Edgar SIMO-SERRA
P(A|B)=Probability of A given B
Definition. If P(B)≠0
, P(A|B)=P(A∧B)P(B)
Product Rule. P(A∧B)=P(B)P(A|B)
General Product Rule.
P(A1∧A2∧⋯∧AN)=P(A1)P(A2|A1)P(A3|A1,A2)⋯P(AN|A1,A2,…,AN−1)
Definition. An event A
is independent of an event B
if P(A|B)=P(A)
or if P(B)=0
Theorem (Product Rule for Independent Events). If A
is independent of B
, then P(A∧B)=P(A)P(B)
Theorem (Symmetry of Independence). If A
is independent of B
, then B
is independent of A
.
P(¬A)=1−P(A)
P(∅)=0
P(A∪B)=P(A)+P(B)−P(A∩B)
P(A∪B∪C)=P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)