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motivation

Lots of information can be obtained from a single image
Location, conteĀt, roles, relationships, . . .

Prior knowledge is necessarā
Must build frameworks from the ground up
This thesis is an effort towards higher level image understanding
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deformation and light invariant ٳdaliٲ descriptor

Deformation and Light Invariant
ϯDaLIϰ Descriptor
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Deep Convolutional Neural Network Descriptors
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deformation and light invariant ٳdaliٲ descriptor

Problem: matching points of interest under:
Non-rigid deformations
Photometric changes

Ͷ



invariance to deformation

Diffusion of heat for ͰD mesh matching
Invariant to isometries
Solution is given bā Heat Kernel Signature [ͮ]
Time interval corresponds to globalness of the description

Embed the image as a ͰD surface to applā to images
Heat diffusion along the surface is used as a descriptor

ͮJ. Sun, M. Ovsjanikov, L. Guibas. A concise and provablā informative multi-scale signature based
on heat diffusion. In Eurographics Sāmposium on Geometrā Processing, ͯͭͭͶ.

ͮͭ



invariance to deformation

Diffusion of heat for ͰD mesh matching
Invariant to isometries
Solution is given bā Heat Kernel Signature [ͮ]
Time interval corresponds to globalness of the description

Embed the image as a ͰD surface to applā to images

Heat diffusion along the surface is used as a descriptor

ͮJ. Sun, M. Ovsjanikov, L. Guibas. A concise and provablā informative multi-scale signature based
on heat diffusion. In Eurographics Sāmposium on Geometrā Processing, ͯͭͭͶ.

ͮͭ



invariance to deformation

Diffusion of heat for ͰD mesh matching
Invariant to isometries
Solution is given bā Heat Kernel Signature [ͮ]
Time interval corresponds to globalness of the description

Embed the image as a ͰD surface to applā to images
Heat diffusion along the surface is used as a descriptor

ͮJ. Sun, M. Ovsjanikov, L. Guibas. A concise and provablā informative multi-scale signature based
on heat diffusion. In Eurographics Sāmposium on Geometrā Processing, ͯͭͭͶ.

ͮͭ



invariance to illumination

HKS is sensitive to scale ϯilluminationϰ
Use Fast Fourier Transform to gain invariance to scale [ͯ]
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ͯM. Bronstein, I. Kokkinos. Scale-invariant heat kernel signatures for non-rigid shape recognition.
In C3PR, ͯͭͮͭ.
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dali dataset

New deformation and illumination dataset
ͮͯ objects, ͱ deformation levels, ͱ illumination levels
Manual annotation of correspondences

D eform at ion L evel

D eform . L evel # 0 D eform . L evel # 1 D eform . L evel # 2 D eform . L evel # 3
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dali dataset

New deformation and illumination dataset
ͮͯ objects, ͱ deformation levels, ͱ illumination levels
Manual annotation of correspondences

I llum inat ion Changes
I ll. Condit ions # 0 I ll. Condit ions # 1 I ll. Condit ions # 2 I ll. Condit ions # 3
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dali results

DaLI outperforms all, especiallā in illumination

Descriptor Deformation Illumination Deformation+
Illumination

DaLI-PCA 67.425 85.122 68.368
DaLI 70.577 89.895 72.912
DAISY 67.373 75.402 66.197
SIFT 55.822 60.760 53.431
LIOP 58.763 60.014 52.176

PiĀel Diff. 54.714 65.610 54.382
NCC 38.643 62.042 41.998
GIH 37.459 28.556 31.230
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deep convolutional neural network descriptors

Deformation and Light Invariant
ϯDaLIϰ Descriptor
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siamese networks

Learn using pairs of patches
jointlā
Minimize distance for ”same”
patches, maĀimize for
”different” patches
Need to use all the tricks to get
good performance

ͮͲ



best network

Implemented in Torchʹ ϯLua, LeCun et al.ϰ
INPUT: ͳͱĀͳͱ patch
Ͱ Convolutional laāers, ͱͳ,ͯʹͯ parameters
ͮ. ͰͯĀʹĀʹ Kernel, Tanh, ͯĀ pooling, normalization
ͯ. ͳͱĀͳĀͳ Kernel, Tanh, ͰĀ pooling, normalization
Ͱ. ͮͯ͵ĀͲĀͲ Kernel, Tanh, ͱĀ pooling

OUTPUT: ͮͯ͵ dimension vector

ͮͳ



data

Learn on Structure from Motion dataset
Ground truth created bā using ͰD structure

ͮʹ



mining

Sampling approach for negatives/positives
ͮͭͳ positives, ͮͭͮͯ negatives

Large amounts of mining
Essential for performance
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results

Train Test SIFT CNN3 PR AUC Increase
LY+YOS ND 0.349 0.667 91.1%
LY+ND YOS 0.425 0.545 28.2%
YOS+ND LY 0.226 0.608 169.0%
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feature point descriptors

Deformation and Light Invariant
ϯDaLIϰ Descriptor
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conclusions

SIFT is ubiquitous in computer vision
Better alternatives out there ϯDAISY, DaLI, . . .ϰ

Alternative descriptions can be complementarā
Trend to move awaā from hand-crafted features to learnt features
continues
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overview

Shape Models ϯHasler et al., ͯͭͭͶϰ

GPDM Models ϯ4ang et al., ͯͭͭͲϰ
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overview

Overview of different generative ͰD human pose models

Model CompleĀitā Scales? Consistent? PDF?

GMM Low Yes No Yes
PGA Low Yes Yes No

GPL3M Low No No Yes
GPDM Medium No No Yes

hGPL3M Medium No No Yes
CRBM High Yes No Yes
GCMFA High No No Yes

PCA Low Yes No No
DAG Medium Yes No Yes

GFMM Low Yes Yes Yes
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linear latent models ٳpcaٲ

Linear Latent Model ϯPCAϰ
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linear latent models ٳpcaٲ

Represent pose as a linear combination of deformation bases

x = xͭ +
nm∑

i=ͮ

αiqi = xͭ + Qα

Bases found bā computing S3D on the covariance of training data
nm eigenvectors corresponding to largest eigenvalues as basis
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linear latent models ٳpcaٲ

Dimension of the Latent Space nm
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linear latent models ٳpcaٲ
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3erā fast to both train and use
Linear formulation

Not probabilistic

Can generate non-anthropomorphic poses

ͯ͵



linear latent models ٳpcaٲ

−5000500100015002000−1000−5000

−500

0

500

1000

1500

3erā fast to both train and use
Linear formulation
Not probabilistic
Can generate non-anthropomorphic poses

ͯ͵



directed acyclic graphs ٳdagٲ

Linear Latent Model ϯPCAϰ
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directed acyclic graphs ٳdagٲ

Model pose with a graphical model
Probabilisticallā encode plausible configurations
Directed Acāclic Graph allows for dānamic programming
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Poses discreticized with k-means
clustering
Discrete locations associated with latent
states
Learnt using maĀimum likelihood
Efficient functions that map from latent
space to pose and back
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geodesic finite mixture models ٳgfmmٲ

Linear Latent Model ϯPCAϰ
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overview

Model Probabilitā Densitā Function ϯPDFϰ of data on a manifold
Fullā unsupervised algorithm
Efficient implementation
One tangent space per cluster

Ͱͯ



manifolds, geodesics, and tangent spaces

Geodesic distance between two points on a manifold is the
shortest distance along the manifold

Tangent space is a local approĀimation of a manifold that is a
Euclidean space
logarithm and eĀponential map project to and from a tangent space
respectivelā
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manifolds, geodesics, and tangent spaces

Geodesic distance between two points on a manifold is the
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statistics on tangent spaces

EĀpectation-MaĀimization algorithm
Minimum Message Length used to determine number of clusters
Random initialization with large amount of clusters

EĀpectation
Data softlā assigned to clusters

MaĀimize probabilitā with tangent spaces
Mean estimated on the manifold using the geodesic mean
Covariance estimated on the tangent space in closed form
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statistics on tangent spaces

EĀpectation-MaĀimization algorithm
Minimum Message Length used to determine number of clusters
Random initialization with large amount of clusters

EĀpectation
Data softlā assigned to clusters

MaĀimize probabilitā with tangent spaces
Mean estimated on the manifold using the geodesic mean
Covariance estimated on the tangent space in closed form

Ͱͱ



results - synthetic
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results - regression

Regression gives another GFMM

Scenario 1 Scenario 2 Scenario 3
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summary

Linear Latent Model ϯPCAϰ
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summary

Overview of different generative ͰD human pose models

Model CompleĀitā Scales? Consistent? PDF?

PCA Low Yes No No
DAG Medium Yes No Yes

GFMM Low Yes Yes Yes

Manā different waās to model the pose
Each models has different strengths/weaknesses
EĀploiting known properties is beneficial

Now to models in action!
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dױ human pose estimation
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problem definition

GI3EN:

Single input image
Internal calibration A
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problem definition

GI3EN:

Single input image
Internal calibration A

OBJECTI3E:
Retrieve ͰD pose
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dױ pose estimation from noisy observations

Single Image ͰD Human Pose
Estimation from Noisā
Observations
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dױ pose estimation from noisy observations

Single Monocular
2D Image

2D Part
Detector

Uncertainty
Propagation

Stochastic
Sampling

Clustering

EXPLORATION OF AMBIGUOUS HYPOTHESES

Compute
Distance Vectors

Sort by
OCSVM

HYPOTHESES DISAMBIGUATION

3D Pose
Estimation
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dױ pose estimation from noisy observations
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uncertainty propagation

Projective Linear Deformation Model
Camera projection can be written as a linear equation

Principal component analāsis is also a linear equation
Rank deficient sāstem

Mx = ͭ

x xͭ Q MQ Mxͭ ͭ

ͯD Gaussians propagated through linear sāstem to poses

MQ Mxͭ
T
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uncertainty propagation

Projective Linear Deformation Model
Camera projection can be written as a linear equation
Principal component analāsis is also a linear equation
Rank deficient sāstem

Mx = ͭ
x = xͭ + Qα

}

=⇒ MQα+Mxͭ = ͭ

ͯD Gaussians propagated through linear sāstem to poses
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uncertainty propagation

Projective Linear Deformation Model
Camera projection can be written as a linear equation
Principal component analāsis is also a linear equation
Rank deficient sāstem

Mx = ͭ
x = xͭ + Qα

}

=⇒ MQα+Mxͭ = ͭ

ͯD Gaussians propagated through linear sāstem to poses

µα =− (MQ)†Mxͭ

Σα =
δα

δµ
Σµ

(
δα

δµ

)T
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results

G. Truth Detection Opt. PCA Best Rec. Best Err. Ours

S1, 4alk Ͷ.͵± Ͳ.Ͱ pĀ 24.8mm 46.6mm 805.0mm 55.3mm

S2, 4alk ͮͰ.ʹ± Ͳ.ͯ pĀ 22.1mm 102.4mm 284.5mm 102.4mm

S2, Jog ͮͰ.ͭ± ͵.͵ pĀ 15.4mm 68.8mm 157.3mm 68.8mm

S3, Jog ͮʹ.Ͳ± ͮͰ.ͭ pĀ 26.3mm 72.6mm 105.3mm 89.5mm

ͱͲ



joint dװ and dױ pose estimation

Single Image ͰD Human Pose
Estimation from Noisā
Observations
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joint dװ and dױ pose estimation

Propose single framework for ͯD and ͰD
Probabilistic eĀtendible framework
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bayesian formulation

Consider image evidence to be independent for each part:

p (D | L) =
N∏

i=ͮ

p (di | li)

Baāes’ rule and consider p L p L 9 p 9 H p H
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bayesian formulation

Consider image evidence to be independent for each part:

p (D | L) =
N∏

i=ͮ

p (di | li)

Baāes’ rule and consider p (L) = p (L | 9)p (9 | H)p (H)

p (9 | D) ∝ p (H)p (9 | H)
︸ ︷︷ ︸

generative

N∏

i=ͮ

(p (di | li)p (li | xi))
︸ ︷︷ ︸

discriminative
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bayesian formulation

...

+

Best Estimation Found

Sampling Projection

DISCRIMINATION BY 2D PART DETECTORS

PROBABILISTIC GENERATIVE MODEL SAMPLING
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results - humaneva

INPUT OPTIMIZATION OUTPUT

S1 S2 S3 Depth Errors Other Failures

A1

A2

ͱ͵



results - tud stadmitte
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results - quantitative

4alking ϯA1,C1ϰ
S1 S2 S3

Joint Model 65.1 ϯ17.4ϰ 48.6 ϯ29.0ϰ 73.5 ϯ21.4ϰ
Noisā Observations 99.6 ϯ42.6ϰ 108.3 ϯ42.3ϰ 127.4 ϯ24.0ϰ

[1] ϯtrackingϰ 89.3 108.7 113.5
[2] ϯtrackingϰ - 107 ϯ15ϰ -

[3] ϯbackground subtractionϰ 38.2 ϯ21.4ϰ 32.8 ϯ23.1ϰ 40.2 ϯ23.2ϰ
Jogging ϯA2,C1ϰ

S1 S2 S3

Joint Model 74.2 ϯ22.3ϰ 46.6 ϯ24.7ϰ 32.2 ϯ17.5ϰ
Noisā Observations 109.2 ϯ41.5ϰ 93.1 ϯ41.1ϰ 115.8 ϯ40.6ϰ

[3] ϯbackground subtractionϰ 42.0 ϯ12.9ϰ 34.7 ϯ16.6ϰ 46.4 ϯ28.9ϰ

ͮM. Andriluka, S. Roth, B. Schiele. Monocular Ͱd pose estimation and tracking bā detection. In C3PR, ͯͭͮͭ.
ͯB. Daubneā, 9. 9ie. Tracking Ͱd human pose with large root node uncertaintā. In C3PR, ͯͭͮͮ.
ͰL. Bo, C. Sminchisescu. Twin Gaussian Processes for Structured Prediction. IJC3, ͵ʹϯͮ-ͯϰ: ͯ͵-Ͳͯ, ͯͭͮͭ.
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dױ pose estimation

Single Image ͰD Human Pose
Estimation from Noisā
Observations
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A Joint Model for ͯD and ͰD Pose
Estimation from a Single Image

Ͳͮ



conclusions

Single image ͰD pose estimation is an ambiguous problem
ͯD evidence is verā unreliable
Strong models necessarā for performance
Joint models perform best
Can eĀploit information
Delaā decision until the end
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overview
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Skirt

Choker

Blouse

Handbag

Jacket

Claustrophobic Setting

User Cluster 20

Brown/Blue Jacket (2)

Black Casual (7)

Black Boots/Tights (4)

Black/Blue Going out (3)

Prediction

Recommendation

Image

Description

Prior Models

Pose

Estimation

Semantic

Segmentation

Fashion

Understanding
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semantic segmentation of clothing

Semantic Segmentation of Clothing

Claustrophobic Setting

User Cluster 20

Brown/Blue Jacket (2)

Black Casual (7)

Black Boots/Tights (4)

Black/Blue Going out (3)

Prediction

Recommendation
Modelling Fashionabilitā
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clothes parsing problem

Semantic segmentation of clothing garments
Large inter and intra class variabilitā
Fine-grained recognition task

background heels blazer stockings blouse hat

hair wedges cardigan tights top purse

skin shoes jumper shorts skirt belt

Ͳͳ



contributions

Ͱͭ% over state-of-the-art performance
Novel potentials that eĀploit the task
Efficient model that dresses the person

Input Truth [1] Ours

ͮK. Yamaguchi, H. Kiapour, L.E. Ortiz, T.L. Berg. Parsing clothing in fashion photographs. In C3PR,
ͯͭͮͯ.
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crf model

SuperpiĀels labels
āi ∈ {ͮ, . . . , C}
Limb segment labels
lp ∈ {ͮ, . . . , C}
Unarā potentials
Simple features
Person Mask
Clothelets
Shape features

Pairwise potentials
Similaritā between superpiĀels
Limbs
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crf model

SuperpiĀels labels
āi ∈ {ͮ, . . . , C}
Limb segment labels
lp ∈ {ͮ, . . . , C}
Unarā potentials
Simple features
Person Mask
Clothelets
Shape features

Pairwise potentials
Similaritā between superpiĀels
Limbs

Reduce compleĀitā

More discriminative

Ͳ͵



crf model

SuperpiĀels labels
āi ∈ {ͮ, . . . , C}
Limb segment labels
lp ∈ {ͮ, . . . , C}
Unarā potentials
Simple features
Person Mask
Clothelets
Shape features

Pairwise potentials
Similaritā between superpiĀels
Limbs

ͯD Pose Detector ϯYang and
Ramanan, C3PR ͯͭͮͮϰ

Problem specific

Ͳ͵



crf model

SuperpiĀels labels
āi ∈ {ͮ, . . . , C}
Limb segment labels
lp ∈ {ͮ, . . . , C}
Unarā potentials
Simple features
Person Mask
Clothelets
Shape features

Pairwise potentials
Similaritā between superpiĀels
Limbs

Color, teĀture, and location
histograms ϯYamaguchi et al., C3PR
ͯͭͮͯϰ

Input GT Unarā
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crf model

SuperpiĀels labels
āi ∈ {ͮ, . . . , C}
Limb segment labels
lp ∈ {ͮ, . . . , C}
Unarā potentials
Simple features
Person Mask
Clothelets
Shape features

Pairwise potentials
Similaritā between superpiĀels
Limbs

Foreground/background
segmentation bā CPMC ϯCarreira
and Sminchisescu, PAMI ͯͭͮͯϰ

Input GT Unarā
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crf model

SuperpiĀels labels
āi ∈ {ͮ, . . . , C}
Limb segment labels
lp ∈ {ͮ, . . . , C}
Unarā potentials
Simple features
Person Mask
Clothelets
Shape features

Pairwise potentials
Similaritā between superpiĀels
Limbs

Pose-conditioned garment
likelihood

Input Socks Jacket

Ͳ͵



crf model

SuperpiĀels labels
āi ∈ {ͮ, . . . , C}
Limb segment labels
lp ∈ {ͮ, . . . , C}
Unarā potentials
Simple features
Person Mask
Clothelets
Shape features

Pairwise potentials
Similaritā between superpiĀels
Limbs

Enriched SIFT descriptors with
second order pooling ϯCarreira and
Sminchisescu, ECC3 ͯͭͮͯϰ

Input GT Unarā

Ͳ͵



crf model

SuperpiĀels labels
āi ∈ {ͮ, . . . , C}
Limb segment labels
lp ∈ {ͮ, . . . , C}
Unarā potentials
Simple features
Person Mask
Clothelets
Shape features

Pairwise potentials
Similaritā between superpiĀels
Limbs

Shape, color, and teĀture similaritā
ϯUijlings et al., ͯͭͮͰϰ

Input GT Pairwise
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crf model

SuperpiĀels labels
āi ∈ {ͮ, . . . , C}
Limb segment labels
lp ∈ {ͮ, . . . , C}
Unarā potentials
Simple features
Person Mask
Clothelets
Shape features

Pairwise potentials
Similaritā between superpiĀels
Limbs

Connect superpiĀels to limbs using
ͯD pose

Input GT Pairwise
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full model

Input GT Pose Mask Shape Feat. Limbs Simple Feat. Full Model
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results

Evaluation on the Fashionista dataset
∼ʹͭͭ images
ͯͶ and Ͳͳ class settings

Metric is Jaccard indeĀ or Intersection over Union: tp
tp+fp+fn

29 Classes 56 Classes
Method [1] Ours [1] [2] Ours

Jaccard indeĀ 12.32 20.52 7.22 9.22 12.28

ͮK. Yamaguchi, H. Kiapour, L.E. Ortiz, T.L. Berg. Parsing clothing in fashion photographs. In C3PR,
ͯͭͮͯ.
ͯK. Yamaguchi, H. Kiapour, T.L. Berg. Paper Doll Parsing: Retrieving Similar Stāles to Parse Clothing
Items. In ICC3, ͯͭͮͰ.
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results - qualitative

Input Truth [1] Ours Input Truth [1] Ours

ͮK. Yamaguchi, H. Kiapour, L.E. Ortiz, T.L. Berg. Parsing clothing in fashion photographs. In C3PR,
ͯͭͮͯ.

ͳͮ



inferring fashionability and recommendations

Semantic Segmentation of Clothing

Claustrophobic Setting

User Cluster 20

Brown/Blue Jacket (2)

Black Casual (7)

Black Boots/Tights (4)

Black/Blue Going out (3)

Prediction

Recommendation

Modelling Fashionabilitā
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contributions

Large novel dataset ϯͮͱͱ,ͮ ͳͶ posts!ϰ
Understand and model fashionabilitā
Give fashion advice!

COMMENTS

LOS ANGELES, CA

CHIC

EVERDAY

FALL

TAGS

WHITE-BOOTS

COLOURS

466 FANS

288 VOTES 

62 FAVOURITES
White Cheap Monday Boots

Chilli Beans Sunglasses

Missguided Romper

Daniel Wellington Watch 

GARMENTS

Nice!!

Love the top!

cute

NOVEMBER 10, 2014

...

ͳͰ



contributions

Large novel dataset ϯͮͱͱ,ͮ ͳͶ posts!ϰ
Understand and model fashionabilitā
Give fashion advice!

Claustrophobic Setting

User Cluster 20

Brown/Blue Jacket (2)

Black Casual (7)

Black Boots/Tights (4)

Black/Blue Going out (3)

Prediction

Recommendation

ͳͰ



dataset

Miss Grey

Updated on Nov 16, 2014

Pointed Toe Suede Boots MIAMASVIN Boots

Dark Gray Double Breasted Coat MIAMASVIN Coat

Silver Skinny Jeans MIAMASVIN Jeans

Tan Chunky Turtleneck Pullover MIAMASVIN Sweater

// buy at miamasvin.net

 // buy at miamasvin.net

 // buy at miamasvin.net

 // buy at miamasvin.net

315

6592 chic points

http://miamasvin.net

miamiyu
from Seoul

410 VOTES

8 COMMENTS

82 FAVORITES

Chic

Brunch

Fall

Tags

reply

lizolsen2011 on November 18 via Android

So chic! love white jeans for winter!

reply

EmmaZ on November 18

love the bag!

reply

lovethemcurves on November 18

I love your clutch! :)

reply

stylepledge on November 18

lovely look!

reply

ShellyStuckman on November 17

So lovely!

reply

AruNeko on November 17

Gorgeous Outfit! So elegant

reply

hazelkrisferrando on November 17

love

reply

last_tango_in_paris on November 17

love thzt clutch!

Photo

Garments

Tags

Colours

Comments

Post Details

 - Votes

 - Comments

 - Favourites

User Details

 - Followers

 - Location

Date

ͳͱ



features

Feature Dim. Description

Fans 1 Number of user’s fans.
∆T 1 Time between post creation and download.

Comments 5 Sentiment analāsis [1] of comments.
Location 266 Distance from location clusters.
Personal 21 Face recognition attributes.

Stāle 20 Stāle of the photographā [2].
Scene 397 Output of scene classifier trained on [3].
Tags 209 Bag-of-words with post tags.

Colours 604 Bag-of-words with colour tags.
Singles 121 Bag-of-words with split colour tags.

Garments 1352 Bag-of-words with garment tags.

ͮR. Socher, A. Perelāgin, J. 4u, J. Chuang, C. D. Manning, A. Y. Ng, C. Potts. Recursive deep models
for semantic compositionalitā over a sentiment treebank. In EMNLP, ͯͭͮͰ.
ͯS. Karaāev, A. Hertzmann, H. 4innemoeller, A. Agarwala, T. Darrell. Recognizing image stāle. In
BM3C, ͯͭͮͱ.
ͰJ. 9iao, J. Haās, K. A. Ehinger, A. Oliva, A. Torralba. Sun database: Large-scale scene recognition
from abbeā to zoo. In C3PR, ͯͭͮͭ.
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modelling fashion

Model eĀplicitlā user ϯuϰ, outfit ϯoϰ, setting ϯsϰ, and fashionabilitā ϯf ϰ
Features compressed using complementarā deep networks

Fans

Personal
Scene

Location

Singles

Colours

Garments

Comments

ΔT

Tags

Style

Softmax

CRF Models Relationships between latent states
Fans

Personal

Location

Scene

Colours

Singles

Garments

ΔT
Comments

Style

Tags
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results

Model Acc. Pre. Rec. IOU Lͮ

CRF 29.27 30.42 28.69 17.36 1.46
Deep Net 30.42 31.11 30.26 18.41 1.45
Log. Reg. 23.92 22.54 22.99 12.55 1.91
Baseline 16.28 - 10.00 1.63 2.32
Random 9.69 9.69 9.69 4.99 3.17

Recommendations: MAP estimate from conditional inference
Current Outfit:

Pink/Black Misc. (5)

Recommendations:

Pastel Dress (8)

Black/Blue Going out (8)

Black Casual (8)

Current Outfit:

Pink Outfit (3)

Recommendations:

Heels (8)

Pastel Shirts/Skirts (8)

Black/Gray Tights/Sweater (5)

Current Outfit:

Pink/Blue Shoes/Dress Shorts (3)

Recommendations:

Black/Gray Tights/Sweater (5)

Black Casual (5)

Black Boots/Tights (5)

Current Outfit:

Blue with Scarf (3)

Recommendations:

Heels (8)

Pastel Shirts/Skirts (8)

Black Casual (8)

Current Outfit:

Pink/Blue Shoes/Dress Shorts (3)

Recommendations:

Black Casual (7)

Black Heavy (3)

Navy and Bags (3)

Current Outfit:

Formal Blue/Brown (5)

Recommendations:

Pastel Shirts/Skirts (9)

Black/Blue Going out (8)

Black Boots/Tights (8)
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fashion understanding

Semantic Segmentation of Clothing

Claustrophobic Setting

User Cluster 20

Brown/Blue Jacket (2)

Black Casual (7)

Black Boots/Tights (4)

Black/Blue Going out (3)

Prediction

Recommendation
Modelling Fashionabilitā
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conclusions

Fashion is verā challenging!
Hard for humans too!

Proper framework is fundamental ϯCRF, . . .ϰ
Model must be tailored to the problem
Potentials must be tailored to the problem
Have to eĀploit as much information available
Lots of room for improvement

ͳͶ
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summary

Feature Point Descriptors
Deformation and Light Invariant ϯDaLIϰ Descriptor
Deep Convolutional Neural Network Descriptors

Generative ͰD Human Pose Models
Linear Latent Models
Directed Acāclic Graphs
Geodesic Finite MiĀture Models

ͰD Human Pose Estimation
ͰD Pose Estimation from Noisā Observations
Joint ͯD and ͰD Pose Estimation

Fashion Understanding
Semantic Segmentation of Clothing
Modelling Fashionabilitā
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publications

Simo-Serra, E., Ramisa, A., Alenāà, G., Torras, C., and Moreno-Noguer, F. Single Image ͰD Human
Pose Estimation from Noisā Observations. In IEEE Conference on Computer 3ision and Pattern
Recognition, ͯͭͮͯ.

Simo-Serra, E., Quattoni, A., Torras, C., and Moreno-Noguer, F. A Joint Model for ͯD and ͰD Pose
Estimation from a Single Image. In IEEE Conference on Computer 3ision and Pattern
Recognition, ͯͭͮͰ.

Simo-Serra, E., Torras, C., and Moreno-Noguer, F. Geodesic Finite MiĀture Models. In British
Machine 3ision Conference, ͯͭͮͱ.

Simo-Serra, E., Fidler, S., Moreno-Noguer, F., and Urtasun, R. A High Performance CRF Model for
Clothes Parsing. In Asian Conference on Computer 3ision, ͯͭͮͱ.

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., and Moreno-Noguer, F. Fracking Deep
Convolutional Image Descriptors. ar9iv preprint ar9iv:ͮͱͮͯ.ͳͲͰ ,ʹ ͯͭͮͱ.

Simo-Serra, E., Torras, C., and Moreno-Noguer, F. DaLI: Deformation and Light Invariant
Descriptor. International Journal of Computer 3ision, ͯͭͮͲ.

Simo-Serra, E., Torras, C., and Moreno-Noguer, F. Lie Algebra-Based Kinematic Prior for ͰD
Human Pose Tracking. In International Conference on Machine 3ision and Applications [best
paper], ͯͭͮͲ.

Simo-Serra, E., Fidler, S., Moreno-Noguer, F., and Urtasun, R. Neuroaesthetics in Fashion:
Modeling the Perception of Fashionabilitā. In IEEE Conference on Computer 3ision and Pattern
Recognition, ͯͭͮͲ. ʹͯ



conclusions

Low to high level overview of human-centric computer vision
Computer 3ision and Machine Learning are highlā intertwined
Must staā up to date and eĀploit eĀisting tools
Code is available for most projects [ͮ]

ͮhttp://www.iri.upc.edu/people/esimo/
ʹͰ



future directions

Holistic models - multiple tasks at once
More real world applications
More features from state of the art ϯdeep networksϰ
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Holistic models - multiple tasks at once
More real world applications
More features from state of the art ϯdeep networksϰ
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thanks

Thanks to mā directors, collaborators, friends, familā, supporters,
and most importantlā...
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Questions?

http://www.iri.upc.edu/people/esimo/
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