Edgar SIMO-SERRA
シモセラ エドガー
Lo
with the reflectance equation:
L_o(\bm{p},\bm{v}) = \int_{\bm{l}\in\Omega} \underbrace{f(\bm{l},\bm{v})}_\text{BRDF} \, \underbrace{L_i(\bm{l})}_\text{radiance} \, (\bm{n}\cdot\bm{l})^+ \, d \bm{l}
\bm{l}\in\Omega
indicates integration is done over \bm{l}
vectors in the unit hemisphere over the surface\bm{c}_\text{light}
representing reflected radiance from a white Lambertian surface facing towards the light (\bm{n}=\bm{l}_c
)
L_o(\bm{v}) = \int_{\bm{l}\in\omega_l} \, f(\bm{l},\bm{v}) \, L_l \, (\bm{n}\cdot\bm{l})^+ d\bm{l} \approx
\pi \, f(\bm{l}_c,\bm{v}) \, \bm{c}_\text{light} \, (\bm{n}\cdot\bm{l}_c)^+
L_o(\bm{v}) = \pi \, f(\bm{l}_c, \bm{v}) \, \bm{c}_\text{light} \, (\bm{n}\cdot\bm{l}_c)^+
L_o(\bm{v}) = \pi \sum_{i=1}^n f(\bm{l}_{c_i}, \bm{v}) \, \bm{c}_\text{light} \, (\bm{n}\cdot\bm{l}_{c_i})^+
L_o(\bm{v}) = \frac{\rho_\text{ss}}{\pi} E
E = \int_{\bm{l}\in\omega_l} L_l(\bm{n}\cdot\bm{l})^+ \, d\bm{l} \approx \pi \bm{c}_\text{light} (\bm{n}\cdot\bm{l}_c)^+
L_i
is wavelength-independent, we can compute the irradiance at a point \bm{p}
as
\bm{e}(\bm{p}) = \int_{\bm{l}\in\Theta} L_i(\bm{p},\bm{l})\,\bm{l}\,d\bm{l}
\Theta
\bm{p}
through a plane with normal \bm{n}
\underbrace{E(\bm{p},\bm{n})}_\text{"positive side"} - \underbrace{E(\bm{p},-\bm{n})}_\text{"negative side"} = \bm{n}\cdot\bm{e}(\bm{p})
\bm{l}
and \bm{n}
exceeds 90° \implies E(\bm{p},-\bm{n})=0
E(\bm{p},\bm{n}) = \bm{n}\cdot\bm{e}(\bm{p})
\bm{l}_c = \frac{\bm{e}(\bm{p})}{\|\bm{e}(\bm{p})\|}, \qquad
\bm{c}_\text{light} = \bm{c}' \frac{\|\bm{e}(\bm{p})\|}{\pi}
\bm{e}(\bm{p}) = \int_{\bm{l}\in\Theta} L_i(\bm{p},\bm{l})\,\bm{l}\,d\bm{l}
\bm{p}_l
with radius r_l
that emits L_l
from all points in all directions:
\bm{l}_c = \frac{\bm{p}_l - \bm{p}}{\|\bm{p}_l - \bm{p}\|}, \qquad
\bm{c}_\text{light} = \frac{r_l^2}{\|\bm{p}_l-\bm{p}\|^2} L_l
\alpha_g' = \left( \alpha_g + \frac{r_l}{2\|\bm{p}_l - \bm{p}\|} \right)^\mp
\int_D f(x) \, dx = f(c) \int_D 1, \qquad c \in D
c
and \int_D 1
\bm{p}_\text{cr} = (\bm{l}\cdot\bm{r})\,\bm{r}-\bm{l}
\bm{p}_\text{cs} = \bm{l} + \bm{p}_\text{cr} \cdot \min(1, \frac{\text{radius}}{\|\bm{p}_\text{cr}\|})
vec3 lighting( vec3 p, vec3 v, vec3 n ) { const vec3 albedo = vec3( 0.5, 0.0, 0.0 ); const vec3 light_pos = vec3(1.0); const float radius = 0.2; /* Karis most representative point approximation. */ vec3 l = normalize( light_pos - p ); vec3 r = reflect( v, n ); vec3 pcr = dot(l,r) * r - l; vec3 pcs = l + pcr * min( 1.0, radius / length(pcr) ); vec3 fdiff = pow(radius,2.0) / pow(distance(light_pos,p),2.0) * vec3(10.0) * albedo; return M_PI * (fdiff + fspec( normalize(pcs), v, n )) * max(0.0, dot(n,l)); }
vec3 lighting( vec3 p, vec3 v, vec3 n ) { const vec3 albedo = vec3( 0.5, 0.0, 0.0 ); vec3 light_pos = vec3(1.0); vec3 l = normalize( light_pos - p ); vec3 f = albedo / M_PI + fspec( l, v, n ); return M_PI * f * vec3(1.0) * max( 0.0, dot( n, l ) ); }
\int_{\bm{p}_0}^{\bm{p}_1} \left( \bm{n}\cdot\frac{\bm{x}}{\|\bm{x}\|} \right) \frac{1}{\|\bm{x}\|^2} dx =
\frac{ \frac{\bm{n}\cdot\bm{p}_0}{\|\bm{p}_0\|^2} + \frac{\bm{n}\cdot\bm{p}_1}{\|\bm{p}_1\|^2} }
{ \|\bm{p}_0\|\,\|\bm{p}_1\|+(\bm{p}_0\cdot\bm{p}_1) }
L_i \int_{\bm{l}\in\omega_l} (\bm{n}\cdot\bm{l})^+ \frac{1}{r_l^2} d\bm{l}
r_l
is the length of the ray from surface to light plane in direction \bm{l}
(\bm{n}\cdot\bm{l})^+
is \bm{p}_c
on the boundary of the light region closest to \bm{p}'
and found by intersecting the normal with the light plane1/r_l^2
is point \bm{p}_r
on the boundary closest to the point \bm{p}''
on the light plane closest to point being shaded\bm{p}_\text{max} = t_m \bm{c}_c + (1-t_m)\bm{p}_r
and can be found by numerical integration3 \times 3
matrix
Base
Roughness
Anisotropy
Skewness
L_A
:
L_o(\bm{v}) = \frac{\rho_\text{ss}}{\pi} L_A \int_{\bm{l}\in\Omega} (\bm{n}\cdot\bm{l})\,d\bm{l} = \underbrace{\rho_\text{ss} L_A}_\text{ambient light}
L_o(\bm{v}) = L_A \int_{\bm{l}\in\Omega} f(\bm{l},\bm{v}) \, (\bm{n}\cdot\bm{l})\,d\bm{l}
\implies
infinitely far away light\mathbb{R}^3
, with the domain denoted as S
F_c(\theta,\phi) = c\cdot 1
c = \frac{1}{4\pi} \int_\Omega f(\theta,\phi)
a
and b
:
F_\text{hemi}(\theta,\phi) = a + \frac{\cos(\theta)+1}{2}(b-a)
G(\bm{v},\bm{d},\lambda) = e^{\lambda(\bm{v}\cdot\bm{d}-1)}
\bm{v}
is evaluation direction (unit vector)\bm{d}
is lobe direction axis (unit vector)\lambda \geq 0
is lobe sharpness
F_G(\bm{v}) = \sum_k w_k G(\bm{v}, \bm{d}_k, \lambda_k)
\{ w_k, \bm{d}_k, \lambda_k \}
that minimize reconstruction error by optimization
G_1G_2 = G\left( \bm{v},\, \frac{\bm{d}'}{\|\bm{d}'\|},\, \lambda' \right) \\
\bm{d}'=\frac{\lambda_1\bm{d}_1 + \lambda_2\bm{d}|2}{\lambda_1+\lambda_2},\quad \lambda' = (\lambda_1 + \lambda_2)\|\bm{d}'\|
\int_\Omega G(\bm{v})\,d\bm{v} = 2\pi\frac{1-e^{2\lambda}}{\lambda}
\langle f_i(x),\, f_j(x) \rangle \equiv \int f_i(x) f_j(x) \, dx
\langle f_i(\bm{n}),\, f_j(\bm{n}) \rangle \equiv \int_{\bm{n}\in\Theta} f_i(\bm{n}) f_j(\bm{n}) \, d\bm{n}
\implies
inner product is 0 when i\neq j
and 1 otherwise
k_j = \langle f_\text{target} (),\, f_j() \rangle, \qquad f_\text{target}() \approx \sum_{j=1}^n k_j f_j()
E(\bm{n}) = \bm{c}_\text{ambient} + (\bm{n}\cdot\bm{d})^+ \bm{c}_\text{diffuse}
\bm{m}_0 = \left( \frac{-1}{\sqrt{6}},\, \frac{1}{\sqrt{2}},\, \frac{1}{\sqrt{3}} \right), \quad
\bm{m}_1 = \left( \frac{-1}{\sqrt{6}},\, \frac{-1}{\sqrt{2}},\, \frac{1}{\sqrt{3}} \right), \\
\bm{m}_2 = \left( \frac{\sqrt{2}}{\sqrt{3}},\, 0,\, \frac{1}{\sqrt{3}} \right), \quad
E(\bm{n}) = \frac{ \sum_{k=0}^2 \max(\bm{m}_k\cdot\bm{n},\,0)^2\,E_k }{ \sum_{k=0}^2 \max(\bm{m}_k\cdot\bm{n},\,0)^2 }
L_i
only depends on direction\bm{r}_i
\bm{r}
:
\bm{r} = 2(\bm{n}\cdot\bm{v})\bm{n} - \bm{v}
L_o(\bm{v}) = F(\bm{n},\bm{r})\, L_i(\bm{r})
F
uses angle between \bm{n}
and \bm{r}
(not \bm{h}
)L_i
depends on direction and is stored in 2D table\bm{r}
for each point and look up radiance\bm{r}
from \bm{v}
and \bm{n}
\bm{r}
L_o(\bm{v}) = F(\bm{n},\bm{r})\, L_i(\bm{r})
\bm{r}
clustering in small parts of the mapgl.TEXTURE_CUBE_MAP
without edge problems\bm{v}
and \bm{n}
\bm{v}
the specular lobe D
:
\sum_\Omega D(\bm{l},\bm{v}) \, L_i(\bm{l}) \, d\bm{l}
\sum_\Omega D(\bm{l},\bm{v}) \, L_i(\bm{l}) \, d\bm{l} \approx \lim_{N\to\infty} \frac{1}{N} \sum_{k=1}^N \frac{ D(\bm{l}_k,\bm{v}) \, L_i(\bm{l}_k)}{p(\bm{l}_k,\bm{v})}
\bm{l}_k
with k=1,2,\dots,N
are discrete samples over the unit spherep(\bm{l}_k,\bm{v})
is probability associated with direction \bm{l}_k
\int_{\bm{l}\in\Omega} f(\bm{l},\bm{v}) \, L_i(\bm{l}) \, (\bm{n}\cdot\bm{l}) \, d\bm{l} \approx F(\bm{n},\bm{v}) \int_{\bm{l}\in\Omega} D_\text{Phong}(\bm{r}) \, L_i(\bm{l}) \, (\bm{n}\cdot\bm{l}) \, d\bm{l}
f_\text{smf}(\bm{l},\bm{v}) = \frac{F(\bm{h},\bm{l}) \, G_2(\bm{l},\bm{v},\bm{h}) \, D(\bm{h})}{4|\bm{n}\cdot\bm{l}|\,|\bm{n}\cdot\bm{v}|}
D(\bm{h}) \approx D_\text{Phong}(\bm{r})
is valid, we are significantly simplifying!
\int_{\bm{l}\in\Omega} f_\text{smf}(\bm{l},\bm{v}) \, L_i(\bm{l}) \, (\bm{n}\cdot\bm{l}) \, d\bm{l} \approx
\int_{\bm{l}\in\Omega} D(\bm{r}) \, L_i(\bm{l}) \, (\bm{n}\cdot\bm{l}) \, d\bm{l}
\int_{\bm{l}\in\Omega} f_\text{smf}(\bm{l},\bm{v}) \, (\bm{n}\cdot\bm{l}) \, d\bm{l}
\bm{n}=\bm{v}=\bm{r}
on the lobe\theta
, roughness \alpha
, and Fresnel term F
\bm{n}
and contain irradiance values