Edgar SIMO-SERRA
シモセラ エドガー
I(u,v)∈{0,…,255}3
(0,0)
be?c
or integer d
and are related byd=floor(c)c=d+0.5
y
given x
y−y0y1−y0=x−x0x1−x0
y
with y=y1−y0x1−x0(x−x0)+y0
plotLine(x0, y0, x1, y1)
dx = x1 - x0
dy = y1 - y0
D = 2*dy - dx
y = y0
for x from x0 to x1
draw(x,y)
if D > 0
y = y + 1
D = D - 2*dx
end if
D = D + 2*dy
f(x,y)=x−2y+2
from (0,1)
to (6,4)
z
-values (depth) and various shading information into pixels on screenz
-buffer (depth)illumination⋅reflection=stimulus
∫λstimulus(λ)response(λ)dλ
[XYZ]=[1.91020−1.112120.201910.370950.629050001.00000][LMS]HPE
[RGB]CIE=[2.3706743−0.9000405−0.4706338−0.51388501.42530360.08858140.0052982−0.01469491.0093968][XYZ]
[RGB]sRGB=[3.2404542−1.5371385−0.4985314−0.96926601.87601080.04155600.0556434−0.20402591.0572252][XYZ]
xγ
γ=2.2
is used (anything between 1.5 and 3.0 should be good enough for human eyes)(1,0,0)
to be twice as red as (0.5,0,0)
γ=2.2
) it becomes (1,0,0)
and (0.52.2,0,0)=(0.217,0,0)
resulting in a 4.5 times difference!x(1γ)
before passing the colour to the screenvec4 colour = process_scene();
// below is a bad but fast approximation of sRGB gamma correction
colour.rgb = pow( colour.rgb, vec3(1.0/2.2) ); // also possible with GL_FRAMEBUFFER_SRGB
gl_FragColor = colour;
GL_SRGB
or GL_SRGB_ALPHA
internal format in OpenGL, which converts to linear, or do it manually with xγ
Cγ={12.92Clinear,Clinear≤0.0031308(1+0.055)C(12.4)linear−0.055,else
col.rgb = mix( 1.055*pow(col.rgb,vec3(1.0/2.4))-0.055,
col.rgb*12.92, step(col.rgb, vec3(0.0031308)));
Clinear={Cγ12.92,Cγ≤0.04045(Cγ+0.0551.055)2.4,else
col.rgb = mix( pow((col.rgb+0.055)/1.055,vec3(2.4)),
col.rgb/12.92, step(col.rgb, vec3(0.04045)));
col.rgb = max(1.055 * pow(max(col.rgb, vec3(0.0)), vec3(0.41666666)) - 0.055, vec3(0.0));
col.rgb = col.rgb * (col.rgb * (col.rgb * 0.305306011 + 0.682171111) + 0.012522878);
What can transformations do?
There are three basic classes of transformations (irregardless of dimensions):
Translation by vector \bm{t} = (t_x, t_y)
:
\begin{bmatrix} q_x \\ q_y \end{bmatrix} =
\begin{bmatrix} p_x \\ p_y \end{bmatrix} +
\begin{bmatrix} t_x \\ t_y \end{bmatrix}
vec2 transform( vec2 p ) { return p + 0.5*cos(u_time); }
Rotation by \theta
around origin (0,0)
:
\begin{bmatrix} q_x \\ q_y \end{bmatrix} =
\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}
\begin{bmatrix} p_x \\ p_y \end{bmatrix}
vec2 transform( vec2 p ) { float c, s; c = cos(u_time); s = sin(u_time); /* Have to invert because we are not moving object but camera! */ return inverse(mat2(c,s,-s,c)) * p; }
Scaling by (s_x, s_y)
:
\begin{bmatrix} q_x \\ q_y \end{bmatrix} =
\begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}
\begin{bmatrix} p_x \\ p_y \end{bmatrix}
vec2 transform( vec2 p ) { vec2 s = vec2( cos(u_time), sin(u_time) )*0.5 + 1.0; /* Have to invert because we are not moving object but camera! */ return inverse(mat2(s.x,0,0,s.y)) * p; }
Shearing on the x
-axis by scalar h
:
\begin{bmatrix} q_x \\ q_y \end{bmatrix} =
\begin{bmatrix} 1 & h \\ 0 & 1 \end{bmatrix}
\begin{bmatrix} p_x \\ p_y \end{bmatrix}
vec2 transform( vec2 p ) { float h = cos(u_time); /* Have to invert because we are not moving object but camera! */ return inverse(mat2(1,0,h,1)) * p; }
Reflection across the y
-axis.
\begin{bmatrix} q_x \\ q_y \end{bmatrix} =
\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}
\begin{bmatrix} p_x \\ p_y \end{bmatrix} =
\begin{bmatrix} -p_x \\ p_y \end{bmatrix}
In more general, an affine transformation can be written as:
\bm{q} = \begin{bmatrix} q_x \\ q_y \end{bmatrix} =
\begin{bmatrix} a & b \\ c & d \end{bmatrix}
\begin{bmatrix} p_x \\ p_y \end{bmatrix} +
\begin{bmatrix} t_x \\ t_y \end{bmatrix} = A \bm{p} + \bm{t}
and have the following properties:
\det(A)
.Affine transformations defined as \bm{q} = \bm{A} \bm{p} + \bm{t}
are tedious to
compose and need lots of book keeping. Can we represent them directly with matrices?
Answer: homogeneous coordinates
We do the following rewrite:
\bm{q} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\begin{bmatrix} p_x \\ p_y \end{bmatrix} +
\begin{bmatrix} t_x \\ t_y \end{bmatrix} =
\begin{bmatrix} a & b & t_x\\ c & d & t_y\end{bmatrix}
\begin{bmatrix} p_x \\ p_y \\ 1\end{bmatrix} =
\begin{bmatrix} \bm{A} & \bm{t} \end{bmatrix}
\begin{bmatrix} \bm{p} \\ 1\end{bmatrix} = \bm{\hat{p}}
Note that all points (\alpha \bm{p}, \alpha)
represent the same point for \alpha \neq 0
What if we want \bm{\hat{q}} = (\bm{q}, 1)
?
\bm{\hat{q}} =
\begin{bmatrix} a & b & t_x\\ c & d & t_y \\ 0 & 0 & 1\end{bmatrix}
\begin{bmatrix} p_x \\ p_y \\ 1\end{bmatrix} =
\begin{bmatrix} \bm{A} & \bm{t} \\ \bm{0}^\intercal & 1\end{bmatrix}
\bm{\hat{p}} =
\bm{H} \bm{\hat{p}}
To get \bm{q}
from \bm{\hat{q}}
we simply divide by the last component of \bm{\hat{q}}
and discard it.
Transformations can now be composited simply by multiplication. Given two homogeneous matrices H_1
and H_2
we can compose them as:
\bm{\hat{q}} = \bm{H_2} \bm{H_1} \bm{\hat{p}}
Note that matrix multiplication is not commutative: the order matters!
\bm{H_1} =
\begin{bmatrix} \cos(t) & -\sin(t) & 0 \\ \sin(t) & \cos(t) & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad
\bm{H_2} =
\begin{bmatrix} 1 & 0 & 0.5 \cos(t) \\ 0 & 1 & 0.5 \cos(t) \\ 0 & 0 & 1 \end{bmatrix}
\bm{\hat{q}} = \bm{H_2} \bm{H_1} \bm{\hat{p}}
vec2 transform( vec2 p ) { float c, s; c = cos(u_time); s = sin(u_time); mat3 R = mat3( c, s, 0, -s, c, 0, 0, 0, 1 ); c *= 0.5; mat3 T = mat3( 1, 0, 0, 0, 1, 0, c, c, 1 ); /* Have to invert because we are not moving object but camera! */ vec3 q = inverse(T * R) * vec3(p,1); return q.xy / q.z; }
\bm{\hat{q}} = \bm{H_1} \bm{H_2} \bm{\hat{p}}
vec2 transform( vec2 p ) { float c, s; c = cos(u_time); s = sin(u_time); mat3 R = mat3( c, s, 0, -s, c, 0, 0, 0, 1 ); c *= 0.5; mat3 T = mat3( 1, 0, 0, 0, 1, 0, c, c, 1 ); /* Have to invert because we are not moving object but camera! */ vec3 q = inverse(R * T) * vec3(p,1); return q.xy / q.z; }
<canvas width="800" height="600" id="myCanvas"></canvas>
width
and height
are defined in pixelsid
has to be a unique identifier for each individual canvascanvas = document.getElementById("myCanvas");
graphics = canvas.getContext("2d");
<html>
<head>
<title>Canvas Demo</title>
<script>
let canvas; // DOM object corresponding to the canvas
let graphics; // 2D graphics context for drawing to the canvas
// Drawing function
function draw() {
graphics.fillText("Hello World", 50, 100 );
}
// Initialization function
function init() {
canvas = document.getElementById("myCanvas");
graphics = canvas.getContext("2d");
draw(); // Draw onto the canvas
}
window.onload = init; // Runs when window is loaded
</script>
</head>
<body>
<canvas width="800" height="600" id="myCanvas"></canvas>
</body>
</html>
(0,0)
in the upper-left cornerx
-axis increases to the righty
-axis increases as you go downgraphics.fillRect(x,y,w,h)
: draws a filled rectangle with corner at (x,y)
with width w
and height h
graphics.strokeRect(x,y,w,h)
: same as fillRect
but only the outline of the rectangle is drawngraphics.clearRect(x,y,w,h)
: clears the rectangle by drawing fully transparent pixels. Background is determined by HTML codegraphics.fillText(str,x,y)
: writes the string str
starting at position (x,y)
graphics.strokeText(str,x,y)
: same as fillText
but only draws the outlinegraphics.beginPath()
: starts a new path discarding previous ones. Cursor is not setgraphics.moveTo(x,y)
: moves cursor to (x,y)
without adding anythinggraphics.lineTo(x,y)
: adds a line segment starting at cursor, and ending at (x,y)
, then moves cursor to (x,y)
graphics.bezierCurveTo(cx1,cy1,cx2,cy2,x,y)
: adds a cubic Bezier curve from the cursor to (x,y)
using control points (cx1,cy1)
and (cx2,cy2)
graphics.quadraticCurveTo(cx,cy,x,y)
: adds a quadratic Bezier curve from the cursor to (x,y)
using control point (cx,cy)
graphics.arc(x,y,r,startAngle,endAngle)
: adds an arc with center (x,y)
and radius r
. Angles are set in radiansgraphics.closePath()
: adds a line from cursor back to starting point of the current segment of the curvegraphics.fill()
: fills the current path. This adds a final line to close the path as necessarygraphics.stroke()
: only draws the path stroke like with a virtual pen(100,200)
to (300,200)
:graphics.beginpath();
graphics.moveTo(100.5,200.5);
graphics.lineTo(300.5,200.5);
graphics.stroke()
graphics.beginPath();
graphics.arc(200,300,100,0,2*Math.PI);
graphics.fill();
graphics.beginPath();
graphics.moveTo(200,300);
for (let i=1; i<8; i++) {
let angle = (2*MathPI)/8*i;
let x = 200 + 100*Math.cos(angle);
let y = 400 + 100*Math.sin(angle);
graphics.lineTo(x,y);
}
graphics.closePath();
graphics.fill();
graphics.lineWidth = 2.5; // Set the line width (in pixels)
graphics.lineCap = "round"; // Set appearance of endpoints
// Possible lineCap are "round", "square", or "butt"
graphics.lineJoin = "round"; // Sets how lines are joined
// Possible lineJoin are "round", "bevel", or "miter"
graphics.fillStyle = "rgb(200,200,255)"; // Set fill colour
graphics.strokeStyle = "#0070A0"; // Set stroke colour
// Also possible to set font as shown below
graphics.font = "2cm monospace";
graphics.font = "bold 18px sans-serif";
graphics.font = "italic 150% serif";
graphics.scale(sx,sy)
: scalinggraphics.rotate(angle)
: rotates by angle
radians around the origingraphics.translate(tx,ty)
: translationgraphics.transform(a,b,c,d,e,f)
: applies affine transform (a*x+c*y+e, b*x+d*y+f)
graphics.setTransform(a,b,c,d,e,f)
: discard current transform and sets it like transform
graphics.transform(1,0,0.5,1,0,0)
graphics.save()
: pushes a copy of the current state (context, transforms, etc.) to the stackgraphics.restore()
: removes the top item from the stackgraphics.save();
graphics.translate(x,y);
graphics.scale(sx,sy);
graphics.beginPath();
graphics.arc(0, 0, 1, 0, 2*Math.PI );
graphics.restore();
graphics.stroke();
<img src="image.png" width="400" height="300" id="myImage">
image = document.getElementById("myImage");
graphics.drawImage(image,x,y,w,h)
: draws an image with upper-left corner at (x,y)
. w
and h
are optional parameters to specify the width and height