

Colours

Pointed Too Suede Boots MIAMASVIN Boots 1/ buy at miamasvin.net
Dark Gray Double Breasted Coat MIAMASVIN Coat /1 buy at miamasvin.net
Silver Skinny Jeans MIAMASVIN Jeans  // buy at miamasvin.net Garments
|&| Jeusk Tan Chunky Turtleneck Pullover MIAMASVIN Sweater 1 buy at miamasvin.net

= N
wrid .

a

Bl

° -
‘D.

lizolsen2011 on November 18 via Android
So chic! love white jeans for winter!

reply
EmmaZ on November 18

love the bag!

reply

lovethemcurves on November 18
1ove your clutch! 1)

reply

stylepledge on November 18
Tovely look!

reply

ShellyStuckman on November 17
So lovely!

Leply

AruNeko on November 17
Gorgeous Outfitl So elegant

reply

hazelkrisferrando on November 17
love

reply

last_tango_in_paris on November 17
Tove that clutch!

reply

Comments

64



FEATURES

Feature ~ Dim.  Description
Fans 1 Number of user’s fans.
AT 1 Time between post creation and download.
Comments 5 Sentiment analysis [1] of comments.
Location 266  Distance from location clusters.
Personal 21 Face recognition attributes.
Style 20 Style of the photography [2].
Scene 397  Output of scene classifier trained on [3].
Tags 209 Bag-of-words with post tags.
Colours 604 Bag-of-words with colour tags.
Singles 121 Bag-of-words with split colour tags.
Garments 1352  Bag-of-words with garment tags.
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MODELLING FASHION

Model explicitly user (u), outfit (0), setting (s), and fashionability (f)
Features compressed using complementary deep networks

o B | |4 Location ]
Crm N[ o o Al
: g T
T ‘ A AT
L [ ] <{Comments]
Comments
16 16
B N e
1y Softmax
CRF Models Relationships between latent states
Fans Location
Personal \ Scene
u S
A Colours
Comments Singles
Sl / Garments
Tags o
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RESULTS

Model  Acc. Pre. Rec. IOU L

CRF 2927 30.42 28.69 1736 1.46
Deep Net 30.42 3111 30.26 1841 145
Log. Reg. 2392 2254 2299 1255 191
Baseline 16.28 = 10.00 163 232
Random  9.69 9.69 9.69 499 317

Recommendations: MAP estimate from conditional inference

= Current Outfit:
~ Pink/Black Misc. (5)

Current Outfit:
Pink Outfit (3)

il Current Oultfit:
| Pink/Blue Shoes/Dress Shorts (3)

Recommendations:
Pastel Dress (8)
Black/Blue Going out (8)
Black Casual (8)

Recommendations:
Heels (8)

Pastel Shirts/Skirts (8) =
§ Black/Gray Tights/Sweater (5)

ecommendations:

lack/Gray Tights/Sweater (5)
i~ Black Casual (5)

* Black Boots/Tights (5)

Current Outfit:

Current Outfit: Y \/ Current Outfit:
‘a B Formal Blue/Brown (5)

Blue with Scarf (3)

s  Recommendations:

4 Pastel Shirts/Skirts (9)

Black/Blue Going out (8)
Black Boots/Tights (8)

ecommendations:
lack Casual (7)
-4 Black Heavy (3)
¢ Navy and Bags (3)

Recommendations:
 Heels (8)

Pastel Shirts/Skirts (8)
Black Casual (8)
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FASHION UNDERSTANDING

Semantic Segmentation of Clothing

¥ Prediction
Claustrophobic Setting W
User Cluster 20
Brown/Blue Jacket (2)

Recommendation

~ | Black Casual (7) i
Black Boots/Tights (4) .
Black/Blue Going out (3) _!:

Modelling Fashionability
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CONCLUSIONS

Fashion is very challenging!
Hard for humans too!

Proper framework is fundamental (CRF, ...)
Model must be tailored to the problem
Potentials must be tailored to the problem
Have to exploit as much information available

Lots of room for improvement
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CONCLUSIONS

BEAUTY | BODY | WORKLIFE | LOVE | COME TO OUR FASHION FESTIVAL! S

The new Instagram algorithm will help you dress hetter

Want to know what to wear, how and when? This algorithm can calculate fashionability and tell you whether you've got it, or not...

8

Shares

MOST READ

EMermantai Is the New If new research from the University of Toronto is to be believed, all your common fashion
#ManBun on Istagram problems can be solved with the help of an algorithm.

E‘ I Yes, the research team have come up with a computer system to determine just how
' TE

Farhinmahln srans 2w an A haln fiar Han meahlaman nwessesnking s frams wasl navkasial minasne
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CONCLUSIONS

= | [, FASHION BEAUTY CULTURE LIFE & LOVE HOROSCOPES Q
ELLE

NEW ALGORITHM FOR INSTAGRAM WILL TELL
YOU HOW TO DRESS BETTER

For maximum likes

Ifyou're anything like us, your Instagram feed is full of carefully framed selfies and
snaps of your latest #ootd. (Because, what else?) The app was pretty much made for
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CONCLUSIONS

A

Inventan un software
que mide tu nivel de
estilo

Mis sincero que la opinion de tu madre y de tu
mejor amiga juntas, este programa puede valorar
tu look, criticarlo y ofrecer consejos para
mejorarlo

Beatriz Caballero — @hethfevrier — Las ocasiones importantes, requicren
looks importantes y su aprobacién pasa siempre por el vistode I amiga o
persona de confianza de tiurno. Que levante I mano la que no sc haya hecho
una foto delante del espejo con el modelito escogido o en el probador de su
tienda favorita y la haya enviado a ese grupo de whatsapp. esperando
impacientemente ¢l vered

Pero este método. no nos engaiiemos, liene fisuras... ;Es esa amiga realmen
sincera? (I gusto de tu amiga es el que mds prevalece sobre tu propio criteri

¢Ese grupo de whastapp es realmente cool para valorar si ese es tumejor outfit

NOVIAS TV BLOGS FOROS

Apersonasles qusta Vogus Espaiia

ke

Q
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CONCLUSIONS

m ., EEE_CD_UK FASHION ~ COMPUTER VISION

MACHINE LEARNING ~ TECHNOLOGY

FASHION / g KATIE COLLINS

000000 :u::

2 comments

Are you ever worried your friends aren’t being honest with

Cluless Makeover
you about your taste in fashion? Well now you can turn to a
computer in order to have your suspicions confirmed, or not,
as the case nay be. Don’t be downcast if it turns out your

outfits are not de rigeur, however the software can also

help you plan a Cher from Clueless-style makeover.

Researchers at the Unive:

sity of Toronto have developed an
algorithm that uses a combination of computer vision and

1§
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SUMMARY

Feature Point Descriptors
Deformation and Light Invariant (DaLl) Descriptor
Deep Convolutional Neural Network Descriptors
Generative 3D Human Pose Models
Linear Latent Models
Directed Acyclic Graphs
Geodesic Finite Mixture Models
3D Human Pose Estimation
3D Pose Estimation from Noisy Observations
Joint 2D and 3D Pose Estimation
Fashion Understanding

Semantic Segmentation of Clothing
Modelling Fashionability
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CONCLUSIONS

Low to high level overview of human-centric computer vision
Computer Vision and Machine Learning are highly intertwined
Must stay up to date and exploit existing tools

Code is available for most projects [1]
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FUTURE DIRECTIONS

Holistic models - multiple tasks at once
More real world applications
More features from state of the art (deep networks)
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QUESTIONS?

HTTP:/ /WWW.IRI.UPC.EDU/PEOPLE/ESIMO/
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